
FullReview: Practical Accountability in Presence of
Selfish Nodes

Amadou Diarra
Grenoble University

Grenoble

Sonia Ben Mokhtar
LIRIS CNRS

Lyon

Pierre-Louis Aublin
LIRIS CNRS

Lyon

Vivien Quema
Grenoble INP

Grenoble

Abstract—Accountability is becoming increasingly required in
today’s distributed systems. Indeed, accountability allows not
only to detect faults but also to build provable evidence about the
misbehaving participants of a distributed system. There exists
a number of solutions to enforce accountability in distributed
systems, among which PeerReview is the only solution that is
not specific to a given application and that does not rely on any
special hardware. However, this protocol is not resilient to selfish
nodes, i.e., nodes that aim at maximising their benefit without
contributing their fair share to the system. Our objective in this
paper is to provide a software solution to enforce accountability
on any underlying application in presence of selfish nodes.
To tackle this problem, we propose the FullReview protocol.
FullReview relies on game theory by embedding incentives that
force nodes to stick to the protocol. We theoretically prove
that our protocol is a Nash equilibrium, i.e., that nodes do
not have any interest in deviating from it. Furthermore, we
practically evaluate FullReview by deploying it for enforcing
accountability in two applications: (1) SplitStream, an efficient
multicast protocol, and (2) Onion routing, the most widely used
anonymous communication protocol. Performance evaluation
shows that FullReview effectively detects faults in presence of
selfish nodes while incurring a small overhead compared to
PeerReview and scaling as PeerReview.

I. INTRODUCTION

Distributed systems have always been the scene of various
software and hardware failures. These failures can have diverse
sources such as the crash of machines, bugs, misconfigura-
tions, as well as malicious attacks and users that deliberately
tamper with their software to gain some benefit. These failures
are especially difficult to deal with when the distributed system
spans over multiple administrative domains (also referred to
as MAD distributed systems) [2]. Examples of such systems
include peer-to-peer systems, computer grids, network services
(e.g., DNS), federated information systems and inter-domain
routing.

Accountability, which refers to the ability to detect and
expose node faults, is a promising paradigm to deal with these
types of failures. In the last decade various solutions have
been proposed to enforce accountability for specific applica-
tions (e.g., anonymous communication [8], online games [25],
network storage [26], randomised systems [3], inter domain
routing [15], virtualised systems [14]). While these solutions
offer strong accountability guarantees, their usability is limited
to the specific application domain for which they have been
devised. Hence, generic solutions that are not tailored to a
specific application have been proposed, some of which rely

on trusted hardware (e.g., Trinc [20], A2M [7], Pasture [18])
while others are generic software solutions. Our work targets
this second category of systems as they do not require users
(worldwide) to acquire specific hardware. To the best of our
knowledge, PeerReview [16] is the only protocol that falls
into this category of systems. In this protocol, nodes log their
interactions with other nodes in a secure log. This log is
then periodically audited by a set of other nodes assigned by
the system, i.e., the node’s monitors. During their audit, the
monitors verify that the monitored node did not tamper with
its log and that the latter corresponds to a correct execution
of the monitored protocol. An attractive result of PeerReview
in addition to its wide applicability is that it provides two
theoretical guarantees: completeness and accuracy. Informally,
completeness refers to the ability to detect (eventually) all the
observable faults, while accuracy refers to the ability to never
accuse correct nodes of misbehaviour.

PeerReview works under the Byzantine failure model, i.e.,
a model where a majority of nodes are correct and where a
fixed (known) proportion of nodes in the system can behave
arbitrarily. While dealing with Byzantine nodes is important, it
has been demonstrated that in open collaborative environments
selfish nodes, also called free riders, constitute a real threat [1],
[19], [11], [10]. Selfish nodes are nodes that tamper with
their software (or download a tampered software developed by
others) in order to benefit from the system without contributing
their fair share to it.

In PeerReview, nodes are not encouraged to participate to
the monitoring of other nodes, which makes it vulnerable
to selfish nodes. Specifically, in presence of a proportion of
selfish nodes, some nodes in the system can be unsupervised
if all their monitors behave selfishly. As a result, these nodes
can harm the system without being detected, breaking the com-
pleteness property of PeerReview. To measure the impact of
this threat in practice, we deployed PeerReview for enforcing
accountability in the following two protocols: SplitStream [6],
an efficient multicast protocol and Onion routing [12], the most
used anonymous communication protocol. Experiments show
that in presence of 30% of selfish nodes, 54% and 85% of
messages are lost using the first and the second protocols,
respectively.

In this paper, we embrace the challenge of designing a
selfish-resilient protocol for enforcing accountability in dis-
tributed systems and present the FullReview protocol. The



objective of FullReview is to force selfish nodes to participate
in the monitoring of other nodes while they are executing a
given protocol. To reach this objective, the first idea that one
may have is to make monitors themselves accountable for their
actions by applying PeerReview. We show in this paper that
this is not possible because using PeerReview to monitor itself
would require that each node’s log contains the log of all the
other nodes in the system, which is not scalable.

To overcome this problem, FullReview relies on a game the-
oretic approach to force selfish nodes to stick to the monitoring
protocol. Specifically, FullReview is a complete redesign of the
PeerReview protocol, in which we have embedded incentives
in such a way that it is not in the interest of any node to
deviate from the protocol, i.e., we prove that FullReview is a
Nash equilibrium [23] (Section VII-D).

We implemented FullReview and used it to monitor the
two protocols SplitStream and Onion routing. Performance
evaluation performed on a cluster of 50 machines shows that
FullReview is resilient to selfish nodes and that it incurs a
reasonable overhead compared to PeerReview. Complementary
simulations show that FullReview scales up to 1000 nodes.

The remaining of this paper is structured as follows. First,
we present the related works in Section II. Then, we show the
impact of selfish nodes in PeerReview and present our system
model in Section III. Further, we present an overview of
FullReview and its detailed description in sections VI and VII,
respectively. Finally, we present the performance evaluation
of FullReview in Section VIII and concluding remarks in
Section IX.

II. RELATED WORKS

Building robust distributed systems has been at the heart of
many research efforts in the last decade. In this context, a new
model called the Byzantine, Altruistic, Rational (BAR) model
has been proposed [2]. This model considers three types of
nodes: Byzantine nodes are nodes that can deviate arbitrarily
from the protocol; rational nodes are nodes that deviate from
the protocol if the performed deviation allows them to increase
their own benefit according to a known utility function;
altruistic nodes are nodes that always stick to the protocol.
In this context, a protocol is said to be BAR-resilient if it
tolerates a fixed amount of Byzantine nodes and an unlimited
proportion of rational nodes. BAR-resilient protocols often
combine game theory by adding incentives that encourage
rational nodes to stick to the protocol and accountability
techniques that expose Byzantine nodes in case of deviation.
In the last years, various collaborative systems have been
designed according to this model including protocols for spam
resilient content dissemination [5], distributed file systems [2],
video live streaming [22], [21], [13], anonymous communica-
tion [4] and N-party data transfer [24]. The process by which
a new BAR-resilient protocol is designed usually involves the
following steps: (1) define the utility function of rational nodes
in the considered protocol; (2) list all the possible rational
deviations according to the defined utility function; (3) for
each identified deviation, propose incentives for rational nodes

such that any deviation would engender a loss in the utility
perceived by the deviating node and mechanisms that would
catch the considered Byzantine deviation; (4) prove that the
proposed protocol is a Nash equilibrium. The major limitation
of this approach is that it has to be performed manually by
a system expert, which is complex and possibly error prone.
Furthermore, any modification in the original system requires
to rethink the system as a whole, as the latter may introduce
new rational or Byzantine deviations. Rational nodes in the
BAR-model correspond to selfish nodes in our work.

