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Abstract. Inductive databases (IDBs) have been proposed to afford the
problem of knowledge discovery from huge databases. With an IDB the
user/analyst performs a set of very different operations on data using
a query language, powerful enough to perform all the required elabo-
rations, such as data preprocessing, pattern discovery and pattern post-
processing. We present a synthetic view on important concepts that have
been studied within the cInQ European project when considering the
pattern domain of itemsets. Mining itemsets has been proved useful not
only for association rule mining but also feature construction, classifi-
cation, clustering, etc. We introduce the concepts of pattern domain,
evaluation functions, primitive constraints, inductive queries and solvers
for itemsets. We focus on simple high-level definitions that enable to for-
get about technical details that the interested reader will find, among
others, in cInQ publications.

1 Introduction

Knowledge Discovery in Databases (KDD) is a complex interactive process which
involves many steps that must be done sequentially. In the cInQ project1, we
want to develop a new generation of databases, called “inductive databases”
(IDBs), suggested by Imielinski and Mannila in [42] and for which a simple
formalization has been proposed in [20]. This kind of databases integrate raw data
with knowledge extracted from raw data, materialized under the form of patterns
into a common framework that supports the knowledge discovery process within
a database framework. In this way, the process of KDD consists essentially in a
querying process, enabled by a query language that can deal either with raw data
or patterns and that can be used throughout the whole KDD process across many
different applications. A few query languages can be considered as candidates
for inductive databases. For instance, considering the prototypical case of assoc-
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iation rule mining, [10] is a comparative evaluation of three proposals (MSQL [43],
DMQL [38], and MINE RULE [59]) in the light of the IDBs’ requirements.

In this paper, we focus on mining queries, the so-called inductive queries, i.e.,
queries that return patterns from a given database. More precisely, we consider
the pattern domain of itemsets and databases that are transactional databases.
Doing so, we can provide examples of concepts that have emerged as important
within the cInQ project after 18 months of work.

It is useful to abstract the meaning of mining queries. A simple model has
been introduced in [55] that considers a data mining process as a sequence
of queries over the data but also the so-called theory of the data. Given a
language L of patterns (e.g., itemsets, sequences, association rules), the the-
ory of a database r with respect to L and a selection predicate q is the set
Th(r, L, q) = {φ ∈ L | q(r, φ) is true}. The predicate q indicates whether a pat-
tern φ is considered interesting (e.g., φ denotes a property that is “frequent” in
r). The selection predicate can be defined as a combination (boolean expression)
of primitive constraints that have to be satisfied by the patterns. Some of them
refer to the “behavior” of a pattern in the data, e.g., its “frequency” in a given
data set is above or below a user-given threshold, some others define syntactical
restrictions on desired patterns, e.g., its “length” is below a user-given thresh-
old. Preprocessing concerns the definition of the database r, the mining phase
is often the computation of the specified theory while post-processing can be
considered as a querying activity on a materialized theory or the computation
of a new theory.

This formalization however does not reflect the context of many classical
data mining processes. Quite often, the user is interested not only in a collection
of patterns that satisfy some constraints (e.g., frequent patterns, strong rules,
approximate inclusion or functional dependencies) but also to some properties
of these patterns in the selected database (e.g., their frequencies, the error for
approximate dependencies). In that case, we will consider the so-called extended
theories. For instance, when mining frequent itemsets or frequent and valid as-
sociation rules [2], the user needs for the frequency of the specified patterns or
rules. Indeed, during the needed post-processing phase, the user/analyst often
uses various objective interestingness measures like the confidence [2], the con-
viction [23] or the J-mesure [72] that are computed efficiently provided that the
frequency of each frequent itemset is available. Otherwise, it might be extremely
expensive to look at the data again.

Designing solvers for more or less primitive constraints concerns the core of
data mining algorithmic research. We must have solvers that can compute the
(extended) theories and that have good properties in practice (e.g., scalability
w.r.t. the size of the database or the size of the search space). A “generate
and test” approach that would enumerate the sentences of L and then test
the selection predicate q is generally impossible. A huge effort has concerned
a clever use of the constraints occurring in q to have a tractable evaluation
of useful inductive queries. This is the research area of constraint-based data
mining. Most of the algorithmic research in pattern discovery tackles the design
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of complete algorithms for computing (extended) theories given more or less
specific conjunctions of primitive constraints. Typically, many researchers have
considered the computation of frequent patterns, i.e., patterns that satisfy a
minimal frequency constraint. An important paper on a generic algorithm for
such a typical mining task is [55]. However, if the active use of the so-called anti-
monotonic constraints (e.g., the minimal frequency) is now well-understood, the
situation is far less clear for non anti-monotonic constraints [64,51,18].

A second major issue is the possibility to approximate the results of (ex-
tended) inductive queries. This approximation can concern a collection of pat-
terns that is a superset or a subset of the desired collection. This is the typical
case when the theories are computed from a sample of the data (see, e.g., [74])
or when a relaxed constraint is used. Another important case of approximation
for extended theories is the exact computation of the underlying theory while
the evaluation functions are only approximated. This has lead to an important
research area, the computation of the so-called condensed representations [54], a
domain in which we have been playing a major role since the study of frequent
closed itemsets as an ε-adequate representation for frequency queries [12].

This paper is organized as follows. Section 2 introduces notations and defi-
nitions that are needed for discussing inductive queries that return itemsets. It
contains an instance of the definition of a pattern domain. Section 3 identifies
several important open problems. Section 4 provides elements of solution that
are currently studied within the cInQ project. Section 5 is a short conclusion.

2 A Pattern Domain for Itemsets

The definition of a pattern domain is made of the definition of a language of
patterns L, evaluation functions that assign a semantics to each pattern in a
given database r, languages for primitive constraints that specify the desired
patterns, and inductive query languages that provide a language for combining
the primitive constraints.

We do not claim that this paper is an exhaustive description of the itemset
pattern domain. Even though we selected representative examples of evaluation
functions and primitive constraints, many others have been or might be defined
and used.

2.1 Language of Patterns and Terminology

We introduce some notations that are used for defining the pattern domain of
itemsets. In that context, we consider that:

– A so-called transactional database contains the data,
– Patterns are the so-called itemsets and one kind of descriptive rule that can

be derived from them, i.e., the association rules.

Definition 1 (Transactional Databases). Assume that Items is a finite set
of symbols denoted by capital letters, e.g., Items= {A, B, C, . . .}. A transaction
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t is a subset of Items. A transactional database r is a finite and non empty
multiset r = {t1, t2, . . . , tn} of transactions.

Typical examples of transactional databases concern basket data (transac-
tions are sets of products that are bought by customers), textual data (transac-
tions are sets of keywords or descriptors that characterize documents), or gene
expression data (transactions are sets of genes that are over-expressed in given
biological conditions).

Definition 2 (Itemsets). An itemset is a subset of Items. The language of
patterns for itemsets is L = 2Items.

