
Thickness computation of trimmed B-Rep model
using GPU ray tracing

G. Lemasson1,2,3, J.C. Iehl2, F. Zara1, B. Shariat1, V. Baudet3, P. Arthaud 3

1Université de Lyon, CNRS, Université Lyon 1, LIRIS, SAARA team, UMR5205, F-69622, French
2Université de Lyon, CNRS, Université Lyon 1, LIRIS, R3AM team, UMR5205, F-69622, French

3CT CoreTechnologie, F-69007, French

Abstract

This paper demonstrates the use of direct ray tracing of large indus-
trial CAD models on the GPU. The ray tracing kernel is a building
block used to compute and assess the validity of the mechanical
design of CAD models. A high precision and efficient solution to
handle trimmed surfaces with holes is discussed. The central idea
leverages Bézier curve properties to build a fast, robust and stable
Newton iteration. Moreover, two GPU implementations are pre-
sented: one using a BVH, the other using a ”Divide and Conquer”
method. We compare both methods with a reference implementa-
tion running on the CPU. We demonstrate that the new methods use
less memory than the current reference method, and that the method
using BVH on the GPU is faster and more accurate.

CR Categories: I.3.7 [Computer Graphics]: Raytracing— [I.3.1]:
Computer Graphics—Parallel processing I.3.1 [Computer Graph-
ics]: Graphics processor— [I.3.5]: Computer Graphics—Curves,
surface, solid, and object representation;

Keywords: Thickness, B-Rep, Ray tracing, Parametric surface,
Trimming, Newton iteration

1 Introduction

Computer Aided Design (CAD) is very important in the prototyp-
ing process in mechanical industries such as automotive industry or
aeronautics. Generally, engineers use specialized softwares (Catia,
PRO Eng, NX, ...) to design the manufactured objects shape, us-
ing frequently the B-Rep model. Indeed, this model offers the best
compromise between the design and mechanical constraints.

The main entities of B-Reps are faces composed by a surface de-
fined by parametric equation. These faces are bounded by trimming
curves including loops defined in the parametric domain of the sur-
face. These loops are divided into two categories: external loops
describing shape, and internal loops describing holes. The trimmed
parametric surfaces could be planar, spherical, or usually NURBS.

Many model interrogation tools of CAD softwares require a high
precision of the computations. One of these interrogation tools is
the thickness computation, used to detect errors such as large differ-
ences of thicknesses between several branches of the B-Rep model.
Indeed, these differences can cause weakness or fragility. Usually

the current implementation ray traces a triangular tessellation of
NURBS surfaces potentially leading to important precision losses.
Thus, the triangular tessellation must be refined, increasing con-
siderably the data size and the computation time. Moreover, most
of interrogation tools do not benefit yet the possibilities offered
by new massively parallel hardware architectures (GPU). Conse-
quently, our aim is to adapt the thickness checker tool on the GPU,
to obtain high precision results at an acceptable computation time.

In this paper, we present a highly efficient thickness computation of
parametric B-Rep models. Our main idea is to directly ray trace the
parametric surfaces to reduce the memory consumption and to im-
prove the precision of distance computations. Surface patches and
trimming curves are converted to bicubic patches and cubic Bézier
curves to get a GPU friendly data layout. This conversion also helps
in computing robust intersections and trimming tests. In this con-
text, we apply and compare two methods: one using a BVH acceler-
ation structure, which uses more memory and incoherent traversal;
and the other one using the ”Divide and Conquer” paradigm, which
uses more memory but a more regular execution on the GPU.

Our main contributions are: a new method for direct trimming of
parametric surfaces on the GPU using Newton iterations and a com-
parative study of two implementations for ray tracing of parametric
surfaces on GPU in the context of an industrial CAD modeling tool.

2 Related work

There are many approaches to compute a thickness as ray tracing or
skeletonization. But, as this latter consumes too memory, we will
focus only on the ray tracing approach in our work.

