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Abstract

This paper introduces a new framework for the extraction of

frequent sequences satisfying a given regular expression (RE)

constraint. Contrary to previous work (SPIRIT algorithms),

we represent REs by tree structures and our algorithm

can choose dynamically an extraction method according to

the local selectivity of the sub-REs. Interestingly, pruning

can rely not only on the anti-monotonic minimal frequency

constraint but also to the RE constraint that is generally not

anti-monotonic. Preliminary experiments on synthetic data

have shown that our algorithm takes the shape of the best

algorithm from the SPIRIT family and even surpasses it.

1 Introduction.

Frequent sequence mining in a database of sequences
is an important task [1, 5, 7]. In most of the applica-
tions, the lack of user control for specifying the interest-
ing patterns beforehand leads to tedious post-processing
phases. Indeed, considering user-defined constraints in
conjunction with the minimal frequency is interesting
[3, 6]. In this paper, we consider that potentially in-
teresting patterns are specified by a conjunction of the
minimal frequency constraint and a regular expression
(RE) constraint. In general, RE-constraints are not
anti-monotonic and can not be used directly for effi-
cient pruning. We have been studying hierarchical rep-
resentations of a RE-constraint that can be used to
collect information on the properties of the sub RE-
constraints. Our algorithm can choose the extraction
strategy to favor pruning on minimal frequency or on
the RE-constraints. Preliminary experimental results
are promising. Due to the lack of space, details about
the algorithm, its formal properties but also the exper-
imental results are given in [2].

2 The mining task

A sequence is an ordered list (concatenation) of items
taken from an alphabet A, i.e., a sentence from A∗.

∗This research is partially funded by Région Rhône-Alpes
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ε denotes the empty sequence. |S| denotes the length
of a sequence S, i.e., the number of items it contains.
A database d is an unordered collection of sequences.
S = s1s2 . . . sm is called a sub-sequence of S ′ =
s′1s
′
2 . . . s

′
n if ∃k, 0 < k < n such that s1s2 . . . sm =

s′k+1s
′
k+2 . . . s

′
k+m. The frequency of a sequence S,

denoted as F(S,d), is the number of the sequences S ′

in d such that S is a sub-sequence of S ′.

Problem statement. Given a database d, a regular
expression E (associated language L(E) ⊆ A∗) and a
positive integer msup, find all the sequences S ∈ A∗
which satisfy F(S,d) ≥ msup ∧ S ∈ L(E).

Related work. Mining frequent sequences has been
studied intensively [1, 5, 7, 4]. Various user-defined con-
straints can be used to focus the mining task on a pri-
ori interesting patterns [3, 6]. Constraints can be used
to reduce the extraction time and the number of ex-
tracted sequences as well. An interesting property of
several commonly used constraints (e.g., the minimal
frequency) is the anti-monotonicity: it enables efficient
pruning. If a non anti-monotonic (nAM) constraint is
pushed inside the candidate generation phase, the re-
quirement that the candidates must satisfy both the
minimal frequency and the nAM constraint can lack of
pruning. Garofalakis et al. have identified this issue in
[3] when considering nAM RE-constraints. They have
not found a systematic solution and have studied several
relaxations of a RE-constraint, giving rise to the four
SPIRIT algorithms. Within the SPIRIT framework, the
RE E is represented by a Finite State Automaton (FSA)
which accepts L(E). RE-based pruning is performed by
requiring that candidate sequences must correspond to
a path fragment of the FSA. The way in which these
fragments are chosen defines the different algorithms.
For SPIRIT(N), only the symbols which occur in E can
appear in the candidates. This is basically the GSP
framework and the frequent sequences are filtered after-
wards against the RE-constraint. For SPIRIT(L), the
candidates must match a path fragment in the FSA. It
favors frequency-based pruning. For SPIRIT(V), these
paths must terminate on a terminal node of the FSA.
Frequency-based pruning is less used since some infre-
quent and non terminal sequences are not generated

jfboulicaut
Zone de texte 
In: Proc. 3rd SIAM Int.  Conference on Data Mining SDM'03, D. Barbara and C. Kamath (Eds.), San Francisco (USA), May 1-3, 2003. pp. 316-320. 