We often use a string notation for sets, e.g., AB for {A, B}. Figure 1 provides
an example of a transactional database and some information about itemsets
within this database.

Association rules are not only a classical kind of pattern derived from itemsets
[1,2] but are also used for some important definitions.

Definition 3 (Association Rules). An association rule is denoted X ⇒ Y
where X ∩ Y = ∅ and X ⊆ Items is the body of the rule and Y ⊆ Items is the
head of the rule.

Let us now define constraints on itemsets.

Definition 4 (Constraint). If T denotes the set of all transactional databases
and 2Items the set of all itemsets, an itemset constraint C is a predicate over
2Items × T . An itemset S ∈ 2Items satisfies a constraint C in the database r ∈ T
iff C(S, r) = true. When it is clear from the context, we write C(S). Given a
subset I of Items, we define SATC(I) = {S ∈ I, S satisfies C}. SATC denotes
SATC(2Items). The same definitions can be easily extended to rules.

2.2 Evaluation Functions

Evaluation functions return information about the properties of a given pattern
in a given database. Notice that using these evaluation functions can be consid-
ered as a useful task for the user/analyst. It corresponds to hypothesis testing
when hypothesis can be expressed as itemsets or association rules, e.g., what
are the transactions that support the H hypothesis? How many transactions
support H? Do I have less than n counter-examples for hypothesis H?

Several evaluation functions are related to the “satisfiability” of a pattern in
a given data set, i.e., deciding whether a pattern hold or not in a given database.

Definition 5 (Support for Itemsets and Association Rules). A transac-
tion t supports an itemset X if every item in X belongs to t, i.e., S ⊆ t. It is then
possible to define a boolean evaluation function e1 such that e1(X, r) is true if
all the transactions in r support X and false elsewhere. The same definition can
be adapted for association rules: e1(X ⇒ Y, r) returns true iff when r supports
X, it supports Y as well. The support (denoted support(S, r)) of an itemset S is
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the multiset of all transactions of r that supports S (e.g., support(∅) = r). The
support of a rule is defined as the support of the itemset X ∪ Y . A transaction
t supports a rule X ⇒ Y if it supports X ∪ Y .

Definition 6 (Exceptions to Rules). A transaction t is an exception for a
rule X ⇒ Y if it supports X and it does not support Y . It is then possible to
define a new boolean evaluation function e2(X ⇒ Y, r) that returns true if none
of the transactions t in r is an exception to the rule X ⇒ Y . A rule with no
exception is called a logical rule.

These evaluation functions that return sets of transactions or boolean values
are useful when crossing over the patterns and the transactional data. Also, the
size of the supporting set is often used.

Definition 7 (Frequency). The absolute frequency of an itemset S in r is
defined by Fa(S, r) = |support(S)| where |.| denote the cardinality of the multiset
(each transaction is counted with its multiplicity). The relative frequency of S in
r is F(S, r) = |support(S)|/|support(∅)|. When there is no ambiguity from the
context, parameter r is omitted and the frequency denotes the relative frequency
(i.e., a number in [0,1]).

Figure 1 provides an example of a transactional database and the supports
and the frequencies of some itemsets.

T =

t1 ABCD
t2 BC
t3 AC
t4 AC
t5 ABCD
t6 ABC

Itemset Support Frequency
A {t1, t3, t4, t5, t6} 0.83
B {t1, t2, t5, t6} 0.67
AB {t1, t5, t6} 0.5
AC {t1, t3, t4, t5, t6} 0.83
CD {t1, t5} 0.33
ACD {t1, t5} 0.33

Fig. 1. Supports and frequencies of some itemsets in a transactional database

Other measures might be introduced for itemsets that, e.g., returns the de-
gree of correlation between the attributes it contains. We must then provide
evaluation functions that compute these measures.

It is straightforward to define the frequency evaluation function of an asso-
ciation rule X ⇒ Y in r as F(X ⇒ Y, r) = F(X ∪ Y, r) [1,2]. When mining
association rules, we often use objective interestingness measures like confidence
[2], conviction [23], J-mesure [72], etc. These can be considered as new eval-
uation functions. Most of these measures can be computed from the frequen-
cies of rule components. For instance, the confidence of a rule X ⇒ Y in r is
conf(X ⇒ Y ) = F(X ⇒ Y, r)/F(Y, r). It gives the conditional probability that
a transaction from r supports X ∪ Y when it supports X. The confidence of a
logical rule is thus equal to 1.

We consider now several evaluation functions that have been less studied in
the data mining context but have been proved quite useful in the last 3 years
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(see, e.g., [65,12,75,15,16]). Notice however that these concepts have been used
for a quite a long time in other contexts, e.g., in concept lattices.

Definition 8 (Closures of Itemsets). The closure of an itemset S in r (de-
noted by closure(S, r)) is the maximal (for set inclusion) superset of S which
has the same support as S. In other terms, the closure of S is the set of items
that are common to all the transactions which support S.

Notice that when the closure of an itemset X is a proper superset of X, say
Y , it means that an association rule X ⇒ Y \ X holds in r with confidence 1.

Example 1. In the database of Figure 1, let us compute closure(AB). Items A
and B occur in transactions 1, 5 and 6. Item C is the only other item that is also
present in these transactions, thus closure(AB) = ABC. Also, closure(A) = AC,
closure(B) = BC, and closure(BC) = BC.

We now introduce an extension of this evaluation function [15,16].

Definition 9 (δ-closure). Let δ be an integer and S an itemset. The δ-closure
of S, closureδ(S) is the maximal (w.r.t. the set inclusion) superset Y of S such
that for every item A ∈ Y − S, |Support(S ∪ {A})| is at least |Support(S)| − δ.
In other terms, Fa(closureδ(S)) has almost the same value than Fa(S) when δ
is small w.r.t. the number of transactions.

Example 2. In the database of Figure 1, closure2(B) = BCD while closure0(B) =
BC.

Notice that closure0 = closure. Also, the δ-closure of a set X provides an
association rule with high confidence between X and closureδ(X) \ X when δ
is a positive integer that is small w.r.t. the number of transactions.

It is of course possible to define many other evaluation functions. We gave
representative examples of such functions and we now consider examples of prim-
itive constraints that can be built from them.

2.3 Primitive Constraints

Many primitive constraints can be defined. We consider some examples that have
been proved useful. These examples are representative of two important kinds of
constraints: constraints based on evaluation functions and syntactic constraints.
These later can be checked without any access to the data and are related to the
well known machine learning concept of linguistic bias (see, e.g., [63]).

Let us consider primitive constraints based on frequency. First, we can enforce
that a given pattern is frequent enough (Cminfreq(S)) and then we specify that a
given pattern has to be infrequent or not too frequent (Cmaxfreq(S)).