Ray tracing on tessellation. The thickness can be approximated
by a dense discretization of the surfaces and using a ray tracing per
vertex to evaluate the distance to the opposite side.

Ray tracing triangle meshes is a well studied problem as surveyed
by Wald et al. [2001; 2009]. Efficient implementations on the GPU
are also largely discussed [Aila and Karras 2010; Hapala et al.
2011]. But for accurate thickness computation, a dense discretiza-
tion is required making this approach impractical.

Ray tracing parametric patches. Direct ray tracing of paramet-
ric surfaces appears to be a better approach. This is the most accu-
rate way to obtain information on parametric surfaces, and with less
memory usage because several hundreds of triangles are reduced
to one parametric patch. Kajiya [1982] was the first to introduce
parametric surface ray tracing. The main idea is to convert the bi-
variate equations of parametric surfaces into uni-variate polynomial
of higher degree. For example, a bi-cubic Bézier surface becomes
a polynomial of degree 18. But computing roots of high degree
polynomials can be numerically instable.

Nishita [1990] presented the Bézier clipping method as a robust
root-finding algorithm. Bézier clipping can be used for both ray-
surface and ray-curve intersection computation. But, the recursive

Faces

Pre-processing

Surfaces

Trimming curves

Rays

Bicubic Bézier patches

Cubic Bézier curves

BVH
BVH method on GPU

DACRT method on GPU

Ray tracing on trimmed
parametric patches

Thickness computation

Figure 1: Overview of our method. The pre-processing step is the same for the two methods implemented (BVH and DACRT).

nature of the method makes is implementation difficult on the GPU.
Efremov [2005] performed a robust and numerically stable Bézier
clipping on NURBS. Similarly, Benthin [2004] used the recursive
Loop subdivision for computing a ray/surface intersection.

Toth [1985] introduced a new approach, using Newton iteration to
find a ray/surface intersection which has the advantage of being
general enough to handle any parametric surface. However, it re-
quires a good initial value to ensure correctness and fast conver-
gence. Geimer et al. [2005; 2006] performed a ray tracing of bi-
cubic Bézier patches and NURBS on CPU. They subdivide surfaces
into mostly flat patches and ensure a fast and correct convergence
of the Newton iteration. Pabst et. al. [2006; 2009] performed a ray
tracing of NURBS on the GPU. They used the graphics pipeline to
generate rays and compute intersection in a fragment shader.

Trimming. Surfaces are trimmed in their parametric space by
curves. Consequently an intersection can be found outside the sur-
face or inside a hole. Discretizing trimming curves [Balázs et al.
2004] or their parametric domain [Guthe et al. 2005] requires a
dense sampling to be precise and thus, high memory consumption.

Claux et al. [2012] were interested in ray / surface intersection and
offered a solution to the trimming problem by transforming a cu-
bic Bézier curve into an implicit form [Loop and Blinn 2005] and
stored it in a KD-tree. As this method is direct, i.e. does not need
iterations or recursions to determine the orientation of the curve, it
can be implemented on the GPU. But the transformation of a bi-
cubic Bézier surface to an implicit form provides an approximation
of the initial shape.

The Bézier clipping method for the trimming curve is widely used
in the literature [Nishita et al. 1990; Geimer and Abert 2005; Abert
et al. 2006; Schollmeyer and Fröhlich 2009]. But this technique
remains a recursive method. Pabst [2006] provided an iterative for-
mulation of the originally recursive Bézier clipping and executed it
on the GPU. Schollmeyer et al. [2009] improve on Pabst’s method
by adding a better management of trimming curves. They split the
curves into monotonic segments and use an acceleration structure.
But this method needs a large pre-processing step and creates a
large number of curves.