at all. Finally, for SPIRIT(R), candidates must match
complete paths in the FSA and thus they satisfy the RE-
constraint. There is no frequency-based pruning and
all the possible candidates are generated and counted.
SPIRIT algorithms perform better or poorer depend-
ing of the selectivity of the RE-constraint (selectivity
is roughly speaking inversely proportional to the num-
ber of sequences in d that match the RE-constraint).
When the number of sequences in L(E) is high (low se-
lectivity), SPIRIT(R) and SPIRIT(V) perform poorly
due to a lack of frequency-based pruning. SPIRIT(L)
outperforms SPIRIT(R) and SPIRIT(V) when the se-
lectivity is high. Thus, the choice of a SPIRIT algo-
rithm must be based on the unknown selectivity of the
RE-constraint. We would like a robust algorithm which
depends weakly on the selectivity of the RE-constraint,
i.e., an algorithm which would consider the individual
selectivity of the sub-expressions and choose the best
pruning strategy during the extraction according to the
sequences stored in the database. Our idea is that a
FSA is not the best representation since the hierarchi-
cal structure of the REs is flattened and information
about local selectivity are not explicit.

3 The RE-Hackle algorithm.

Let us introduce the RE-Hackle algorithm (Regular Ex-
pression Highly Adaptative Constrained Local Extrac-
tor) for an efficient extraction of the frequent sequences
that match a given RE E . RE-Hackle manipulates the
representations of this expression and its substructures.
We assume that a RE-constraint is represented as a RE
built over an alphabet of the so-called atomic sequences
using the following operators: union (denoted +), k-
concatenation (denoted by ◦k, ◦o being the usual con-
catenation) and Kleene closure (denoted *).

The k-concatenation of two sequences S and P
requires that the sequences overlap in k positions. For
instance, AB◦oCD = ABCD and ABCD◦2CDEF =
ABCDEF. When this condition does not hold, the result
of the k-concatenation is ε. The k-concatenation of two
sets of sequences is done by k-concatenating each pair
of sequences which belongs to their cartesian product.
The union of two sequences S and P is the set {S, P}
and the union of two sets of sequences is the union
of these sets. The Kleene closure applies to a set of
sequences and represents all the sequences one can build
from them using an arbitrary number of concatenations.
It includes ε as well.

We assume that k-concatenation and union and
have a variable arity. As usually, the priority increases
from + to ◦k and from ◦k to ∗. The concatenation
can be distributed over the union. When all the possi-
ble concatenations have been performed, the resulting

sequence is called an atomic sequence. E.g., the RE-
constraint representation B◦oCD◦oE◦oA◦o(H+F) can
be transformed into BCDEDA◦o(H+ F) by 3 concate-
nations. According to our definition, BCDEA is a
newly formed atomic sequence. Note that H and F
were already atomic sequences (impossible to concate-
nate them to their neighbors), but B, CD, E, A were
not as they can be packed together to form a longer se-
quence. The atomic sequences are the smallest elements
that we consider during the extraction.

Using a prefix notation to define precisely the
semantics of our representations, A+BE+CF+D can
be represented as +(A,BE,CF,D), A(B)*(CF+D) by
◦o(A,*(B),+(CF,D)). These abstract representations,
the so-called derivation sentences, are important (see [2]
for details about the grammatical underlying structure)
and several useful concepts are based on them.

We say, that a regular expression representation is
in a canonical form if it contains only atomic sequences.
In the following, we assume that all the representations
are in the canonical form. A sub-constraint is a term
of the derivation sentence of a given constraint. Can-
didate generation is based on the sub-constraints from
E . These sub-constraints are extracted according to op-
erator priorities. E.g., B+C cannot be extracted from
A◦oB+C as the priority of ◦o prevails over +. Further-
more, a sub-constraint must contain as many terms as
the arity of the operator in the initial constraint E . A
maximal sub-constraint is a sub-constraint, which is not
contained in any other sub-constraint except E . E.g.,
A◦oB + C has two maximal sub-constraints: A◦oB and
C. The maximal sub-constraint defines partitions over
the initial RE and can be processed in a distributed
parallel environment. An active operator connects the
maximal sub-constraints of a given constraint. E.g., the
active operator for A◦oB+C is +. A sequence is said le-
gal w.r.t. a given RE if one of the sub-constraints of the
initial RE matches it exactly. E.g., BD and ABDE are
legal w.r.t. (A+C)◦oBD ◦o(E+D) but ABD is not as
the arity of this concatenation is 3, and ABD contains
only 2 terms instead of 3.