Definition 10 (Minimal Frequency). Given an itemset S and a frequency
threshold γ ∈ [0, 1], Cminfreq(S) ≡ F(S) ≥ γ. Itemsets that satisfy Cminfreq are
said γ-frequent or frequent in r. Indeed, this constraint can be defined also on
association rules: Cminfreq(X ⇒ Y ) ≡ F(X ⇒ Y ) ≥ γ.
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Definition 11 (Maximal Frequency). Given an itemset S and a frequency
threshold γ ∈ [0, 1], Cmaxfreq(S) ≡ F(S) ≤ γ. Indeed, this constraint can be
defined also on association rules.

Definition 12 (Minimal Confidence on Rules). Given a rule X ⇒ Y and
a confidence threshold θ ∈ [0, 1], Cminconf(X ⇒ Y ) ≡ conf(S) ≥ θ. Rules that
satisfy Cminconf are called valid rules. A dual constraint for maximal confidence
might be introduced as well.

Example 3. Considering the database of Figure 1, if Cminfreq specifies that an
itemset (or a rule) must be 0.6-frequent, then SATCminfreq = {A, B, C, AC, BC}. For
rules, if the confidence threshold is 0.7, then the frequent and valid rules are
SATCminfreq∧Cminconf (∅ ⇒ A, ∅ ⇒ C, ∅ ⇒ AC, A ⇒ C, C ⇒ A, B ⇒ C).

It is straightforward to generalize these definitions to all the other insterest-
ingness measures that we can use for itemsets and rules. However, let us notice
that not all the interestingness measures have bounded domain values. It moti-
vates the introduction of the optimal constraints.

Definition 13 (Optimality). Given an evaluation function E that returns an
ordinal value, let us denote by Copt(E , φ, n) the constraint that is satisfied if φ
belongs to the n best patterns according to E values (the n patterns with the
highest values).

For instance, such a constraint can be used to specify that only the n most
frequent patterns are desired (see [7,70,71] for other examples).

Another kind of primitive constraint concerns the syntactical restrictions that
can be defined on one pattern. By syntactical, we mean constraints that can
be checked without any access to the data and/or the background knowledge,
just by looking at the pattern. A systematic study of syntactical constraints for
itemsets and rules has been described in [64,51].

Definition 14 (Syntactic Constraints). It is of the form S ∈ LC , where
LC ⊆ L = 2Items. Various means can be used to specify LC , e.g., regular expres-
sions.

Some other interesting constraints can use additional information about the
items, i.e., some background knowledge encoded in, e.g., relational tables. In
[64], the concept of aggregate constraint is introduced.

Definition 15 (Aggregate Constraint). It is of the form agg(S)θv, where
agg is one of the aggregate functions min, max, sum, count, avg, and θ is one
of the boolean operators =, 
=, <, ≤, >, ≥. It says the aggregate of the set of
numeric values in S stands in relationship θ to v.

Example 4. Consider the database of Figure 1, assume that Csize(S) ≡ |S| ≤ 2
(it is equivalent to count(S) ≤ 2) and Cmiss(S) ≡ B 
∈ S, then SATCsize

=
{∅, A, B, C, D, AB, AC, AD, BC, BD, CD} and SATCmiss

= {∅, A, C, D, AC, AD, ACD}.
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The same kind of syntactical constraint can be expressed on association rules,
including the possibility to express constraints on the body and/or the head of
the rule.

We now consider primitive constraints based on closures.

Definition 16 (Closed Itemsets and Constraint Cclose). A closed itemset
is an itemset that is equal to its closure in r. Let us assume that Cclose(S) ≡
closure(S) = S. In other terms, closed itemsets are maximal sets of items that
are supported by a multiset of transactions.

Example 5. In the database of Figure 1, the closed itemsets are C, AC, BC, ABC,
and ABCD.

Free itemsets are sets of items that are not “strongly” correlated [15]. They
have been designed as a useful intermediate representation for computing closed
sets since the closed sets are the closures of the free sets.

Definition 17 (Free Itemsets and Constraint Cfree). An itemset S is free if
no logical rule holds between its items, i.e., it does not exist two distinct itemsets
X, Y such that S = X ∪ Y , Y 
= ∅ and X ⇒ Y is a logical rule.

Example 6. In the database of Figure 1, the free sets are ∅, A, B, D, and AB.

An alternative definition is that all the proper subsets of a free set S have
a different frequency than S. Notice that free itemsets have been formalized
independently as the co-called key patterns [5]. Furthermore, the concept of free
itemset formalizes the concept of generator [65] in an extended framework since
free itemsets are a special case of δ-free itemsets [15,16].

Definition 18 (δ-free Itemsets and Constraint Cδ−free). Let δ be an in-
teger and S an itemset, an itemset S is δ-free if no association rule with at
most δ exceptions holds between its subsets. δ-free sets satisfy the constraint
Cδ−free(S) ≡ (∀S′ ⊂ S) ⇒ S 
⊆ closureδ(S′).

Example 7. In the database of Figure 1, the 1-free sets are ∅, A, B, and D.

2.4 Example of Inductive Queries

Now, it is interesting to consider boolean combinations of primitive constraints.
Notice that in this section, we consider neither the problem of query evaluation
nor the availability of concrete query languages.

The Standard Association Rule Mining Task. Mining the frequent item-
sets means the computation of SATCminfreq for a given frequency threshold. The
standard association rule mining problem introduced in [1] is to find all the
association rules that verify the minimal frequency and minimal confidence con-
straints for some user-defined thresholds. In other terms, we are looking for
each pattern φ (rules) such that Cminfreq(φ) ∧ Cminconf(φ) is true. Filtering rules
according to syntactical criteria can also be expressed by further constraints.
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Example 8. Provided the dataset of Figure 1 and the constraints from Exam-
ple 3 and 4, SATCminfreq∧Csize∧Cmiss

= {A, C, AC} is returned when the query
specifies that the desired itemsets must be 0.6-frequent, with size less than
3 and without the attribute B. It is straightforward to consider queries on
rules. Let us consider an example where the user/analyst wants all the frequent
and valid association rules but also quite restricted rules with high confidence
(but without any minimal frequency constraint). Such a query could be based,
e.g., on the constraint (Cminfreq(φ) ∧ Cminconf(φ)) ∨ (Cs(φ) ∧ Cminconf(φ)) where
Cs(X ⇒ Y ) ≡ |X| = |Y | = 1 ∧ Y = A.

Mining Discriminant Patterns. An interesting application of frequency con-
straints concerns the search for patterns that are frequent in one data set and
infrequent in another one. This has been studied in [33] as the emerging pat-
tern mining task. More recently, it has been studied within an inductive logic
programming setting in [32] and applied to molecular fragment discovery.

Assume a transactional database for which one of the item defined a class
value (e.g., item A is present when the transaction has the class value “inter-
esting” and false when the transaction has the class value “irrelevant”). It is
then possible to split the database r into two databases, the one of interesting
transactions r1 and the one of irrelevant transactions (say r2). Now, a useful min-
ing task concerns the computation of every itemset such that Cminfreq(S, r1) ∧
Cmaxfreq(S, r2). Indeed, these itemsets are supported by interesting transactions
and not supported by irrelevant ones. Thresholds can be assigned thanks to a
statistical analysis and such patterns can be used for predictive mining tasks.