Acceleration structures. To reduce the number of ray / surfaces
intersection, an acceleration structure can be used. As a construc-
tion of BVH does not need splitting the patches, the BVH is the
more suitable to handle patches. [Aila and Karras 2010] proposed
a hierarchical treelet subdivision of the acceleration structure for a
massively parallel hardware architecture. [Wald 2007; Stich et al.
2009] used the SAH heuristic to build a BVH. Lauterbach [2009]
offered a fast construction of BVH using GPU. Karras et al. [2012]
maximized the parallel construction for several acceleration struc-
tures (BVH, KD-tree and Octree). By construction, the traversal
of BVH is recursive, but [Hapala et al. 2011] proposed a simple
stack-less traversal.

We can note that [Áfra 2012; Mora 2011] offered a ray casting with-
out an acceleration structure, but using the ”Divide and Conquer”
paradigm. We can note that this method uses more regular execu-
tion on the GPU, but requires more memory than the BVH.

3 Our approach

We present an overview of the different steps of our approach in
Fig. 1. We start by a pre-processing each face of our parametric
model:

• First, we subdivide each surface represented by NURBS into
several C2 continuous bicubic Bézier subpatches, and due to
the convex hull property of Bézier surfaces, we use their con-
trol points to determine an axis-aligned bounding box.

• Then, we convert the trimming curves, originally represented
as NURBS, into piecewise cubic Bézier curves for our trim-
ming test.

• We compute a BVH of bicubic Bézier patches using a Morton
key, according to the centroid of axis-aligned bounding box
of patches [Lauterbach et al. 2009; Karras 2012].

• Rays are sampled on the surface point and to the opposite of
the normal surface.

After this pre-processing step, we compute the thickness of the B-
Rep model, by performing rays / patches intersection on the GPU.
We have implemented two methods: the first one uses the BVH
directly on the GPU, and the second one uses the ”Divide and Con-
quer” paradigm inspired from [Áfra 2012; Mora 2011] (denoted
DACRT).

Moreover, as Newton iteration have been used to compute the inter-
section between a ray and a patch, and trimming is managed using
the Newton iteration, we will also discuss about these two methods
in the following sections.

3.1 Pre-processing

The purpose of our pre-processing step is to prepare data for a better
convergence of the Newton iteration and to memory layout. We can
note that Newton iteration has quadratic convergence if the initial
values are near a root.

Surfaces. We first convert the surfaces represented by NURBS into
several bicubic Bézier patches with a tolerance of 10−4. This con-
version has two goals: (1) The former is to reduce a parametric sub-
space into several smaller parametric spaces and to ensure a better
convergence for Newton iteration. (2) The second is to homoge-
nize the data for the GPU. This homogenization ensure an similar
execution on each thread on the GPU and a regular access of the
memory.

To perform this conversion, the aligned-axis bounding box of each
bicubic Bézier patch has been computed using their control points.
Thereafter, the bounding boxes will be used to build a BVH, or to
check if a ray can cross a patch.

Trimming curves. The trimming curves are also converted. Ini-
tially, they are represented as NURBS. We split the curve to ensures
better convergence, and we convert these NURBS into piecewise
cubic Bézier curves according to the inflection points. All curves
are converted in cubic Bézier curves to homogenize the execution
and the access of memory on the GPU.

We can note that the subdivision of NURBS surfaces generates sev-
eral Bézier patches, but the trimming does not affect all the patches.
To improve preprocessing time and memory consumption, we cull
subpatches located in the holes of the surface and outside the sur-
face.

3.2 Thickness computation

BVH method on the GPU. As we build the BVH only for one
thickness computation and not for rendering, we use a fast construc-
tion on the GPU [Lauterbach et al. 2009; Karras 2012] in despite
of the SAH heuristic [Wald 2007; Stich et al. 2009] or the treelet
subdivision [Aila and Karras 2010].

The BVH is computed with a Morton key according to the center
of axis-aligned bounding box of patches [Lauterbach et al. 2009;
Karras 2012]. For each patch, we compute in parallel a Morton key
and we sort them according to the value of the Morton key: that is
each left child corresponds to bit 0 and right child to bit 1.