A grail that security managers may dream of having is a way
of automatically transforming a given protocol into a BAR-
resilient protocol. Two solutions that go towards this direction
have been proposed in the literature. First, Nysiad [17] allows
the automatic transformation of a given protocol to a Byzantine
resilient system. Nysiad reaches this objective by replicating
each host using a variant of replicated state machines (RSMs).
However, the resulting system does not deal with selfish nodes.
Contrarily to Nysiad, PeerReview [16] allows to automatically
detect all sorts of observable deviations, including both selfish
and Byzantine deviations, that a node would perform in a
given monitored protocol. PeerReview reaches this objective
by using tamper evident logs and assigning monitors to
nodes, which periodically assess the correctness of a node by
comparing its log with a correct execution of the protocol
obtained using a reference implementation. However, while
PeerReview allows to deter faults in the underlying protocol
to which it is applied, it does not detect deviations performed
by nodes on its own protocol steps.

Our objective in this paper is to design the first generic
protocol that deals with both selfish and Byzantine nodes on
any underlying protocol.

III. PROBLEM STATEMENT AND SYSTEM MODEL

We present in this section an evidence that the PeerReview
protocol fails to enforce accountability in presence of selfish
nodes in Section III-A. We then present our system model in
Section III-B.

A. Problem statement

Let us consider a system where nodes can be correct,
selfish or Byzantine. As introduced in the previous section,
correct nodes follow the protocol, Byzantine nodes can behave
arbitrarily and selfish nodes aim at maximizing their benefit
with respect to a known utility function. The PeerReview
protocol has been designed under the assumption that every
node is monitored by a set of monitors and that each monitor
set contains at least one correct node that executes all the
monitoring steps. In this work, we raise this assumption and
consider that any node in the system can behave selfishly if
it has an interest in doing so. We show that nodes executing
PeerReview can skip some steps of the monitoring protocol
without being detected and that such behaviour can have a
dramatic impact on the performance of the monitored protocol.
We provide in Section IV a complete analysis of all the proto-
col steps of PeerReview and list all the selfish deviations that



they are subject to. Due to the lack of space, we present here
our practical results only. Specifically, to assess the impact
of selfish nodes in PeerReview, we performed the following
two experiments. In the first experiment, we deployed on one
hundred nodes the SplitStream protocol [6], an efficient tree
based multicast protocol, monitored by PeerReview. In the
second experiment, we deployed one hundred nodes running
the Onion routing protocol [12] monitored by PeerReview. In
both cases, we used the same experimental settings as the ones
described in Section VIII. In both experiments, if a selfish
node notices that its monitors are selfish (e.g., because they
never ask to audit its log), it also behaves selfishly with respect
to the SplitStream and Onion routing protocols by dropping
messages it receives and that are not intended to him.

We measure the percentage of lost messages with respect to
the proportion of selfish nodes in the system. Results, depicted
in Figure 1 show that in presence of up to 30% of selfish nodes,
correct nodes running the SplitStream protocol observe 54%
of message loss. Similarly, in the Onion routing application,
correct nodes experience a loss in their onions that can reach
85% with 30% selfish nodes in a configuration with five relays.
This proportion increases and reaches 100% when the number
of relays increases. This is due to the fact that the probability
of having a selfish relay in a path increases proportionally with
the number of relays constituting this path.
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Fig. 1: Impact of selfish nodes in PeerReviewed SplitStream
and Onion routing protocols.

The question we raise in this paper is thus how to enforce
accountability in any underlying protocol in presence of selfish
nodes? We answer this question in the remaining of the paper.

B. System model

Our target system is composed of two protocols: the moni-
tored protocol to which we will refer as P and the monitoring
protocol to which we will refer as M .
Fault model. We consider a fixed proportion of Byzantine
nodes that can take arbitrary decisions. They can deviate from
either P or M protocols for any reason (e.g., a failure, a bug, a
threat). Furthermore, we consider any number of selfish nodes.
These nodes aim at maximising their benefit according to a
known utility function. Selfish nodes will deviate from M if

they gain some benefit in doing so. Specifically, this benefit
can be represented along the following axes:

1) (Communication) Sending/receiving as little as possible
monitoring messages to/from other nodes.

2) (Computation) Performing as little as possible
monitoring-related computations for other nodes.

Moreover, we assume that selfish nodes are risk averse. This
means that before performing any deviation, a selfish node
estimates the probability to be detected in the future. If
this probability is greater than zero, a selfish node sticks
to the protocol. This assumption is commonly used in BAR
systems [2]. This assumption makes particularly sense in
accountable systems because the detection of a deviation in
these systems directly leads to the eviction of the faulty node
from the system. Instead, in systems where the penalty is
weaker, e.g., a decrease in a reputation value, it appears more
appropriate to consider different selfishness models (e.g., risk
affine). This is not the case of our system.

The BAR model also supposes that selfish nodes join and
remain in the system for a long time and seek a long-term
benefit. Moreover, selfish nodes do not collude and assume
that other nodes are correct.
System assumptions. As in PeerReview, we assume a crypto-
graphic identification of nodes. Specifically, each message sent
in the network is signed using the sender’s cryptographic key.
Moreover, we assume that messages sent by a sender to a given
receiver are always received if retransmitted infinitely often.
We assume that cryptographic primitives can not be forged
and that hash functions are collusion resistant. We assume
that nodes have a deterministic reference implementation of
P that can be initialised with checkpoints and to which we
can inject inputs in order to get the corresponding outputs.

IV. ACCOUNTABILITY: THE PEERREVIEW APPROACH

Consider a system composed of N nodes executing a
protocol P . We assume that P can be represented as a set
of deterministic state machines Si and that every node has
access to a reference implementation of each state machine.
Furthermore, we assume that each node uses a collusion
resistant hash function H and holds a pair of public/private
key. We note by (m)σi

a message signed using i’s private
key.