Mining Association Rules with Negations. Let Items+ = {A, B, ...} be a
finite set of symbols called the positive items and a set Items− of same cardinal-
ity as Items+ whose elements are denoted A, B, . . . and called the negative items.
Given a transaction database r over Items+, let us define a complemented trans-
action database over Items = Items+∪Items− as follows: for a given transaction
t ∈ r, we add to t negative items corresponding to positive items not present
in t. Generalized itemsets are subsets of Items and can contain positive and
negative items. In other terms, we want to have a symmetrical impact for the
presence or the absence of items in transactions [14]. It leads to extremely dense
transactional databases, i.e., extremely difficult extraction processes.

In [13], the authors studied the extraction of frequent itemsets (Cminfreq) that
do not involve only negative items (Calpp). Calpp(S) is true when S involves at
least p positive items. Also, this constraint has been relaxed into Calppoam1n =
Calpp ∨ Cam1n (at least p positive attributes or at most 1 negative attribute). On
different real data sets, it has been possible to get interesting results when it was
combined with condensed representations (see Section 4).

Mining Condensed Representation of Frequent Itemsets. Condensed
representation is a general concept (see, e.g., [54]) that can be extremely useful
for the concise representation of the collection of frequent itemsets and their
frequencies. In Section 3, we define more precisely this approach. Let us no-
tice at that stage that several algorithms exist to compute various condensed
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representations of the frequent itemsets: Close [65], Closet[69], Charm [75],
Min-Ex [12,15,16], or Pascal [5]. These algorithms compute different condensed
representations: the frequent closed itemsets (Close, Closet, Charm), the fre-
quent free itemsets (Min-Ex, Pascal), or the frequent δ-free itemsets for Min-
Ex. From an abstract point of view, these algorithms are respectively looking
for itemsets that satisfy Cminfreq ∧ Cclose, Cminfreq ∧ Cfree, and Cminfreq ∧ Cδ−free.
Furthermore, it can be interesting to provide association rules whose compo-
nents satisfy some constraints based on closures. For instance, association rules
that are based on free itemsets on their left-hand side (Cfree(BODY )) and their
closures on the right-hand side (Cclose(BODY ∪ HEAD)) are of a particular
interest: they constitute a kind of cover for the whole collection of frequent and
valid association rules [4,8]. Notice also that the use of classification rules based
on δ-free sets (Cδ−free) for the body and a class value in the head has been
studied in [17,28].

Postprocessing Queries. Post-processing queries can be understood as queries
on materialized collections of itemsets or association rules: the user selects the
itemsets or the rules that fulfill some new criteria (while these itemsets or rules
have been mined, e.g., they are all frequent and valid). However, from the spec-
ification point of view, they are not different from data mining queries even
though the evaluation does not need an extraction phase and can be performed
on materialized collections of itemsets or rules.

One important post-processing use is to cross over the patterns and the data,
e.g., when looking at transactions that are exceptions to some rules. For instance,
given an association rule A ⇒ B, one wants all the transactions t from r (say
the transactional database r1 for which e2(A ⇒ B, t) is true. Notice that r\r1 is
the collection of exceptions to the rule. A rule mining query language like MSQL
[43] offers a few built-in primitives for rule post-processing, including primitives
that cross-over the rules and the transactions (see also [10] in this volume for
examples of post-processing queries).

3 A Selection on Some Open Problems

We consider several important open problems that are related to itemset and
rule queries.

3.1 Tractability of Frequent Itemset and Association Rule Mining
Computing the result of the classical association rule mining problem is generally
done in two steps [2]: first the computation of all the frequent itemsets and their
frequency and then the computation of every valid association rule that can be
made from disjoint subsets of each frequent itemset. This second step is far less
expensive than the first one because no access to the database is needed: only the
collection of the frequent itemsets and their frequencies are needed. Furthermore,
the frequent itemsets can be used for many other applications, far beyond the
classical association rule mining task. Notice among others, clustering (see, e.g.,
[61]), classification (see, e.g., [53,28]), generalized rule mining (see, e.g., [54,14]).
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Computing the frequent itemsets is an important data mining task that has
been studied by many researchers since 1994. The famous Apriori algorithm
[2] has inspired many research and efficient implementations of Apriori-like
algorithms can be used provided that the collection of the frequent itemsets is
not too large. In other terms, for the desired frequency threshold, the size of the
maximal frequent itemsets must not be too long (around 15). Indeed, this kind of
algorithm must count the frequencies of at least every frequent itemset and useful
tasks, according to the user/analyst, become intractable as soon as the size of
SATCminfreq is too large for the chosen frequency threshold. It is the case of dense
and correlated datasets and many real datasets fall in this category. In Section
4, we consider solutions thanks to the design of condensed representations for
frequent itemsets.

The efficiency of the extraction of the answer to an itemset query relies on the
possibility to use constraints during the itemset computation. A classical result
is that effective safe pruning can be achieved when considering anti-monotonic
constraints [55,64], e.g., the minimal frequency constraint. It relies on the fact
that if an itemset violates an anti-monotonic constraint then all its supersets
violate it as well and therefore this itemset and its supersets can be pruned and
thus not considered for further evaluation.

Definition 19 (Anti-monotonicity). An anti-monotonic constraint is a con-
straint C such that for all itemsets S, S′: (S′ ⊆ S ∧ C(S)) ⇒ C(S′).

Example 9. Examples of anti-monotonic constraints are: Cminfreq(S), C(S) ≡
A 
∈ S, C(S) ≡ S ⊆ {A, B, C}, C(S) ≡ S ∩ {A, B, C} = ∅, Cfree(S), Cam1n(S),
Cδ−free(S), C(S) ≡ S.price > 50 and C(S) ≡ Sum(S.price) < 500. The two last
constraints mean respectively that the price of all items must be lower than fifty
and that the sum of the prices of the items must be lower than five hundred.

Notice that the conjunction or disjunction of anti-monotonic constraints is
anti-monotonic.

Even though the anti-monotonic constraints, when used actively, can dras-
tically reduce the search space, it is not possible to ensure the tractability of
an inductive query evaluation. In that case, the user/analyst has to use more
selective constraints, e.g., a higher frequency threshold. Indeed, a side-effect can
be that the extracted patterns become not enough interesting, e.g., they are so
frequent that they correspond to trivial statements.

Furthermore, itemset queries do not involve only anti-monotonic constraints.
For instance, Cclose is not anti-monotonic. Sometimes, it is possible to post-
process the collection of itemsets that satisfy the anti-monotonic part of the
selection predicate to check the remaining constraints afterwards.