At the end of the construction of the BVH, each node contains the
bounding box of two children and each leaf contains the index of
the first and the last patch.

Moreover, the traversal of a BVH is a recursive algorithm, we use a
simple stack-less BVH traversal [Hapala et al. 2011].

Then, to manage the ray tracing using the BVH, we proceed as
following. When a ray crosses a node, it first checks the bounding
box of the nearest child and continues until the ray crosses a BBox
or when it reaches a leaf. When a ray crosses a leaf, it checks for
a potential intersection and also test equally the trimming curves of
for all patches referenced by leaf.

DACRT method on the GPU. We have also implemented a ”Di-
vide and Conquer” ray tracing inspired by [Áfra 2012; Mora 2011].
For this, we consider two sets: the set of patches and the set of rays.
The set of patches is split in two according to the maximal axis of
the bounding box.

Then, all rays are checked with one subset and we use an in-place
partition of the set of rays. The rays are organized according to
the crossing bounding box of patches subset: the rays that cross
bounding box of this subset are stored at the begin of set, the other
at the end.

This subdivision is repeated until the size of the set of patches and
the set of rays are too large. When these two subset are small
enough, a brute force method is applied, i.e. each ray checks an
intersection, and the trimming with each patch. After this, we go
back and process another subset of patches.

3.3 Ray / patch intersection

The core of the intersection test is similar to the approach presented
by Geimer et al. [Geimer and Abert 2005].

We represent a ray by two arbitrary chosen orthogonal planes P1 =
(N1, d1) and P2 = (N2, d2), with N1 a normal to P1 and N2 a
normal to P2, and d1, d2 the fourth parameter of plane equation.

The intersection between a ray and a patch is the set of points be-
longing to the patch, which also verify the plan equations P1 and
P2. Consequently, to find the intersection point between the ray and
a parametric surface S(u, v) defines a Bézier patch, it defined by

S(u, v) =

3∑
i=0

Bi(u)
3Bj(v)

3pij , (1)

with Bi(u)
3, Bj(v)

3 the Bernstein polynomials, pij the controls
points, we have to solve

R(u, v) =

[
N1.S(u, v) + d1
N2.S(u, v) + d2

]
. (2)

The Newton iteration is used to find the u, v parameters. If we note
Su, Sv the partial derivative of the parametric surface in the corre-
sponding parametric directions, and un, vn the parametric results
for the nth iteration of Newton, we have[

un+1

vn+1

]
=

[
un

vn

]
− J−1 ·R(un, vn) (3)

where J is the Jacobian matrix defined by

J =

[
N1 · Su(u, v) N1 · Sv(u, v)
N2 · Su(u, v) N2 · Sv(u, v)

]
. (4)

We can note that the getting of the parameters u, v enables to com-
pute the real intersection point, and the distance between the origin
of the ray and the parametric surface.

The use of 32 bits float on GPU can cause a numerical instability.
To prevent this, we choose to use the De Casteljau algorithm rather
than Bézier formula to compute a point on curves or on a patch.
Indeed, the De Casteljau algorithm uses divisions by two making
this operation exact for the float. Moreover, to expand the margin of
the error, we apply a scale factor of 10,000 to the parametric space
of the patches. On average a 32 bits float has 7 decimal digits, but
using a scale of 10,000 for values in [0, 1] can add 5 more decimal
digits.

Moreover, to ensure a fast and correct convergence, we must ini-
tialize correctly u0, v0 of the Newton iteration. Before compute the
intersection of the surface, we compute the intersection with their
control polyhedron. The intersection is determined on a square of
control point. For example, if the intersection is discovered be-
tween the controles points p1,2, p2,2, p1,3 and p2,2, the parameter
u0 will be interpolated between 1

3
and 2

3
, and the parameter v0 will

be interpolated between 2
3

and 1.