By relying on the architecture described in Figure 6 and
on the secure logs described above, nodes engage in being
accountable for their actions by executing the following pro-
tocols:
Commitment Protocol. This protocol ensures that the sender
(resp. the receiver) of a message obtains verifiable evidence
that the receiver (resp. the sender) has logged the transmission
as illustrated in the left part of Figure 2. Specifically, when
node i sends a message m to node j, it adds an entry
ek to its log and generates the corresponding authenticator
αkσi

. It then sends this authenticator along with m. When j
receives the messages, it checks the authenticator, adds an
entry corresponding to the reception of m and generates the
corresponding authenticator. Then, j sends an ack message to
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i, with evidence that it has added the reception of m to its
log.
Consistency Protocol. This protocol ensures that each node
either maintains a single linear log that is consistent with all
authenticators the node has issued, or it is exposed by at
least one correct monitor. This protocol works as depicted
in right part of Figure 2. Specifically, each node receiving
an authenticator from another node (both i and j receive an
authenticator in the figure), forwards the authenticator to the
node’s monitors. In the figure, i (reap. j) forwards αlσj

(reap.
αkσi

) to j’s monitors (resp. to i’s monitors). This helps monitors
to collect verifiable evidence of all the messages the monitored
node has sent or received.
Audit Protocol. Periodically each monitor challenges its mon-
itored nodes to return all log entries in a given range of
sequence numbers as shown in Figure 9 (nodes in m(i) send
an audit message to i). Using the log entries sent by i, each
monitor extracts all authenticators that i has received from
other nodes and that appear in its log and forward them to
the nodes’s monitors (in the figure authenticators signed by j
and others signed by k are forwarded to j’s monitors and k’s
monitors respectively). Then, each monitor ensures that node’s
log corresponds to a correct execution of the protocol.
Challenge-Response Protocol. This protocol works as de-
scribed in Figure 4. Specifically, if a node i waits for a given
message from a given node j for too long, i suspects j. It
then creates a challenge for j and sends this challenge to j’s
monitors, who forward the challenge to j.
Evidence Transfer Protocol. This protocol ensures that even-
tually, every correct node collects the same evidence about
other nodes in the system. Specifically, as depicted in Figure 5,
node i periodically fetches the challenges collected by the
monitors of every other node j it is interested in (e.g., its
direct partners). It then replays these challenges and eventually
outputs the same indication as j’s monitors about j.

V. SELFISH DEVIATIONS IN PEERREVIEW

We analyse in the following each PeerReview subprotocol
and show that they are all subject to selfish deviations as nodes
have no interest in performing some their steps.

Indeed, in the Commitment Protocol, a selfish node can
avoid sending (a subset of) authenticators to its partners along
with the messages of the protocol P that it is executing.
Furthermore, in the Consistency Protocol, a selfish node
that receives an authenticator from another node, can avoid
forwarding this authenticator to the node’s monitors to save

bandwidth (e.g., node i (resp. j) may skip step (4) (resp.
step (3)) in Figure 2). In the Audit Protocol, a selfish monitor
can (sometimes) avoid sending audit requests to its monitored
nodes to save bandwidth and computational resources (e.g.,
a node in m(i) can skip step (1) in Figure 9). Additionally,
it could send audit requests and claim that the audited node
is correct without effectively performing the various checks
described in Section VII-A. Finally, upon performing an audit,
a selfish monitor can avoid forwarding authenticators extracted
from the monitored node’s log to these nodes’ monitors (e.g.,
a node in m(i) can skip steps (3) and (4) in Figure 9). In
the Challenge-Response Protocol, a selfish node may avoid
challenging other nodes if they are missing some messages
from them (e.g., node i may skip step (2) in Figure 4). Selfish
monitors can also skip the forwarding of a challenge to the
suspected node (e.g., a node in m(i) may skip step (3) in
Figure 4). In the Evidence Transfer Protocol, selfish node can
avoid fetching the challenges about other nodes and avoid
executing the fetched challenges hoping that other nodes will
take care of expelling misbehaving nodes from the system
(e.g., node i may skip steps (1) and (3) in Figure 5).

VI. FullReview PROTOCOL OVERVIEW

Let us consider a set of N nodes executing a protocol P
defined as a set of deterministic state machines. In FullReview,
nodes take part in a classical accountability architecture as
depicted in Figure 6. Specifically, each node i in our system
interacts with a set of nodes referred to as i’s partners and
appearing on its right side in the figure. In addition to its
set of partners, node i is assigned a set of monitors that
periodically verify whether i sticks to the specification of the
protocol P or not. This set of nodes is referred to as m(i) and
appears above i in the figure. Symmetrically, i monitors a set
of nodes: the set of nodes referred to as m−1(i) and appearing
below i in the figure. To perform this monitoring, each node
maintains a secure log that is tamper evident and append
only, in which it writes all its interactions with its partners
(details on secure logs are given in Section VII-A). This log
is periodically audited by i’s monitors. Each monitor runs a
monitoring protocol M also described as a set of deterministic
state machines.

The objective of FullReview is to force selfish nodes to
execute all the steps of both protocols P and M and to detect
when Byzantine nodes deviate from either protocols P or M .
To reach this objective, each node i logs in its secure log
all its actions related to both protocols P and M . Then, i’s
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monitors, i.e., nodes in the set m(i), periodically perform a
set of verifications on this log. These verifications, which are
depicted in the diagram of Figure 7, allow each monitor to
reach evidence about the correctness of i. Specifically, each
node in m(i) starts by verifying that i did not tamper with
its log (e.g., that the node did not delete previously inserted
entries). We call this verification, which appears on the top
of the diagram, log coherence check. We explain how this
verification is performed in Section VII-B1.

Further, each node in m(i) verifies that i holds a unique
log for all its partners. We call this verification, which appears
second in the diagram, log consistency check. The above two
verifications are critical for the accountability system to be
effective. Indeed, if a node manages to add/delete log entries
or to have multiple versions of a log, it could deviate from
the protocol without being detected. We explain how this
verification is performed in Section VII-B2.

Moreover, each node in m(i) verifies that the communi-
cation patterns appearing in i’s log are coherent with M
and P ’s state machines (third verification in the diagram).
This verification ensures that i’s log contains a sequencing
of messages that reflect a correct behaviour. For instance, a
correct log should contain periodic requests from i to the set
of nodes it monitors, i.e., the nodes in m−1(i). The absence
of such periodic messages reflects a faulty behaviour. We
explain how these verifications are performed in FullReview
in Section VII-B3.

However, a log that exhibits a correct sequencing of mes-
sages is not sufficient to guarantee a correct behaviour. Hence,
the last verification that is performed by i’s monitors is to
assess whether i’s log corresponds to a correct execution of
the protocols P and M or not. Verifying the conformance

of i’s log with a correct execution of P is performed as in
the PeerReview protocol, i.e., by re-executing the code of
the protocol P using a reference implementation. Specifically,
the inputs present in i’s log are injected in the reference
implementation of P and the produced outputs are compared
with the outputs present in i’s log. Mismatching outputs would
constitute an evidence that i did not correctly execute P .