3.2 Tractability of Constraint-Based Itemset Mining

Pushing constraints is useful for anti-monotonic ones. Other constraints can be
pushed like the monotonic constraints or the succinct constraints [64].
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Definition 20 (Monotonicity). A monotonic constraint is a constraint C such
that for all itemsets S, S′: (S ⊆ S′ ∧ S satisfies C) ⇒ S′ satisfies C.

The negation of an anti-monotonic constraint is a monotonic constraint and
the conjunction or disjunction of monotonic constraints is still monotonic.

Example 10. C(S) ≡ {A, B, C, D} ⊆ S, Calpp(S), C(S) ≡ Sum(S.price) > 100
(the sum of the prices of items from S is greater than 100) and C(S) ≡ S ∩
{A, B, C} 
= ∅ are examples of monotonic constraints.

Indeed, monotonic constraints can also be used to improve the efficiency of
itemset extraction (optimization of the candidate generation phase that prevents
to consider candidates that do not satisfy the monotonic constraint (see, e.g.,
[18]).

The succinctness property that has been introduced in [64] are syntactic
constraints that can be put under the form of a conjunction of monotonic and
anti-monotonic constraints. Clearly, it is possible to use such a property for
the optimization of the constraint-based extraction (optimization of candidate
generation and pruning).

Pushing non anti-monotonic constraints sometimes increases the computation
times since it prevents effective pruning based on anti-monotonic constraints
[73,18,34]. For instance, as described in [13], experiments have shown that it
has been needed to relax the monotonic constraint Calpp (“pushing” it gave
rise to a lack of pruning) by Calppoam1n = Calpp ∨ Cam1n where Cam1n is anti-
monotonic. The identification of a good strategy for pushing constraints needs
for an a priori knowledge of constraint selectivity. However, this is in general
not available at extraction time. Designing adaptative strategies for pushing
constraints during itemset mining is still an open problem. Notice however that
some algorithms have been already proposed for specific strategies on itemset
mining under conjunctions of constraints that are monotonic and anti-monotonic
[64,18]. This has been explored further within the cInQ project (see Section 4).

Notice also that the constraints defined by a user on the desired association
rules have to be transformed into suitable itemset constraints. So far, this has
to be done by an ad-hoc processing and designing semi-automatic strategies for
that goal is still an open problem.

3.3 Interactive Itemset Mining

From the user point of view, pattern discovery is an interactive and iterative pro-
cess. The user defines a query by specifying various constraints on the patterns
he/she wants. When a discovery process starts, it is difficult to figure out the
collection of constraints that leads to an interesting result. The result of a data
mining query is often unpredictable and the users have to produce sequences of
queries until he/she gets an actionable collection of patterns. So, we have not
only to optimize single inductive query evaluations but also the evaluation of
sequences of queries. This has been studied for itemsets and association rules in,
e.g., [37,3,36,62].
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One classical challenge is the design of incremental algorithms for computing
theories (e.g., itemsets that satisfy a complex constraint) or extended theories
(e.g., itemsets and their frequencies) when the data changes. More generally,
reusing previously computed theories to answer more efficiently to new inductive
queries is important. It means that results about, equivalence and containment
of inductive queries are needed. Furthermore, the concept of dominance has
emerged [3]. In that case, only data scans are needed to update the value of the
evaluation functions.

However, here again, a trade-off has to be found between the optimization of
single queries by the best strategy for pushing its associated constraints and the
optimization of the whole sequence. Indeed, the more we push the constraint and
materialize only the constrained collection, the less it will be possible to reuse it
for further evaluations [37,36]. In Section 4, we refer to recent advances in that
area.

3.4 Concrete Query Languages

There is no dedicated query languages for itemsets but several proposal exist for
association rule mining, e.g., (MSQL [43], DMQL [38], and MINE RULE [59]). Among
them, the MINE RULE query language is one of the few proposals for which a for-
mal operational semantics has been published [59]. Ideally, these query languages
must support not only the selection of the mining context and its pre-processing
(e.g., sampling, selection and grouping, discretization), the specification of a
mining task (i.e., the expression of various constraints on the desired rules), and
the post-processing of these rules (e.g., the support of subjective interestingness
evaluation, redundancy elimination and grouping strategies, etc.).

A comparative study of the available concrete query languages is published
in this volume [10]. It illustrates that we are still lacking from an “ideal” query
language for supporting KDD processes based on association rules. From our per-
spective, we are still looking for a good set of primitives that might be supported
by such languages. Furthermore, a language like MINE RULE enables to use vari-
ous kinds of constraints on the desired rules (i.e., the relevant constraints on the
itemsets are not explicit) and optimizing the evaluation of the mining queries (or
sequences of queries) still need further research. This challenge is also considered
within the cInQ project.

4 Elements of Solution

We now provide pointers to elements of solution that have been studied by the
cInQ partners these last 18 months. It concerns each of the issues we have
been discussing in Section 3. Even though the consortium has not studied only
itemsets but also molecular fragments, sequential patterns and strings, the main
results can be illustrated on itemsets.

Let us recall that, again, we do not claim that this section considers all
the solutions studied so far. Many other projects and/or research groups are
interested in the same open problems and study other solutions. This is the
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typical case for depth-first algorithms like [39] which opens new possibilities for
efficient constraint-based itemset computation [67].

Let us first formalize that inductive queries that return itemsets might also
provide the results of the frequencies for further use.

Definition 21 (Itemset Query). A itemset query is a pair (C, r) where r is
a transactional database and C is an itemset constraint. The result of a query
Q = (C, r) is defined as the set Res(Q) = {(S, F(S)) | S ∈ SATC}.

There are two main approaches for the approximation of Res(Q):

– The result is Approx(Q) = {(S, F(S)) | S ∈ SATC′} where C′ 
= C. In that
case, Approx(Q) and Res(Q) are different. When C is more selective in r
than C′, we have Approx(Q) ⊆ Res(Q). A post-processing on Approx(Q)
might be used to eliminate itemsets that do not verify C. When C is less
selective than C′ then Approx(Q) is said incomplete.

– The result is Approx(Q) = {(S, F ′(S)) | S ∈ SATC} where F ′ provides an
approximation of the frequency of each itemset in Approx(Q).

Indeed, it can be so that the two situations occur simultaneously. A typical
case is the use of sampling on the database: one can sample the database (r′ ⊂ r is
the mining context) and compute Res(Q) not in r but in r′. In that case, both the
collection of the frequent itemsets and their frequencies are approximated. Notice
however that clever strategies can be used to avoid, in practice, an incomplete
answer [74].

A classical result is that it is possible to represent the collection of the fre-
quent itemsets by its maximal elements, the so-called positive border in [55] or
the S set in the machine learning terminology [60]. Also, it is possible to compute
these maximal itemsets and their frequencies without computing every frequency
of every frequent itemsets (see, e.g., [6]). This can be generalized to any anti-
monotonic constraint: the collection of the most specific sentences Approx(Q)
(e.g., the maximal itemsets) is a compact representation of Res(Q) from which
(a) it is easy to derive the exact collections of patterns (every sentence that
is more general belongs to the solution, e.g., every subset of the maximal fre-
quent itemsets) but, (b) the evaluation functions (e.g., the frequency) are only
approximated. Thus, the maximal itemsets can be considered as an example of
an approximative condensed representation of the frequent itemsets.