To ensure the same execution on each thread on the GPU, we ap-
ply the same number of iterations: seven iterations are required
for a good convergence. Then, there are three potential outcomes:
(1) no-convergence, (2) convergence out of parametric space, (3)
convergence. A no-convergence is detected when ‖R(u, v)‖ > ε,
where ε is an user defined threshold.

We can note that the Newton iteration have a quadratic convergence.
At the end of the iterations, the precision of the calculated intersec-
tion joint is limited by the precision of float numbers, i.e. approxi-
matively 10−5 [Dammertz and Keller 2006].

3.4 Trimming

When a ray find an intersection with the surface, it must check if
it occurs in the interior of the trimming curves defined by this test
reduces to check if the intersection is on the left side of the curve.
We note p the intersection between a ray and the parametric surface,
and pc = c(tp) the projection of p on the nearest trimming curve
c(t). If (−→ppc × c′(tp)).z < 0, where c′(t) is the first derivative
of c(t), and pc the nearest point on c(t), the intersection is in the
interior of the trimming (see Fig. 2). We can note that, due to the
orientation of curves, this approach is correct both for external and
internal curves.

c′(tp)
c(t)

p

c(tp)

Figure 2: Intersection point p inside trimming with (~ppc ×
c′(tp))z < 0.

To determine the projection pc, we write that it is the nearest point
to c(t) when −→ppc · c′(tp) = 0. For this, we use Newton iteration
with [Schneider 1990]:

tn+1 = tn −
(c(tn)− p) · c′(tn)

c′(tn)2 + c′′(tn) · (c(tn)− p)
(5)

where tn is the approximation of the parametric coordinate tp at
the nth iteration, and c′′(t) is the second derivative of c(t). Only
three iterations are required to ensure a good convergence with cu-
bic Bézier curves.

Nearest Curve. Processing all trimming curves is time consum-
ing and not accurate. Consequently, we propose to find the nearest
curve before running the Newton iteration to find the nearest point.
For this, we cut the curve c(t) in three linear segments, and we look
for the nearest. The nearest curve c(t) is the curve whose segment
c(t) is the nearest of p. Fig. 3 illustrates the computation of the
nearest curve: the nearest curve is ca(t), because the segment ca(t)
is the nearest to p.

ca(t)

cb(t)

cb(t)ca(t)

p

t0

ca(1)

Figure 3: Two cubic Bézier curve ca(t) and cb(t), and respectively
the sets of segments ca(t) and cb(t). The projection of p on ca(t)
defines the initial value t0 of Newton iteration parameter.

Initial value. The segmentation of curves also ensure a correct
and fast convergence. Indeed, if a bad initial value is chosen, New-
ton iteration will not converge. The initial value t0 should be as
close as possible to the real root. We choose t0 according to c(t).
Consequently, at the same time that we search the nearest curve
using c(t). A linear interpolation is used to compute t0.

Dead angle. Consecutive trimming curves along the same loop
are generally C1 or C2 continuous, but a continuity break can ap-
pears (see Fig. 4). This case appears when, for two consecutive
trimming curves ca(t) and cb(t), their first derivative at their junc-
tion points are not collinear. We call this zone a dead angle.

If the intersection p is in dead angle, p is nearest to a curve ca(t)
at the point ca(1), and p is nearest to the curve cb(t) at the point
cb(0), but there is no possible convergence for Newton iteration.

To solve this problem, two categories of dead angles exist: con-
cave dead angle and convex dead angle (see Fig. 4). When
c′a(1) × c′b(0) > 0, p is inside a concave dead angle and con-
sequently within the trimmed zone (Fig 4-a). Reciprocally, if
c′a(1) × c′b(0) < 0, p is inside a convex dead angle and conse-
quently outside the trimmed patch (Fig 4-b).

ca(t)
cb(t)

c′a(1) −c′b(0)
ca(t)cb(t)

−c′b(0)

c′a(1)

(a) (b)

dead angle

dead angle
p

p

Figure 4: Illustration of dead angle: a) Concave or b) Convex. The
colored zone is located within the trimmed patch.