Doing the same verification for the protocol M is not
possible. Indeed, as further discussed in Section VII-B4 re-
executing the monitoring code is a recursive task and requires
that a node’s log contains the log of all the other nodes that are
linked to him in the monitoring graph (which may possibly
be all the nodes in the system). To avoid such an overkill,
we identify all the computations performed in the protocol
M and ensure that these computations are performed by a
set of nodes in parallel. The outcome of each computation
is then collected from the various participating nodes and
sent to the nodes’ monitors. The latter compare the outcome
of the computation performed by their monitored node with
respect to what other nodes have computed. As selfish nodes
do not want to be exposed by correct nodes, they will always
perform the computation correctly. In the diagram of Figure 7,
this last verification is performed before the re-execution of
P ’s code because the latter is more costly. Details of how
FullReview verifies that nodes correctly executed the compu-
tations appearing in both protocols M and P are described in
Sections VII-B4.

Do all the computations performed by i wrt 
to M appear correct?

Does log(i) reflect correct communication 
patterns wrt P and M protocols?

Is log(i) consistant?

Is log(i) coherent?

Does log(i) corresponds to a correct 
execution of P?

         Yes

         Yes

         Yes

i is faulty

i is correct

         Yes

No

No

No

No

No
         Yes

Fig. 7: FullReview monitors decision diagram.



VII. FullReview DETAILED DESCRIPTION

We start this section by introducing secure logs, a central
component for enforcing accountability (Section VII-A). We
then present the two major parts of our protocol, i.e., the audit
protocol (Section VII-B) and the omission failure protocol
(Section VII-C). Finally, we give some information about how
we carried out the Nash equilibrium proof for our protocol
(Section VII-D).

A. Accountability tools: Tamper Evident Log

Secure logs are often used to enforce accountability in
distributed systems. A secure log is generally used to store the
messages exchanged by a node with its partners. According
to the requirements of the accountable system, log entries la-
belled e0, ..., ek can contain various information among which
an identifier of the logged message, whether the message was
sent or received by the node as well as its parameters.
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Fig. 8: Example of a secure log.

To each log entry ek corresponds a recursive value hk,
computed as a hash of ek concatenated with the value of
hk−1 (where h−1 is a fixed value), and an authenticator αki ,
which is a message containing the value of hk signed with i’s
private key, i.e., αki = (hk)σi . Authenticators allow verifying
that a node log has not been tampered with. For instance,
consider a node j, among node’s i monitors. If j gets a pair
of authenticators α0

i and αki corresponding to the entries e0
and ek of i’s log respectively, it can ask i of its log entries
e0, ..., ek and recompute h0, ..., hk. If the computed hk differs
from the one held by j, the latter can accuse i of tampering
with its log. Further, j can convince any other correct node of
the misbehaviour of i by sending to it the signed authenticators
α0
i and αki along with the log entries sent by i.

B. FullReview selfish-resilient audit protocol

Using the secure log described above, a node j monitoring
the behaviour of a node i performs a set of verifications to
assess the correctness of i following the diagram of Figure 7.
However, selfish monitors might be tempted not to perform
these verifications. In order to force monitors to perform
them, we make audits proactive. Specifically, we divide time
in rounds and give the responsibility for each node to pe-
riodically (e.g., at the end of each round) ask its monitors
to audit its log following the diagram depicted in Figure 9
(the Audit req message sent from i to its monitors m(i)).
Then, each monitor performs the required verifications and
produces a certificate of correctness if the node passes all
of them. In the opposite case, i’s monitors send a proof of
misbehaviour to i including the evidence of i’s misbehaviour,

which any correct node can recompute. This certificate is then
used by i at the beginning of the following round in order to
communicate with its partners. Without such a certificate, i’s
partners will refuse to interact with i. Note that some of i’s
monitors might be unresponsive (either because of a failure
or to avoid auditing i’s log). We describe how we deal with
this situation in Section VII-C. Finally, after collecting the
outcome of the audit produced by its monitors (Audit resp
message), i forwards the aggregated outcome to the monitors
of each of its monitor (Fwd outcome message). This last
step is useful for the monitors of i’s monitors (i.e., m(m(i)))
in order to verify whether the nodes they monitor correctly
performed their monitoring tasks or not. Further details on
this verification are given in Section VII-B4.

In the following we describe in detail the set of verifica-
tions performed by the monitors of each node to assess its
correctness.

1) Log coherence check: Allows verifying that a node’s
log has not been tampered with. Consider a node j that
monitors a node i. If j gets a pair of authenticators α0

i

and αki corresponding to the entries e0 and ek of i’s log
respectively, it can ask i for its log entries e0, ..., ek and
recompute h0, ..., hk. If the computed hk differs from the
one held by j, the latter can accuse i of tampering with its
log. Further, j can convince any other correct node of the
misbehaviour of i by sending to it the signed authenticators
α0
i and αki along with the log entries sent by i. To perform this

type of verification each node shall log each message it sends
as part of the protocols P and M and send the corresponding
authenticator to its partner. Furthermore, each node shall
forward the received authenticators to its partners’ monitors.
However, selfish nodes might be tempted not to follow these
steps, i.e., avoid attaching authenticators with messages they
send and/or avoid forwarding received authenticators to the
partner’s monitors. We show how we deal with this issue in
Section VII-B3.

2) Log consistency check: Node i might be tempted to
maintain many correct logs (e.g., one log for each node with
whom it interacts). To detect this type of misbehaviour, a
monitor j that holds a set of authenticators sent by i to other
nodes verifies that these authenticators belong to the same log.
Similarly to the log coherence check, this verification requires
that nodes attach authenticators to all messages they sent and
forward received authenticators to their partners’ monitors,
and that monitors perform the consistency check. We show
how we encourage selfish nodes to perform these steps in
Section VII-B3.
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(2):Audit_resp
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Fig. 9: FullReview audit protocol.



3) Verifying communication patterns: In this part of the
protocol, a node in the monitor set of a node i is responsible for
assessing whether the log of i reflects correct communication
patterns with respect to the state machines of P and M .
However, it is not possible to consider the state machines
of these two protocols separately as in some situations steps
of M need to be interleaved with steps of P . For instance,
as seen in the log coherence and consistency checks de-
scribed above, nodes need to send authenticators along with
messages related to P and need to forward authenticators
received along with messages related to P . To reach this
objective, the state machine of the protocol P is automatically
augmented with a set of mandatory transitions as depicted
in Figure 10. In this figure, and in all the figures depicting
automata in the paper, transitions are labelled as follows:
(P|M:IN|OUT:message type) where the first part refers to
whether the message belongs to the protocol P or M ; the sec-
ond part indicates respectively whether the message is received
or sent and the third part is the message type. This figure shows
that each time a node is expecting a message as part of the
protocol P , it should: (1) upon receiving the message, forward
the included authenticator to the sender’s monitors (transition
labelled (M:OUT:fwd auth)); or (2) accuse the sender if
the message did not contain an authenticator by sending
an accusation message to the sender’s monitors (transition
labelled (M:OUT:accuse)); or (3) suspect its partner if the
latter did not send the expected message (transition labelled
(M:IN:timeout)). The transitions following this latter transition
are further described in Section VII-C.