First, we have been studying algorithms that compute itemsets under more
general constraints, e.g., conjunctions of anti-monotonic and monotonic con-
straints. Next, we have designed other approximative condensed representations
and exact ones as well.

4.1 Algorithms for Constraint-Based Mining

cInQ partners have studied the extraction of itemsets (and rather similar pat-
tern domains like strings, sequences or molecular fragments) under a conjunction
of monotonic and anti-monotonic constraints. Notice also that since disjunctions
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of anti-monotonic (resp. monotonic) constraints are anti-monotonic (resp. mono-
tonic), it enables to consider rather general forms of inductive queries.

[46] provides a generic algorithm that generalizes previous work for constraint-
based itemset mining in a levelwise approach (e.g., [73,64]). The idea is that,
given a conjunction of an anti-monotonic constraint and a monotonic constraint
(Cam ∧ Cm), it is possible to start a levelwise search from the minimal (w.r.t.
set inclusion) itemsets that satisfy Cm and completes this collection until the
maximal itemsets that satisfy the Cam constraint are reached. Such a levelwise
algorithm provides the complete collection Res(Q) when Q can be expressed by
means of a conjunction Cam ∧ Cm. [46] introduces strategies (e.g., for computing
the minimal itemsets that satisfy Cm by using the duality between monotonic
and anti-monotonic constraints). Details are available in [44].

Mining itemsets under Cam ∧ Cm can also be considered as a special case of
the general algorithm introduced in [30]. This paper considers queries that are
boolean expressions over monotonic and anti-monotonic primitives on a single
pattern variable φ. This is a quite general form of inductive query and it is
shown that the solution space corresponds to the union of various version spaces
[60,57,40,41]. Because each version space can be represented in a concise way
using its border sets S and G, [30] shows that the solution space of a query can be
represented using the border sets of several version spaces. When a query enforces
a conjunction Cam ∧Cm, [30] proposes to compute S(Cam ∧Cm) as {s ∈ S(Cam) |
∃g ∈ G(Cm) : g ⊆ s} and dually for G(Cam ∧Cm). Thus, the borders for Cam ∧Cm

can be computed from S(Cam) and from G(Cm) as usual for the classical version
space approach. Sets such as S(Cam) can be computed using classical algorithms
such as the levelwise algorithm [55] and the dual set G(Cm) can be computed
using the dual algorithms [32]. These border sets are an approximative condensed
representation of the solution. For the MolFea specific inductive database, it
has been proved quite effective for molecular fragment finding [49,32,50,48].

Sequential pattern mining has been studied as well. Notice that molecular
fragments can be considered as a special case of sequences or strings. [27] stud-
ies sequential pattern mining under a specific conjunction of constraint that ask
for minimal frequency and similarity w.r.t. a reference pattern. In this work,
the main contribution has been to relax the similarity constraint into an anti-
monotonic one to improve pruning efficiency. It is an application of the frame-
work for convertible constraints [68]. Also, logical sequence mining under con-
straints has been studied, in a restricted framework [56] (regular expressions on
the sequence of predicate symbols and minimal frequency) and in a more general
setting [52] (conjunction of anti-monotonic and monotonic constraints).

4.2 Condensed Representations for Frequent Itemsets

cInQ partners have studied the condensed approximations in two complemen-
tary directions: the use of border sets in a very general setting (i.e., version
spaces) but also several condensed representations of the frequent itemsets.

– Border sets represent the maximally general and/or maximally specific so-
lutions to an inductive query. They can be used to bound the set of all
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solutions [30]. This can be used in many different pattern domains provided
that the search space is structured by a specialization relation and that the
solution space is a version space. They are useful in case only membership
of the solution set is important.

– Closed sets [65,12], δ-free sets [15,16], and disjoint-free sets [25] are condensed
representations that have been designed as ε-adequate representations w.r.t.
frequency queries, i.e., representations from which the frequency of any item-
set can be inferred or approximated within a bounded error.

The collection of the γ-frequent itemsets and their frequencies can be consid-
ered as an γ/2-adequate representation w.r.t. frequency queries [12]. It means
that the error on the inference of a frequency for a given itemset is bounded by
γ/2. Indeed, the frequency of an infrequent itemset can be set to γ/2 while the
frequency of a frequent one is known exactly. Given a set S of pairs (X, F(X)),
e.g., the collection of all the frequent itemsets and their frequencies, we are inter-
ested in condensed representations of S that are subsets of S with two properties:
(1) They are much smaller than S and faster to compute, and (2), the whole
set S can be generated from the condensed representation with no access to the
database, i.e., efficiently.

We have introduced in Section 2.3 the concepts of closed sets, free sets and δ-
free sets. Disjoint-free itemsets are a generalization of free itemsets [25]. They are
all condensed representations of the frequent itemsets that are exact representa-
tions (no loss of information w.r.t. the frequent itemsets and their frequencies),
except for the δ-free itemsets (with δ 
= 0) which is an approximative one. Let
us now give the principle of regeneration from the frequent closed itemsets:

– Given an itemset S and the set of frequent closed itemsets,
• If S is not included in a frequent closed itemset then S is not frequent.
• Else S is frequent and F(S) = Max{F(X), S ⊆ X ∧ Cclose(X)}.

As a result, γ-frequent closed itemsets are like the γ-frequent itemsets a γ/2-
adequate representation for frequency queries.

Example 11. In the database of Figure 1, if the frequency threshold is 0.2, every
itemset is frequent and the frequent closed sets are C, AC, BC, ABC, and ABCD.
F(AB) = F(ABC) since ABC is the smallest closed superset of AB.

The regeneration from δ-free itemsets is provided later. By construction,
|SATCclose

| ≤ |SATCfree
| and |SATCδ−free

| ≤ |SATCfree
| when δ > 0. Also, in

practice, the size of these condensed representations are several orders of mag-
nitude lower than the size of the frequent itemsets for dense data sets [24].

Several algorithms exist to compute various condensed representations of
frequent itemsets [65,69,75,12,15,5,25]. These algorithms compute different con-
densed representations: the frequent closed itemsets (Close, Closet, Charm),
the frequent free itemsets (Min-Ex, Pascal), the frequent δ-free itemsets (Min-
Ex), or the disjoint-free itemsets (H/VlinEx). Tractable extractions from dense
and highly-correlated data have become possible for frequency thresholds on
which previous algorithms are intractable.
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Representations based on δ-free itemsets are quite interesting when it is not
possible to mine the closed sets or even the disjoint-free sets, i.e., when the
computation is intractable given the user-defined frequency threshold. Indeed,
algorithms like Close [65] or Pascal [5] or H/Vlin-Ex [25] use special kinds of
logical rules to prune candidate itemsets because their frequencies can be inferred
from the frequencies of others. However, to be efficient, these algorithms need
that such logical rules hold in the data.