4 Results

Thereafter, we present the performance of our ray tracing system
for two different techniques (BVH and ”Divide and Conquer”) mea-
sured on a Nvidia GeForce GTX 580 M implement with OpenCL.
We compare our results with the software thickness analysis tool.
The software platform uses CPU ray tracing of a tessellated ge-
ometry. A second method improves the method on CPU and con-
sists on a parallelized ray tracing on CPU. This latter use the Intel
Threading Build Block library and tests are performed on Intel core
i7-280Qm 2.30 Ghz using double precision numbers.

Our tests are carried out on a part of the geometrical model of the
rear light of a car, called Lens (Fig. 5), as well as on a model called
Mask (Fig. 6). Respectively, these models contain 88,581 patches
and 27,188 trimming curves; 29,379 patches and 12,793 trimming
curves (Fig. 7).

700mm

300m
m

Figure 5: The Lens model after thickness computing. Blue repre-
sents small distances, and red for large thicknesses.

600mm

350m
m

Figure 6: The Mask model after thickness computing. Blue repre-
sents small distances, and red for large thicknesses.

We ran some experiments to choose the stop criterion for DACRT.
Fig. 8 and 9 show the different computation times according to the
size of the both buffer for the Lens model.

Fig. 10 shows the performance of different methods including pre-
processing time. We can observe that the BVH method is the
fastest, especially when the sampling of rays is large. However
the ratio between the different methods depends of the model. On
average the CPU parallelized version is 4.25 times faster than the
serial method on CPU for the Lens model. It is 4.8 faster for the
Mask model. The method using the BVH is the fastest method.
This speed is not significant when the number of rays is low, but it
increases significantly when the number of rays is large.

Lens Mask
bicubic patches 88,581 27,188
cubic trimming curves 27,793 12,793
intersections tests / rays (BVH) 23 47
intersections tests / sec (BVH) 2,874,122 3,312,760
Time intersections (ns) 0.348 0.301
Time pre-processing (s) 69.5 43.8

Figure 7: Information about model. The intersection time includes
the trimming test.

44000

46000

48000

50000

52000

54000

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k
DACRT Size of patches: 30

Max size of the set of rays

T
im

e
pe

r
ru

n
(m

s)

Figure 8: Computing time for the ”Divide and Conquer” method
according to the maximum size of rays set for the Lens model. The
size of patches set is fixed to 30.

43500

44000

44500

45000

45500

46000

10 20 30 40 50 60 70 80 90
Max size of the set of patches

T
im

e
pe

r
ru

n
(m

s)

DACRT, size of rays: 10,000

Figure 9: Computing time for the ”Divide and Conquer” method
according to the maximum size of patches set for the Lens model.
The size of the rays set is fixed to 10,000.

Moreover, the memory consumption of BVH method (Fig.11) is
less than the memory consumption of the actual implemented soft-
ware (Fig. 12). With the BVH method, the rays are generated on the
fly, but for the DACRT all rays must be stored. Fig. 12 shows the
memory consumption of the DACRT method. Although both GPU
methods consume less memory than CPU methods, the method
with the BVH is even more interesting because it uses less memory
and this consumption of memory is constant whatever the number
of rays.

rays BVH DACRT # rays BVH DACRT
Lens Mask

2.11 M 4.52 3.42 1.75 M 3.94 3.26
3.78 M 11.45 7.71 2.23 M 8.93 6.93
4.02 M 11.77 7.89 3.29 M 9.43 7.61
4.84 M 14.17 9.09 4.10 M 12.88 9.98
7.50 M 19.06 10.79 8.20 M 27.89 17.81

Figure 10: Performance comparison for Lens and Mask models
with pre-processing. Ratio between CPU and GPU based methods.