Augmenting all the transitions of P related to the re-
ception of messages as shown in Figure 10 forces selfish
nodes to attach authenticators to the messages they send
(otherwise, nodes that receive theses messages might accuse
them). Furthermore, it forces selfish nodes to forward the
received authenticators to their partner’s monitors (otherwise,
their monitors might accuse them of behaving selfishly).

In addition to verifying that a monitored node’s log is co-
herent with the state machine of the P augmented automaton,
monitors verify that the log is coherent with M state machines
related to the audit protocol (described earlier in this section)
and with M state machines related to the handling of omission
failures. The former state machines are depicted in Figures 11
and 12 while the latter are described in the following section.
Specifically, the automaton of Figure 11 shows the correct
communication patterns of a node i asking one of its monitors
for an audit (transition labelled (M:OUT:audit req)). After
sending his audit request, node i either receives a response
from its monitor containing the outcome of the audit (transition
labelled (M:IN:audit resp)) or it does not receive a reply (the
transition labelled (M:IN:timeout)). In the former case, node
i forwards the outcome of the audit to the monitors of all of
its monitors, which allows them to verify that their monitored
node reached the same outcome about the correctness of i as
the other monitors of i. In the latter case, i considers that its
monitor has failed and handles this failure as described in the
following section.

The automaton of Figure 12 shows the correct communi-
cation patterns of a monitor j that receives an audit request
from a node i that it is monitoring (the transition labelled
(M:IN:audit req)). After the reception of this request, node j
performs the audit of the i’s log and sends back the outcome
of the audit to i (the transition labelled (M:OUT:audit resp)).

P:IN:x P:IN:x

M:OUT:fwd_auth

M:OUT:accuse

P:IN:timeout

M:OUT:challenge M:IN:chall_outcome

1

4

5 6

3

2

Fig. 10: Augmenting the P protocol.
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Fig. 11: Sending audit requests.

M:IN:audit_req

M:OUT:audit_resp
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M:OUT:fwd_auth
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Fig. 12: Dealing with audit requests.

4) Verifying computations: In this part of the protocol,
each monitor j in the monitor set of a node i verifies that
the computations performed by i as part of the protocols P
and M are correct. For the computations performed by i and
that are related to P , j use checkpoints stored in i’s log
and initializes the reference implementation it has with the
oldest non-verified checkpoint. Further, j replays all the inputs
available in the portion of i’s log it is auditing and verifies that
the outputs produced by the reference implementation match
with the outputs stored in the log. If the computed outputs do
not match with the logged ones, j accuses i of misbehaviour.
Whether i passes this verification or not, j stores the outcome
of the audit along with the authenticators corresponding to
the portion of the log of i that it has audited and sends the
outcome of the audit to i as prescribed by the audit protocol
(described earlier in this section).

Contrarily to the computations related to the protocol P ,
verifying those related to the monitoring protocol M can
not be done by re-executing the steps of the protocol M .
To intuitively understand why, let us consider the following
example, where node i monitors node i − 1 (among other
nodes) and is monitored by node i+ 1 (among other nodes).
At a given execution time, the monitor of node i + 1, say
node i+ 2 would like to audit node i+ 1’s log to verify that



it is correctly performing its monitoring actions regarding the
behaviour of i. To do so, node i + 2 needs to get access to
node i’s log, which is available in i+1’s log. Hence, to check
whether i + 1 has correctly done his monitoring actions, it
needs to verify whether i+1 correctly audited i’s by replaying
the audit verifications itself. However, to verify whether i
is effectively correct, i + 2 must verify whether i correctly
executed its monitoring steps with respect to i − 1. To do
this last verification, i + 2 must verify whether the outcome
of i’s audit over i − 1’s log is correct and is thus obliged to
audit itself i − 1’s log. This process clearly leads each node
to recursively obtain and audit the logs of all the other nodes
that it is connected to in the monitoring graph, which is not
practical.

To avoid such an overkill, we use incentives to force selfish
nodes to correctly perform the computations taking part of
the protocol M instead of recomputing them. Specifically, as
described earlier, after receiving the outcomes of the audit sent
by its monitors, a node aggregates these results and forwards
them to the monitors of its monitors. These nodes receive an
information of the type: (audited node ID, authenticators,
monitor ID, outcome) for each of i’s monitors that took part
in the audit. If a majority of monitors detects a misbehaviour
in i’s log and one of them, say node j, did not, then j is
accused of misbehaviour. In this situation, j is selfish if it
claimed that i is correct without performing the verification
or Byzantine if it replied arbitrarily. As selfish nodes do not
want to be excluded from the system, they always perform
the computations related to M correctly. Instead, if a majority
of monitors but j considers that i is correct, j is considered
Byzantine, as a selfish node do not have any interest in
accusing a correct node of misbehaviour.

C. Handling omission failures

The handling of omission failures is done in FullReview as
depicted in Figure 13. Specifically, if a node i waits for a given
message from a given node j for too long, i suspects j (after
step (1) in the figure). To do so, i creates a challenge for j and
sends this challenge to j’s monitors (step (2) in the figure),
who forward the challenge to j (step (3) in the figure). If j is
still alive in the system then it replies to the challenge (step
(4)). Whether j replied on not to the challenge, after a given
amount of time j’s monitors send an outcome of the challenge
to i summarizing the situation (step (5)).

A selfish node may be tempted not to suspect a node even
if it has waited for too long to receive a message assuming
that other nodes will take care of that. Similarly, a selfish
monitor might be tempted not to forward a challenge send
by i to j assuming that the other monitors will do so. These
two deviations are not possible in FullReview because of the
verification of communication patterns performed by monitors
on their monitored node’s log. Specifically, the automata of
Figures 14 and 15 show the correct communication patterns
that should be present in the log of a node when, as a monitor,
it receives an omission failure complaint about one of its
monitored nodes and when, as a suspected node, it receives a

challenge from its monitor. The log of a selfish node should
be conform to these automata, otherwise it is accused by its
monitors.

In addition, a selfish node might be tempted to suspect
a node instead of performing a costly interaction with him.
To avoid this deviation, we make the cost of suspecting a
node higher than the cost of interacting with him. To avoid
to overload the system, we adapt this cost to each step of
the protocols P and M . For instance, if sending a message
m costs xB of bandwidth to node i, we make the cost of
suspecting a node j to whom i was supposed to send m equal
to x+δB. As such, a selfish node i will always prefer to send
m instead of suspecting j.

(1):Send(m)
i

j

 

 m(j)

 
(2):Challenge

 

 

 

 
 

(3):Fwd_chall

X

1-1 message

1-n message

 
(4):Reply_chall

 
(5):chall_outcome

Fig. 13: FullReview handling of omission failures
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Fig. 14: Dealing with omission failures.
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Fig. 15: Dealing with omission suspicions.