Hackle-tree. A Hackle-tree is an Abstract Syn-
tax Tree which encodes the structure of the canon-
ical form of a RE-constraint. Every inner node of
this tree corresponds to an operator, and the leaves
contain atomic sequences of (possibly) unequal length.
The tree reflects the way in which these atomic se-
quences are assembled by the concatenations, unions
and Kleene closures to form the initial RE-constraint.
Figure 1 provides such a tree for the RE-constraint
C((C(A+BC)D)+(A+B+C)*)C.

Cardinalities. We define the theoretical cardinality
of a RE-constraint as the number of sequences it can



Figure 1: Hackle-tree for C((C(A+BC)D)+(A+B+C)*)C.

generate after the expansion of all the operators. The
experimental cardinality is an estimation of the number
of sequences eventually matched by the RE-constraint.
While the theoretical cardinality refers only to the
RE-constraint, the experimental cardinality takes into
account the database, i.e., the results of the counting
phases. The theoretical (resp. experimental) cardinality
estimates the upper (resp. lower) bound for the number
of possible sequences. They converge towards the exact
number of sequences represented by the nodes. Let us
now specify cardinality computation.

When N.explored is true, ξth(N) = |N.items| and
ξexp(N) = |N.items|. When N.explored is false, the
cardinalities are computed as follows:

If N.type = ⊥ then
ξth(N) = 1
ξexp(N) = F(N.items,d) > msup

If N.type = ◦k then
ξth(N) =

∏
Q∈N.siblings ξth(Q)

ξexp(N) =
∏
Q∈N.siblings ξexp(Q)

If N.type = + then
ξth(N) =

∑
Q∈N.siblings ξth(Q)

ξexp(N) =
∑
Q∈N.siblings ξexp(Q).

If N.type = ∗ then
ξth(N) = (N.siblings.ξth)max(N.age,1)

ξexp(N) = (N.siblings.ξexp)× |N.items|
Let us compute ξth for the Hackle-tree given in

Figure 1.

ξth(I) = ξth(II)× ξth(III)× ξth(IV ) = 1∗5∗1 = 5
ξth(III) = ξth(V ) + ξth(V I) = 2 + 3 = 5
ξth(V ) = ξth(V II) + ξth(V III) = 2 ∗ 1 = 2
ξth(V I) = ξth(IX) = 3
ξth(V II) = ξth(X) ∗ ξth(XI) = 1 ∗ 2 = 2
ξth(IX) = ξth(XII) + ξth(XIII) + ξth(XIV )

= 1 + 1 + 1 = 3
ξth(XI) = ξth(XV ) + ξth(XV I) = 1 + 1 = 2

Attribute Semantics

Type of the node

⊥ leaf
◦k concatenation
+ union
∗ Kleene closure

Siblings
List of the siblings (null for a
leaf)

Parent Parent (null for root)

ξth Node theoretical cardinality

ξexp Node experimental cardinality

Items
Frequent legal sequences found
by the node.

State

Unknown if node exploration has
not yet begun. Satisfied if some
frequent legal sequences have
been found. Violated if no fre-
quent sequence has been found.

Explored
True if the node exploration is
completed

age
Only for Kleene closure nodes:
number of visits on the node

k Only for k-concatenations

Seq
Only for the leaves: encoded
atomic sequence

Table 1: Attributes of the Hackle-tree nodes

It means that using this RE-constraint, it is possible
to generate up to ξth(I) = 5 sequences.

Extraction phrase. The list of the nodes of a Hackle-
tree one must examine at a given step is called the
extraction phrase ψ. When starting the extraction, ψ
contains all the leaves of the tree. This list is updated
after each database scan by replacing the explored nodes
with their parents.

Extraction functions. The extraction functions C()
are applied to the nodes of the Hackle-tree, and return
the candidate sequences that have to be counted. Let
N denote a node, we define these functions depending
of N.type:
⊥: C(N) = N.seq
◦k: C(N) = ◦k(M.items), ∀M ∈ N.siblings
+: C(N) = +(M.items), ∀M ∈ N.siblings

If ∃M ∈ N.siblings with M.state 6= Satisfied
then C(N) = ∅.