Model BVH Patches Trimming curves Total
Lens 12.94 23.50 1.45 37.90
Mask 5.38 9.69 0.69 15.76

Figure 11: Memory consumption in Mb for the method with BVH.

rays CPU DACRT # rays CPU DACRT
Lens Mem. Mem. Mask Mem. Mem.

2,11 M 1615.0 773.1 1.75 M 1341.6 642.3
3.78 M 2898.0 1386.1 2.23 M 1708.3 817.7
4.02 M 3079.2 1473.1 3.29 M 2519.7 1205.4
4.84 M 3712.4 1775.8 4.10 M 31368.3 1501.8
7.50 M 5749.6 2749.4 8.20 M 6286.3 3005.7

Figure 12: Memory consumption in Mb for both methods.

0

10

20

30

40

50

60

0.0001

P
er

ce
nt

ag
e

of
 in

te
rs

ec
tio

ns

GPU

CPU

0.001 0.01

Accuracy (mm)
0.0005 0.005

Figure 13: Comparison of the accuracy in mm between the both
GPU implementations and the CPU implementations.

Our new methods are thirty times more accurate than the current
implementation. Fig. 13 illustrates the precision histogram. We
obtain these results by comparing GPU and CPU method with the
same rays. For each method, we use the theoretical u and v pa-
rameters to compute the real intersection with the original NURBS
surface. With the CPU method only 15 percent of the points are
computed at a precision of one thousandth of millimeter, despite of
64 bits floats used. Although with the GPU method 55 percent of
the points are calculated with the same precision, using only 32 bits
floats.

5 Conclusions and perspective

In this paper, we have presented a ray casting, usually used for the
rendering, to compute a thickness within B-Rep model. We im-
proved the current methods used in our software platform and pro-
posed a new method to manage trimming curves.

Compared to the current CPU method, we are faster, more accu-
rate and we consume less memory. We are more accurate because
the thickness is computed on parametric patches and not on an ap-
proximation using tesselation resulting in several millions triangles.
Consequently, the memory consumption is also reduced. The per-
formance is also increased by the use of the GPU. However, at the
first step of our approach a sampling of the parametric patches is
used to create rays.

We also presented a novel method for curved regions with holes
and applied this technical for direct trimming of parametric sur-
faces. We used this method on cubic Bézier to ensure a good con-
vergence and a homogeneous process on the GPU. This method can
be applied to all parametric curves and it is fast and does not need
a complex pre-computation.

In future work, we will reduce the time of preprocessing and it
would be interesting to use this work to visualize big assembly of
models using ray tracing on parametric surfaces using also trim-
ming method. We can improve our method to compute another
kind of distance between two faces, which is closer to the notion of
the skeleton and the spherical distances.

References

ABERT, O., GEIMER, M., AND MULLER, S. 2006. Direct and
fast ray tracing of nurbs surfaces. Symposium on Interactive Ray
Tracing 0, 161–168.

ÁFRA, A. T. 2012. Incoherent ray tracing without acceleration
structures. In Eurographics, Eurographics Association, 97–100.

AILA, T., AND KARRAS, T. 2010. Architecture considerations for
tracing incoherent rays. In Proc. of the Conf. on High Perfor-
mance Graphics, Eurographics Association, HPG ’10, 113–122.

BALÁZS, Á., GUTHE, M., AND KLEIN, R. 2004. Efficient
trimmed nurbs tessellation. Journal of WSCG 12, 1, 27–33.

BENTHIN, C., WALD, I., AND SLUSALLEK, P. 2004. Interactive
ray tracing of free-form surfaces. In Proc. of AFRIGRAPH ’04,
ACM, New York, NY, USA, 99–106.

CLAUX, F., VANDERHAEGHE, D., BARTHE, L., PAULIN, M.,
JESSEL, J.-P., AND CROENNE, D. 2012. An Efficient Trim
Structure for Rendering Large B-Rep Models. 31–38.