D. Resilience to selfish nodes

We carried out a detailed analysis of all the protocol steps
of FullReview. For each of these steps we listed all the selfish
deviations and the corresponding incentives that prove that
selfish nodes do not have any interest in performing them.
The incentives corresponding to each part of the protocol are
depicted in tables I, II III, IV, V.

VIII. PERFORMANCE EVALUATION

In this section we evaluate the performance of PeerReview
and FullReview with two distributed applications: SplitStream
and Onion routing. We start by introducing the two ap-
plications and our experimental settings in Section VIII-A
and VIII-B, respectively. We then present the performance of
FullReview in presence of selfish nodes (Section VIII-C) and
in the fault-free case (Section VIII-D). Finally, we assess the
scalability of FullReview (Section VIII-E).

Overall, our evaluation draws the following conclusions.
First, we show using real experiments that FullReview can
effectively detect faults in presence of selfish nodes. Second,



Step Description Selfish deviation Incentive
Fig 9
step
2

After the reception of
Audit req, each m(i)
performs a required
verifications and
produces a ceriticate of
correctness if i passes
all of them

Some selfish nodes in m(i) set can
refuse to perform verifications of cor-
rectness

At the reception of Audit resp, the node i forwards
the aggregated outcome to the monitors of each m(i).
These latter can verify if a node in m(i)′s set per-
formed all steps of verifications.

TABLE I: Incentives for audit protocol corresponding to the Figure 9

Transition Label Selfish deviation Incentive
1 P:IN:x Selfish nodes can refuse to forward re-

ceived authenticators to their partner’s
monitors.

Selfish nodes always stick to the commitment protocol
as they will assume that the node they are interacting
with is correct and would hold evidence of their
deviation if any.

5 M:OUT:challenge A selfish node never suspects a node
even if it has waited for too long to
receive a message. Instead, it assumes
that the node is Byzantine and that
some other node will eventually sus-
pect him, create the challenge, contact
the node’s monitors and propagate the
suspicion.

A selfish node has no interest to do this action which
appears in its log and then it risks eviction by its
monitors.

TABLE II: Incentives for augmenting the P protocol corresponding to the automaton of Figure 10

Transition Label Selfish deviation Incentive
1 M:OUT:audit req A selfish node never requests its mon-

itors for an audit.
If a node does not present a certificate of correctness at
the following round, its partners will refuse interacting
with him. Hence, a selfish node always ask its monitors
to periodically audit its log.

2 M:IN:audit resp A selfish monitor never replies to an
audit request.

If it does not do so, the requesting node will suspect
him. As dealing with a suspicion is more costly than
replying to a message and may further lead to the
eviction of the node, a selfish monitor always replies
to an audit request.

3 M:OUT:fwd audit resp A selfish node never forwards the out-
come of its audit to the monitors of its
monitors.

This deviation would be detected by the verification
of communication patterns performed by the nodes
monitors. Specifically, if a node’s log contains the
reception of an audit request, and this entry is not
followed by a forwarding of the received message, the
node is accused of misbehaviour and risks eviction. A
selfish node always forwards a received audit response.

4 M:IN:timeout
5 M:OUT:challenge A selfish node never suspects a monitor

that did not reply to an audit request.
After sending an audit request, if the log of a node
does neither contain the reception of an audit response
nor the sending of a challenge message to the monitors
of the non-responsive monitor, it will be accused for
misbehaviour by its monitors at the next audit. As a
selfish node does not want to be accused, it always
challenges unresponsive nodes.

6 M:IN:chall outcome A selfish monitor never replies to a
challenge

A selfish monitor that does not reply to a challenge
risks imminent eviction. As a selfish node does not
want to be evicted, it always replies to a challenge.

TABLE III: Incentives for the sending of audit requests corresponding to the automaton of Figure 11



Transition Label Selfish deviation Incentive
1 M:IN:audit req A selfish node can ignore the reception

of an audit request.
If a node ignores the reception of an audit request it is
suspected by the audited node. As a selfish node does
not want to be suspected, it will always consider an
audit request.

2 M:perform audit A selfish node can avoid performing
the audit and claim that the audited
node is correct in order to save CPU.

If a selfish node lies about the outcome of an audit,
it risks eviction if correct nodes arrive to a different
outcome (thanks to the replication of computations).
As a selfish node does not want to be evicted, it
effectively performs the verifications as prescribed by
the protocol.

3 M:OUT:audit resp A selfish node can avoid sending an
audit response to save bandwidth.

If a selfish node avoids sending the response of an
audit it will be suspected by the requesting node. As
a selfish node does not want to be suspected, it will
always consider an audit request.

TABLE IV: Incentives for the handling of audit requests corresponding to the automaton of Figure 12

Transition Label Selfish deviation Incentive
1 M:IN:fwd challenge A selfish node can ignore a challenge

sent from its monitors.
A selfish node that ignores the reception of a challenge
risks eviction as it will be considered as dead from the
other nodes in the system.

2 M:OUT:reply challenge A selfish node does not reply to a
challenge.

The same incentive as above holds.

TABLE V: Incentives for the handling of omission failures corresponding to the automaton of Figure 14
FullReview adds a small overhead compared to PeerReview
both in terms of traffic generated and storage. Finally, using
complementary simulations, we show that FullReview is scal-
able up to at least 1000 nodes.

A. Applications

1) Accountable Efficient Multicast: SplitStream [6] is a
protocol that organises nodes in a tree structure where each
node receives multicast messages from its parent node and
forwards them to its child nodes. The specificity of SplitStream
is that it aims at balancing the forwarding load between nodes.
It reaches this objective by splitting the multicast stream
into stripes and using different multicast trees to distribute
each stripe. For our experiments, the source node generated a
video stream of 300kb/s, which is a common rate for video-
streaming applications. Each packet emitted by the source was
sent through a different multicast tree where each node had
two children.

In SplitStream, selfish nodes deviate by not forwarding
updates to their child nodes. As a result they can get the
video stream while saving bandwidth. However, in presence
of selfish nodes, correct nodes may experience frame loss and
consequently receive a degraded version of the video stream.

2) Accountable Anonymous Communication: Onion rout-
ing [12] is a protocol designed for anonymous communica-
tions. It is the protocol used in the TOR project [9], which is
widely used by thousands users daily. In this protocol, when
a node S wants to send a message to a node D, it chooses R
other nodes, called relays, that will forward the message up
to its destination. Node S encrypts successively the message
using the public key of each of these relays, which constitutes
the onion and then sends it to the first relay. Each relay
decrypts one layer of the onion (i.e., removes one layer of
encryption) and forwards it to the next one until it reaches its

final destination. For Onion routing experiments, each node
periodically emitted a packet to a randomly chosen node
through a parametric number of relays. In all our experiments,
messages have a fixed size of 10kB; smaller messages are
padded with additional bytes in order to meet this requirement.
Fixing message size is usually done in onion routing as it
avoids an attacker to follow the progression of an onion in the
system by comparing the size of forwarded messages.