Let us now consider the δ-free itemsets and how they can be used to answer
frequency queries. The output of the Min-Ex algorithm [16] is formally given by
the three following sets: FF (r, γ, δ) is the set of the γ-frequent δ-free itemsets,
IF (r, γ, δ) is the set of the minimal (w.r.t. the set inclusion) infrequent δ-free
itemsets (i.e., the infrequent δ-free itemsets whose all subsets are γ-frequent).
FN(r, γ, δ) is the set of the minimal γ-frequent non-δ-free itemsets (i.e., the γ-
frequent non-δ-free itemsets whose all subsets are δ-free). The two pairs (FF, IF )
and (FF, FN) are two condensed representations based on δ-free itemsets.

It is possible to compute an approximation of the frequency of an itemset
using one of these two condensed representations:

– Let S be an itemset. If there exists X ∈ IF (r, γ, δ) such that X ⊆ S then S is
infrequent. If S 
∈ FF (r, γ, δ) and there does not exist X ∈ FN(r, γ, δ) such
that X ⊆ S then S is infrequent. In these two cases, the frequency of S can
be approximated by γ/2 Else, let F be the δ-free itemset such that: F(F ) =
Min{F(X), X ⊆ S and X is δ-free}. Assuming that nS = |support(S)| and
nF = |support(F )|, then nF ≥ nS ≥ nF − δ(|S| − |F |), or, dividing this by
n, the number of rows in r, F(F ) ≥ F(S) ≥ F(F ) − δ

n (|S| − |F |).

It is thus possible to regenerate an approximation of the answer to a frequent
itemset query from one of the condensed representation (FF, IF ) or (FF, FN).
Typical δ values range from zero to a few hundreds. With a database size of
several tens of thousands of rows, the error made is below few percents [16]. If
δ = 0, then the two condensed representations enable to regenerate exactly the
answer to a frequent itemset query.

This line of work has inspired other researchers. For instance, [26] proposed
a new exact condensed representation of the frequent itemsets that generalizes
the previous ones. It is, to the best of our knowledge, the most interesting exact
representation identified so far. In [66], new approximative condensed representa-
tions are proposed that are built from the maximal frequent itemsets for various
frequency values.

The condensed representations can be used also for constraint-based mining
of itemsets and the optimization of sequence of queries. In [46,45], constraint-
based mining under conjunctions of anti-monotonic and monotonic constraints
is combined with condensed representations. Some technical problems have to
be solved and it has lead to the concept of contextual δ-free itemsets w.r.t. a
monotonic constraint [19]. The use of condensed representations is not limited
to the optimization of single queries. [47] describes the use of a cache that con-
tains free itemsets to optimize the evaluation of sequences of itemset queries.
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Notice that other researchers also consider the optimization of sequences based
on condensed representations like the free itemsets [35].

4.3 Optimizing Association Rule Mining Queries

MINE RULE [59] has been designed by researchers who belong to the cInQ con-
sortium. This is one of the query languages dedicated to association rule mining
[9,10]. New extensions to the MINE RULE operator have been studied [11,58].
Two important and challenging new notions include: pattern views and relations
among inductive queries. Both of these notions have also been included (and were
actually inspired on MINE RULE) in the logical inductive database theory [29].
Pattern views intensionally specify a set of patterns using an inductive query in
MINE RULE. This is similar in spirit to a traditional relation view in a traditional
database. The view relation is defined by a query and can be queried like any
other relation later on. It is the task of the (inductive) database management
to take care (using, e.g., query materialization or query transformation) that
the right answers are generated to such views. Pattern views raise many new
challenges to data mining. The other notion that is nicely elaborated in MINE
RULE concerns the dominance and subsumption relation between consecutive in-
ductive queries. [11] studies the properties that the sets of patterns generated
by two MINE RULE queries present in interesting situations. For instance, given
two similar queries that are identical apart from one or more clauses in which
they differ for an attribute, the result-sets of the two queries exhibit an inclusion
relationship when a functional dependency is present between the differing at-
tributes. [11] studies also the equivalence properties that two MINE RULE queries
present when they have two clauses with constraints on attributes that are func-
tionally dependent. Finally, it studies the properties that the queries have when
multiple keys of a relation are involved. All these notions, if elaborated in the
context of the inductive databases, will help the system to speed-up the query
answering procedures. Again these ideas have been carried over to the logical
theory of inductive databases [29].

Partners of the consortium have been inspired by the MINE RULE query lan-
guage to study information discovery from XML data by means of association
rules [22,21].

4.4 Towards a Theory of Inductive Databases

The final goal of the cInQ project is to propose a theory of inductive databases.
As a first valuable step, a logical and set-oriented theory of inductive databases
has been proposed [29,30,31], where the key idea is that a database consists of
sets of data sets and sets of pattern sets, Furthermore there is an inductive query
language, where each query either generates a data or a pattern set. Queries
generating patterns sets are − in their most general form − arbitrary boolean
expression over monotonic and anti-monotonic primitives. This corresponds to a
logical view of inductive databases because the queries are boolean expressions
as well as a set oriented one because the answers to inductive queries are sets of
patterns.
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Issues concerned with the evaluation and optimization of such inductive
queries based on the border set representations can be found in [30]. Further-
more, various other issues concerned with inductive pattern views and the mem-
ory organization of such logical inductive databases are explored in [29]. Finally,
various formal properties of arbitrary boolean inductive queries (e.g., normal
forms, minimal number of version spaces needed) have been studied [31].

Interestingly, these theoretical results have emerged from an abstraction of
useful KDD processes, e.g., for molecular fragment discovery with the domain
specific inductive database MolFea [32,50,49,48] or for association rule mining
processes with, e.g., the MINE RULE operator.

5 Conclusions

We provided a presentation of the itemset pattern domain. Any progress on
constraint-based mining for itemsets can influence the research on the multiple
uses of frequent itemsets (feature construction, similarity measures and cluster-
ing, classification rule mining or bayesian network construction, etc). It means
that, not only (more or less generalized) association rule mining in difficult con-
texts like dense data sets can become tractable but also many other data mining
processes can benefit from this outcome.

We introduced most of the results obtained by the cInQ consortium after 18
months of work. A few concepts have emerged that are now studied in depth,
e.g., approximative and exact condensed representations, relationships between
inductive query solutions and versions spaces, strategies for the active use of con-
straints during inductive query evaluation, containment and dominance between
mining queries.