DAMMERTZ, H., AND KELLER, A. 2006. Improving ray tracing
precision by object space intersection computation. In Interac-
tive Ray Tracing 2006, IEEE Symposium on, 25–31.

EFREMOV, A., HAVRAN, V., AND SEIDEL, H.-P. 2005. Robust
and numerically stable bézier clipping method for ray tracing
nurbs surfaces. In Proc. of the 21st spring conference on Com-
puter graphics, ACM, NY, USA, SCCG ’05, 127–135.

GEIMER, M., AND ABERT, O. 2005. Interactive ray tracing of
trimmed bicubic bézier surfaces without triangulation. In Proc.
of WSCG, 71–78.

GUTHE, M., BALÁZS, A., AND KLEIN, R. 2005. Gpu-based
trimming and tessellation of nurbs and t-spline surfaces. ACM
Trans. Graph. 24, 3, 1016–1023.

HAPALA, M., DAVIDOVIC, T., WALD, I., HAVRAN, V., AND
SLUSALLEK, P. 2011. Efficient stack-less bvh traversal for ray
tracing. In 27th Spring Conference on Computer Graphics.

KAJIYA, J. T. 1982. Ray tracing parametric patches. In Proc. of
the 9th annual conference on Computer graphics and interactive
techniques, ACM, NY, USA, SIGGRAPH ’82, 245–254.

KARRAS, T. 2012. Maximizing parallelism in the construction
of bvhs, octrees, and k-d trees. In Proc. of the conf. on High-
Performance Graphics, Eurographics Association, Aire-la-Ville,
Switzerland, 33–37.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH Construction on GPUs.
Computer Graphics Forum 28, 2, 375–384.

LOOP, C., AND BLINN, J. 2005. Resolution independent curve
rendering using programmable graphics hardware. In ACM SIG-
GRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH
’05, 1000–1009.

MORA, B. 2011. Naive ray-tracing: A divide-and-conquer ap-
proach. ACM Trans. Graph. 30, 5, 117:1–117:12.

NISHITA, T., SEDERBERG, T. W., AND KAKIMOTO, M. 1990.
Ray tracing trimmed rational surface patches. SIGGRAPH Com-
put. Graph. 24, 4, 337–345.

PABST, H.-F., SPRINGER, J., SCHOLLMEYER, A., LENHARDT,
R., LESSIG, C., AND FROEHLICH, B. 2006. Ray casting of
trimmed nurbs surfaces on the gpu. Symposium on Interactive
Ray Tracing 0, 151–160.

SCHNEIDER, P. J. 1990. Graphics gems. Academic Press Profes-
sional, Inc., San Diego, CA, USA, ch. An algorithm for automat-
ically fitting digitized curves, 612–626.

SCHOLLMEYER, A., AND FRÖHLICH, B. 2009. Direct trimming
of nurbs surfaces on the gpu. In ACM SIGGRAPH’09, ACM,
New York, NY, USA, 47:1–47:9.

STICH, M., FRIEDRICH, H., AND DIETRICH, A. 2009. Spa-
tial splits in bounding volume hierarchies. In Proc. High-
Performance Graphics 2009.

TOTH, D. L. 1985. On ray tracing parametric surfaces. In Proc. of
the 12th annual conference on Computer graphics and interac-
tive techniques, ACM, NY, USA, SIGGRAPH ’85, 171–179.

WALD, I., AND SLUSALLEK, P., 2001. State of the art in interac-
tive ray tracing.

WALD, I., MARK, W. R., GÜNTHER, J., BOULOS, S., IZE, T.,
HUNT, W., PARKER, S. G., AND SHIRLEY, P. 2009. State
of the art in ray tracing animated scenes. Computer Graphics
Forum 28, 6, 1691–1722.

WALD, I. 2007. On fast construction of sah-based bounding vol-
ume hierarchies. In Interactive Ray Tracing, 2007. RT ’07. IEEE
Symposium on, 33–40.