In this protocol, a selfish node can choose not to forward an
onion that is not intended to him. As a result, the destination
will never receive the original message. The objective with
designing a selfish-resilient version of Onion routing is to
ensure that nodes will forward the onions they receive while
providing anonymity guarantees.

B. Experimental settings

We have measured the performance of SplitStream and
Onion routing in two configurations: (i) with PeerReview and
(ii) with FullReview. Our experiments have been performed in
two different settings. First, we performed experiments in real
conditions using the public Grid5000 cluster1. In this cluster
we used 50 quad-core physical machines clocked at 2.6GHz
with 4GB of RAM that are interconnected via a Gigabit
switch. These experiments have been run by deploying one
logical node per physical machine and corresponding curves
are annotated with [G5K] in their labels. To complement our
experiments, we performed simulations using the PeerReview
simulator that has been developed by PeerReview authors2. We
performed simulations with up to 1000 nodes, in order to as-
sess the scalability of FullReview. Results of these experiments
are annotated with [SIM] in their labels.

1Grid 5000: https://www.grid5000.fr
2PeerReview code: http://peerreview.mpi-sws.mpg.de/.



C. Performance in presence of selfish nodes

In this section we show that FullReview tolerates selfish
nodes. To this end, we performed three experiments. In the
first experiment, selfish nodes follow the model presented in
Section III-B. Specifically, they deviate only if they have an
interest to do so and if there is no risk to be caught. In
the second experiment instead, we consider that selfish nodes
deviate if they have an interest to do so without considering
the risk of exclusion. This latter experiment shows that if they
decide to do so, selfish nodes are quickly detected by their
monitors and excluded from the system.

For all but the second experiment we used the two applica-
tions monitored by PeerReview and FullReview. We used only
PeerReview and Onion routing in the second experiment. In
all the cases, the number of monitors per node is fixed to 2
and the audit period is set to 10s.

The results of the first experiment are presented in Fig-
ure 16. This figure shows the percentage of received messages
as a function of the percentage of selfish nodes. SplitStream
and FullReview are deployed with 50 nodes on G5K. In
this experiment Onion routing was configured with 5 relays,
chosen at random. We first observe in this figure that, using
PeerReview, SplitStream and Onion routing do not tolerate
selfish nodes. Indeed, in presence of only 10% of selfish nodes,
only 79% and 66% of messages are received in the SplitStream
and Onion routing applications, respectively. This represents
a loss of 21% and 34% messages, respectively, which is not
acceptable. This percentage decreases when the proportion of
selfish nodes increases reaching 23% in SplitStream and 5%
if Onion routing, in presence of 50% of selfish nodes. Instead,
using FullReview, we observe that all messages are received in
both applications as selfish nodes have no interest in deviating.

In the second experiment we evaluate the impact of the
number of relays of Onion routing on the percentage of
received message. Results, presented in Figure 17, show that
increasing the number of relays leads to worst results for
PeerReview as the probability to choose a selfish node in an
Onion routing path becomes higher. For instance, with 10%
of selfish 67% of messages are received when using 5 relays,
while this number is as low as 9% when using 40 relays (in
simulations). Moreover, we can observe that the percentage
of received messages in the experiments on G5K is lower.
For instance, with 10% of selfish and 40 relays only 1 onion
has been received over the whole experiment. Note that Onion
routing-FullReview does not experience message loss whatever
the number of relays is. This is again due to the fact that selfish
nodes have no interest in deviating.

The results of the third experiment are presented in Fig-
ure 18. In this experiment, we measure the percentage of
received messages in SplitStream with PeerReview and Full-
Review where selfish nodes start to deviate from the protocol
after 20s. This experiment has been launched with 50 nodes
using simulations. As explained above, in this experiment,
selfish nodes behave selfishly without reasoning on the risk
of being detected. Using PeerReview, we observe that selfish

nodes impact the system as soon as they behave selfishly,
without ever being detected. Using FullReview, we observe
that selfish nodes impact the system during a small time frame,
corresponding to the audit frequency, after which they are
detected and evicted from the system. As a result, all the
messages are received for the rest of the experiment. Note
that choosing a smaller audit period allows the system to
detect selfish nodes more rapidly, but at the expense of some
additional overhead, as we show in the next section.
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Fig. 18: [SIM] SplitStream percentage of received messages
during an experiment in which between 10% and 50% of nodes
start to act selfishly after 20s.

D. Performance in the fault-free case

In this section we assess the performance and the overhead
of FullReview, compared to PeerReview, in the fault-free case.
To this end, we performed three experiments. We launch each
of the experiments of this section both using simulations and
G5K. As we show in the following of this section, the results
using simulations are consistent.

In the first two experiments, we measure the network traffic
and the rate at which the logs grow w.r.t. the number of
monitors, in PeerReview and FullReview respectively. In the
case of Onion routing, an onion path was composed of 5
relays. Figure 19 presents the results for both SplitStream and
Onion routing on G5K, while Figure 20 presents the results
using simulations. Each value has been obtained by running
the system with 50 nodes during 5 minutes. We can observe
that the results on G5K are consistent with the results using
simulations. As a result, we detail the results on G5K only,
but the same observations can be made for the simulations.

In the left figure, each bar represents the traffic due to
the payload of the application. On top of this payload is the
traffic due to PeerReview, on top of which is the overhead of
FullReview in addition to the one of PeerReview. In this figure,
we observe that the average traffic per node increases wrt to
the number of monitors for both PeerReview and FullReview
in the two applications. This is due to all the messages that
need to be exchanged between nodes and their monitors.
Further, we observe that the overhead due to accountability
in the SplitStream application has an overall cost of 14% in
PeerReview with two monitors and an extra cost of 7% in
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Fig. 16: Percentage of received messages in SplitStream and Onion routing as a function of the percentage of selfish nodes.
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Fig. 17: Impact of the number of relays on the percentage of received messages in Onion routing-PeerReview.
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Fig. 19: [G5K] Average network traffic and log growing rate per node of SplitStream (SS) and Onion routing (OR) w.r.t. the
number of monitors.
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Fig. 20: [SIM] Average network traffic and log growing rate per node of SplitStream (SS) and Onion routing (OR) w.r.t. the
number of monitors.