A lot has yet to be done, e.g., towards the use of these concepts for predictive
data mining tasks. Also, we have to study the robustness of these concepts in
various application domains and thus different pattern domains. It is a key issue
to identify a set of data mining primitives and thus figure out what could be
a good query language for inductive databases. Indeed, the design of dedicated
inductive databases, e.g., inductive databases for molecular fragment discovery,
is an invaluable step. Not only it solves interesting applicative problems but also
it gives the material for abstraction and thus the foundations of the inductive
database framework.
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degli Studi di Torino, Corso Svizzera 185, I-10149 Torino, Italy, May 2002.

12. J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation
for binary data mining. In Proceedings PAKDD’00, volume 1805 of LNAI, pages
62–73, Kyoto, JP, Apr. 2000. Springer-Verlag.

13. J.-F. Boulicaut, A. Bykowski, and B. Jeudy. Mining association rules with nega-
tions. Technical Report 2000-14, INSA Lyon, LISI, Batiment Blaise Pascal, F-69621
Villeurbanne, France, Nov. 2000.

14. J.-F. Boulicaut, A. Bykowski, and B. Jeudy. Towards the tractable discovery
of association rules with negations. In Proceedings FQAS’00, Advances in Soft
Computing series, pages 425–434, Warsaw, PL, Oct. 2000. Springer-Verlag.

15. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by mean of free-sets. In Proceedings PKDD’00, volume 1910 of LNAI, pages 75–85,
Lyon, F, Sept. 2000. Springer-Verlag.

16. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal, 7(1):5–22, 2003.

17. J.-F. Boulicaut and B. Crémilleux. Delta-strong classification rules for predicting
collagen diseases. In Proceedings of the ECML-PKDD’01 Discovery Challenge on
Thrombosis Data, pages 29–38, Freiburg, D, Sept. 2001. Available on line.

18. J.-F. Boulicaut and B. Jeudy. Using constraint for itemset mining: should we prune
or not? In Proceedings BDA’00, pages 221–237, Blois, F, Oct. 2000.

19. J.-F. Boulicaut and B. Jeudy. Mining free-sets under constraints. In Proceedings
IDEAS’01, pages 322–329, Grenoble, F, July 2001. IEEE Computer Society.

20. J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD processes within
the inductive database framework. In Proceedings DaWaK’99, volume 1676 of
LNCS, pages 293–302, Firenze, I, Sept. 1999. Springer-Verlag.



Inductive Databases and Multiple Uses of Frequent Itemsets 21

21. D. Braga, A. Campi, S. Ceri, M. Klemettinen, and P. L. Lanzi. Discovering inter-
esting information in XML data with association rules. In Proceedings SAC 2003
Data Mining track, Melbourne, USA, Mar. 2003. ACM Press.

22. D. Braga, A. Campi, M. Klemettinen, and P. L. Lanzi. Mining association rules
from XML data. In Proceedings DaWaK’02, volume 2454 of LNCS, pages 21–30,
Aix-en-Provence, F, Sept. 2002. Springer-Verlag.

23. S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing as-
sociation rules to correlations. In Proceedings SIGMOD’97, pages 265–276, Tucson,
USA, May 1997. ACM Press.

24. A. Bykowski. Condensed representations of frequent sets: application to descriptive
pattern discovery. PhD thesis, Institut National des Sciences Appliquées de Lyon,
LISI, F-69621 Villeurbanne cedex, France, Oct. 2002.

25. A. Bykowski and C. Rigotti. A condensed representation to find frequent patterns.
In Proceedings PODS’01, pages 267–273. ACM Press, May 2001.

26. T. Calders and B. Goethals. Mining all non derivable frequent itemsets. In Pro-
ceedings PKDD’02, volume 2431 of LNAI, pages 74–83, Helsinki, FIN, Aug. 2002.
Springer-Verlag.

27. M. Capelle, C. Masson, and J.-F. Boulicaut. Mining frequent sequential patterns
under a similarity constraint. In Proceedings IDEAL’02, volume 2412 of LNCS,
pages 1–6, Manchester, UK, Aug. 2002. Springer-Verlag.

28. B. Crémilleux and J.-F. Boulicaut. Simplest rules characterizing classes generated
by delta-free sets. In Proceedings ES 2002, pages 33–46, Cambridge, UK, Dec.
2002. Springer-Verlag.

29. L. de Raedt. A logical view of inductive databases. Technical report, Institut
fur Informatik, Albert-Ludwigs-Universitat, Georges-Kohler-Allee, Gebaude 079,
D-79110 Freiburg, Germany, May 2002. 13 pages.

30. L. de Raedt. Query evaluation and optimization for inductive database using
version spaces (extended abstract). In Proceedings DTDM’02 co-located with
EDBT’02, pages 19–28, Praha, CZ, Mar. 2002. An extended version appears in
this volume.

31. L. de Raedt, M. Jaeger, S. D. Lee, and H. Mannila. A theory of inductive query
answering (extended abstract). In Proceedings ICDM’02, pages 123–130, Maebashi
City, Japan, December 2002. IEEE Computer Press.

32. L. de Raedt and S. Kramer. The levelwise version space algorithm and its ap-
plication to molecular fragment finding. In Proceedings IJCAI’01, pages 853–862,
Seattle, USA, Aug. 2001. Morgan Kaufmann.

33. G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. In Proceedings SIGKDD’99, pages 43–52, San Diego, USA, Aug. 1999.
ACM Press.

34. M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern min-
ing with regular expression constraints. In Proceedings VLDB’99, pages 223–234,
Edinburgh, UK, September 1999. Morgan Kaufmann.

35. A. Giacommetti, D. Laurent, and C. T. Diop. Condensed representations for sets
of mining queries. In Proceedings KDID’02 co-located with ECML-PKDD’02, He-
linski, FIN, Aug. 2002. An extended version appears in this volume.

36. B. Goethals and J. V. den Bussche. On supporting interactive association rule
mining. In Proceedings DaWaK’00, volume 1874 of LNCS, pages 307–316, London,
UK, Sept. 2000. Springer-Verlag.

37. B. Goethals and J. van den Bussche. A priori versus a posteriori filtering of
association rules. In Proceedings SIGMOD Workshop DMKD’99, Philadelphia,
USA, May 1999.



22 J.-F. Boulicaut

38. J. Han and M. Kamber. Data Mining: Concepts and techniques. Morgan Kaufmann
Publishers, San Francisco, USA, 2000. 533 pages.

39. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings ACM SIGMOD’00, pages 1–12, Dallas, Texas, USA, May 2000.
ACM Press.

40. H. Hirsh. Theoretical underpinnings of version spaces. In Proceedings IJCAI’91,
pages 665–670, Sydney, Australia, Aug. 1991. Morgan Kaufmann.

41. H. Hirsh. Generalizing version spaces. Machine Learning, 17(1):5–46, 1994.
42. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.

Communications of the ACM, 39(11):58–64, Nov. 1996.
43. T. Imielinski and A. Virmani. MSQL: A query language for database mining. Data

Mining and Knowledge Discovery, 3(4):373–408, 1999.
44. B. Jeudy. Extraction de motifs sous contraintes: application à l’évaluation de
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