∗: C(N) = (N.siblings.items) oage (N.items)

RE-Hackle extracts all the frequent sequences and
their frequencies when they match a given RE E .
At every generation phase, the extraction functions
are applied to the nodes in the extraction phrase to
generate the candidates. Candidates are counted and
the frequent ones are used for the next generation.



A new extraction phrase containing the parent nodes
of the examined nodes is built and the Hackle-tree is
transformed after each generation. E.g., the branches
which can no longer generate new candidates are cut: if
any sub-constraint is violated, then the whole node is
erased together with its siblings and this information is
propagated to its parent.

An example. Let us illustrate the execution of our
algorithm on the following example database.

Id Sequences

1 CCADCABC

2 ECBDACC
3 ACCBACFBAC
4 CCBAC

Assume msup = 2 and again E = C((C(A +
BC)D)+(A+B+C)∗)C (Cf. Figure 1). The extraction
needs 7 generations and 6 database scans.
• 1st Generation.
ψ1 = II,X,XV,XVI,VIII,XII,XIII,XIV,IV
Candidates: A,B,C,D,BC
Frequent sequences: A,B,C,D

BC is not frequent and Node XVI is pruned.
• 2nd Generation.
ψ2 = VI,VII
Candidates: AA, AB, AC, BA, BB, BC, CA, CB, CC
Frequent sequences: AB, AC, BA, CB, CC

ψ2’=XI,IX would have been the application of the
defined principle. An optimization enables to avoid it
[2]. No frequent sequence has been found at Node VII.
It can be pruned together with its parent (Node V).
• 3rd Generation (age = 1).
ψ3 = VI
Candidates: ABA, ACB, ACC, BAB, BAC, CBA, CCB,
CCC
Frequent sequences: ACC, BAC, CBA, CCB

A Kleene closure node remains in the extraction
phrase while it continues to generate frequent sequences.
Its age, here 1, is used for candidate generation.
• 4th Generation (age = 2).
ψ4 = VI
Candidates: ACCB, BACC, CBAC, CCBA
Frequent sequences: CBAC, CCBA

E.g., candidate BACC = BAC ◦2 ACC.
• 5th Generation (age = 3).
ψ5 = VI Candidates: CCBAC
Frequent sequence: CCBAC
• 6th Generation (age = 4).
ψ6 = VI

No candidate since CCBAC ◦4 CCBAC = ε.
• 7th Generation.
ψ7 = I
Candidates: CC, CAC, CBC, CCC, CABC, CACC,
CBAC, CCAC, CCBC, CCCC, CACCC, CBACC,

CCBAC, CCCBC, CCCBAC, CCBACC, CCCBACC
Frequent sequences: CC, CBAC, CCBAC

The Kleene closure returns every frequent combina-
tion of A, B and C, plus ε. The root assembles them to
C and the frequent items associated to Node I can be
returned.

The algorithm. The algorithm is given by the follow-
ing pseudo code:
Expr ← CanonicalForm (E);
T ← BuildExpTree(Expr);

K ← 1;

ψ1 ← initPhrase ();

C ← GenCand (ψ1);

While (C 6= ∅ and ψK 6= ∅) do

For all c∈C s.t. F(c,d) ≥ msup do

Node(c).items ← Node(c).items ∪ c;

UpdateNodes(T, ψK);
Compute ξexp ∀ N∈ ψK;
ψK+1 ← Rebuild(ψK);
Compute ξth ∀ N∈ ψK+1;

TransForm(T) given ξth and ξexp ∀ N∈ ψK+1;

C ← GenCand(ψK+1);

PruneCandidates(C);

K ← K+1;

Return T.root.items;