FullReview. This overhead grows up to 45% for PeerReview
and an additional 31% for FullReview when 5 monitors are
used. These costs are much higher if compared to the payload
of the Onion routing application. For instance, enforcing
accountability in Onion routing using PeerReview generates
a traffic of 129kb/s per node while the application itself
generates a payload of only 18kb/s per node. However, put
into context this result is not bad, as enforcing accountability
in anonymous communication protocols is a very challenging
task for which existing solutions often require the heavy use
of broadcast primitives (e.g., RAC [4], Dissent [8]). Further,
assuming that nodes are connected using Gigabit links (in the
case of a LAN) or even using few Megabit links (in the case of
a WAN), 129kb/s seems a reasonable overhead. The good news
is that if the developer accepts to pay the cost of accountability
using PeerReview in a system with a small payload, using a
selfish resilient accountability system, i.e., FullReview would
cost him an extra 3kb/s (i.e., 2% more traffic) with two
monitors and an extra 15kb/s (i.e., 5% more traffic) with five
monitors. Note that, overall, enforcing accountability using
PeerReview is more expensive in the Onion routing application
than in the SplitStream application because in the former
application the full onions are stored in the log while in the
latter instead of storing the video chucks received by nodes in
the log, we store only their identifier. Indeed, storing onions
was the only way we found to enable monitors to verify that
a node has correctly decrypted and forwarded an onion it
received.

In the right figure, each bar represents the average growing
rate of the log of nodes. Similarly to the previous figure, the
cost of FullReview is shown as a delta in addition to the cost
of PeerReview. Note that logs do not grow forever. Indeed,
as in PeerReview, logs are truncated after a given amount of
time and audits are performed only for the new parts of the
log. Obviously, the longer the logging period chosen by the
designer, the higher the probability to deter faults.

Results depicted in this figure show that the log growing
rate of the SplitStream application is higher than log growing

rate of the Onion routing application, which is due to the
fact that the SplitStream application generates more messages
to send the video stream than Onion routing, and thus more
interactions are added to the log. Further we observe that the
higher the number of monitors per node the higher the log
growing rate. On the Onion routing application, the overhead
in terms of log growing rate is equal to 4.9% when using
FullReview with two monitors and increases up to 24%
when using five monitors. On the SplitStream application,
this overhead is higher as it spans from 6.8% to 30% when
using respectively two and five monitors. Yet, we consider
this overhead as reasonable. Indeed, in the worst of our
experiments (i.e, in the SplitStream application using five
monitors), for 24 hours logging, nodes need to devote 4.4GB
of storage for enforcing accountability in presence of selfish
nodes, which is reasonable.

In the third experiment, we measure the impact of the
audit period on the overhead of FullReview compared to
PeerReview. The audit period was ranging from 1s to 30s. We
set the number of nodes to 50, with 2 monitors per node and
5 relays for the Onion routing application. Each experiment
last 5 minutes. Results, presented in Table VI, show that even
with a high frequency of audit (i.e., every second), FullReview
generates only 6.7% more traffic and logs are 8.2% larger
than PeerReview in the worst case. Note that these results
are consistent with the results of the simulations, presented
in Table VII.

Audit period 1s 5s 10s 30s

SS Log size +7.4% +6.8% +6.7% +6.4%
Network traffic +6.7% +6.2% +6.1% +5.9%

OR Log size +8.2% +4.9% +4.8% +3.3%
Network traffic +2.9% +2.6% +2.3% +1.9%

TABLE VI: [G5K] Overhead of FullReview compared to
PeerReview, for both SplitStream (SS) and Onion routing
(OR), with an audit period ranging from 1s to 30s.

Finally, we analytically measure the number of additional
operations performed by PeerReview and FullReview for each



Audit period 1s 5s 10s 30s

SS Log size +10.5% +7.5% +7.2% +6.2%
Network traffic +9.0% +6.7% +6.5% +5.7%

OR Log size +13.4% +6.7% +3.4% +3.3%
Network traffic +3% +2.6% +1.6% +1.2%

TABLE VII: [SIM] Overhead of FullReview compared to
PeerReview, for both SplitStream (SS) and Onion routing
(OR), with an audit period ranging from 1s to 30s.

of their sub-protocols, independently of the considered appli-
cation (see Table VIII). This Table allows us to quantitatively
show why FullReview overhead is as it is. Note that we do
not present the cost of the Commitment, Challenge/response
and Evidence transfer sub-protocols as FullReview does not
modify them.

Sub-protocol Consistency Audit

Exchanged messages PeerReview ψ + ψ2

P
ψ
P

FullReview 2(ψ + ψ2

P
) 3ψ

P

Cryptographic operations PeerReview ψ ψ

FullReview ψ + ψ
P

4ψ
P

New log entries PeerReview 0 0
FullReview ψ + ψ

P
2ψ
P

TABLE VIII: Overhead of FullReview compared to PeerRe-
view for one message exchange, independently of the consid-
ered application. The audit period is P messages exchanges.

To summarize, FullReview adds a small overhead to PeerRe-
view in terms of generated traffic and log size. This overhead
is mainly due to the new log entries inserted by FullReview to
detect selfish nodes. Similarly to PeerReview, the cost of Full-
Review increases with the number of monitors per node and
with the frequency of the audits. Overall, accounting for the
increasing resources (storage and network bandwidth) at the
disposal of a large public (Terabytes of storage and Megabits
of network bandwidth), the cost of enforcing accountability in
presence of selfish nodes becomes a realistic option.

E. Scalability of FullReview

In this section we show that SplitStream-FullReview and
Onion routing-FullReview scale up to at least 1000 nodes.

Figure 21 presents the network traffic and the log growing
rate of SplitStream and Onion routing, for both PeerReview
and FullReview, as a function of the number of nodes in the
system. Each value has been measured via a simulation that
lasts 100s. Moreover, the system has been configured with 5
monitors per nodes. As one could expect from the results of
Figure 19, using less monitors provides better performance. In
addition, the audit period was set to 10s. Finally, Onion routing
was configured with 40 relays and was sending onions at a rate
of 16kb/s.

From this figure we can draw the following conclusions.
First of all, for both SplitStream and Onion routing, the
network traffic and log growing rate of FullReview is within a
constant factor of PeerReview. For instance, with SplitStream,
the log growing rate (resp. network traffic) of FullReview is

equal to 1.4x (resp. 1.3x) the one of PeerReview. This is
due to the fact that FullReview adds a constant number of
operations on the ones performed by PeerReview. Second, we
can observe that FullReview scales up to 1000 nodes, as the
network traffic and log size remain fairly stable despite the
increase of the number of nodes. The reason is that each node
always interacts with the same number of nodes on average,
whatever the overall number of nodes in the system (i.e., its
partners wrt to the application and a fixed number of monitors).

IX. CONCLUSION

This paper addresses the problem of accountable distributed
systems in presence of selfish nodes. We have shown that
PeerReview, the only software generic solution to enforce
accountability, does not tolerate selfish nodes. To tackle this
problem we propose the FullReview protocol. This protocol
uses game theory techniques by embedding incentives that
force selfish nodes to stick to the protocol. We have evaluated
FullReview on a cluster of physical machines and using simu-
lation with two applications: SplitStream, an efficient multicast
protocol, and Onion routing, the most widely used anonymous
communication protocol. Our evaluation makes the following
points. First, contrarily to PeerReview, FullReview effectively
tolerates selfish nodes. Second, FullReview has a low addi-
tional overhead compared to PeerReview. Finally, FullReview
scales up to 1000 nodes.

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).
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