The principal procedures are now introduced (See
[2] for details). CanonicalForm transforms a RE into
its canonical form. BuildExpTree builds the Hackle-
tree for Expr. It looks for its maximal sub-constraints,
its active operator, and it creates a new node for it.
Then, it recursively proceeds on each maximal sub-
constraint that is added as a sibling for the operator
node. When Expr is an atomic sequence, it creates a
leaf. InitPhrase computes the initial extraction phrase
from the leaves of the Hackle-tree. GenCand generates
the candidates by applying the extraction functions on
the nodes of the extraction phrase. Node(c) denotes the
node which has generated candidate c. UpdateNodes

updates the nodes after candidate counting. The nodes
which have not generated any sequence are marked
V iolated and erased from the Hackle-tree. When a node
is violated, its parents are violated in cascade until a
node whose type is not a concatenation is reached. The
extraction phrase is rebuilt at every generation using
Rebuild. A node, whose exploration is completed, is
replaced by its parent if all its siblings are explored and
if it is not in a deleted branch. Only Kleene closures
are kept several generations in the extraction phrase
as long as they produce frequent sequences. TransForm
rearranges the shape of the tree for balancing frequency-
based and RE-based pruning (Cf. next subsection).
PruneCandidates performs duplicate elimination (the
same sequence can be generated from different branches



of the Hackle-tree) and prunes candidates whose sub-
sequences are legal but not frequent.

Adaptative extraction methods. Some nodes
can generate a large number of candidates without
frequency-based pruning. E.g., assume that the sib-
lings A, B, C and D of the concatenation node N re-
turn many frequent sequences (High ξth), the extrac-
tion method can be adapted to avoid a combinatorial
explosion. Indeed, it is possible to group the nodes in
larger overlapping buckets to benefit of more frequency-
based pruning. E.g., N can be replaced by a new node
N2 and a new level (nodes Y, Z and W) to enable
pruning: N2=◦1(Y,Z,W), Y=◦o(A,B), Z=◦o(B,C), and
W=◦o(C,D). After the evaluation of the additional level,
the number of the candidates should globally decrease,
e.g., N2 contains only 3 children and generates less can-
didates than N. We can introduce more levels and nodes.
This mechanism enables a tradeoff between the number
of the candidates and the number of database scans: it
depends on the size of the database, the counting cost
per candidate and the experimental cardinalities of the
siblings for the considered node [2].

4 Experimental Results.

Due to the lack of space, we just report here our com-
parison of RE-Hackle with our implementations of the
SPIRIT algorithms. We have used synthetic zipfian dis-
tribution data sets (following Zipf’s law). The database
contains 100k transactions of length 20 over an alpha-
bet of 100 symbols. Granularity is the average length
of atomic sequences in RE-constraints. The strength of
the pruning strategy of RE-Hackle is somewhat between
the one of SPIRIT(L) and SPIRIT(R). SPIRIT(L)
uses frequency-based pruning and SPIRIT(R) uses RE-
based pruning. In Figure 2, we compare RE-Hackle
to SPIRIT(L), SPIRIT(V) and the mean of these two
SPIRIT algorithms. Our first experimental results re-
flect that RE-Hackle takes the shape of the best SPIRIT
algorithm: it chooses the best pruning strategy that has
been computed according to the cardinality of the con-
straint and the content of the database.

5 Conclusion.

We have introduced a new characterization of RE-
constraints and a new algorithm for sequence mining.
Our approach computes a tradeoff between frequency-
based pruning and RE-based pruning. It opens a frame-
work for sequential pattern mining under constraints.
Not only we suspect that a larger family of constraints
can benefit from Hackle-trees but we already identified
further optimizations (e.g., dynamic transformation of
Hackle-trees) that can boost the performances of the

High ξth (ξth > 106, granularity = 1.8)

Execution Scans Candidates
RE-Hackle 5546 5 24528
SPIRIT(V) 11346 8 25663
SPIRIT(L) 8652 8 8654

Mean 9999 8 -

High ξth (ξth > 106, granularity = 1)

Execution Scans Candidates
RE-Hackle 9152 8 10243
SPIRIT(V) 12135 8 26350
SPIRIT(L) 8604 8 8736

Mean 10369 8 -

Low ξth (100 < ξth < 1000)

Execution Scans Candidates
RE-Hackle 1450 3 69
SPIRIT(V) 2170 5 129
SPIRIT(L) 2400 5 206

Mean 2285 5 -

Figure 2: Comparison RE-Hackle vs. SPIRIT

basic framework [2]. We are currently studying these
issues on real data sets.
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