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ABSTRACT
We analyze expression matrices to identify a priori interest-
ing sets of genes, e.g., genes that are frequently co-regulated.
Such matrices provide expression values for given biologi-
cal situations (the lines) and given genes (columns). The
frequent itemset (sets of columns) extraction technique en-
ables to process difficult cases (millions of lines, hundreds
of columns) provided that data is not too dense. However,
expression matrices can be dense and have generally only
few lines w.r.t. the number of columns. Known algorithms,
including the recent algorithms that compute the so-called
condensed representations can fail. Thanks to the proper-
ties of Galois connections, we propose an original technique
that processes the transposed matrices while computing the
sets of genes. We validate the potential of this framework
by looking for the closed sets in two microarray data sets.

1. INTRODUCTION
We are now entering the post-genome era and it seems ob-
vious that, in a near future, the critical need will not be to
generate data, but to derive knowledge from huge data sets
generated at very high throughput. Different techniques (in-
cluding microarrays and SAGE) enable to study the simulta-
neous expression of (tens of) thousands of genes in various
biological situations. The data generated by those exper-
iments can then be seen as expression matrices in which
the expression level of genes (the columns) are recorded in
various biological situations (the lines). Various knowledge
discovery methods can be applied on such data, e.g., the
discovery of sets of co-regulated genes, also known as synex-
pression groups [12]. These sets can be computed from the
frequent sets in the boolean matrices coding for the expres-
sion data (see Table 1).

One attribute ai is attributed the value true (1) to represent
the over- (or under-) expression of gene i in that particular
situation.

Discretization procedures (true is assigned above a thresh-
old value) are used to derive boolean matrices from a raw
expression matrix. Discretization can obviously have a large
influence on the nature of the extracted sets. It is thus es-
sential that, in exploratory contexts, one can study different
threshold values and proceed with a large number of analy-
sis.

What we would like to do is to compute all sets of genes that
have the true value in a sufficient number (frequency thresh-
old) of biological situations. Extracting frequent sets is one
of the most studied data mining techniques since the de-
scription of the Apriori algorithm [1] and tens of algorithms
have been published. Nevertheless, the gene expression ma-
trices, obtained through microarrays, raise new difficulties,
due to their “pathological” dimensions (i.e. few lines and a
huge number of columns). This is a very difficult problem
since the overall complexity is exponential in the number of
genes. Furthermore the size of the solutions (i.e. collection
of extracted sets) is huge whatever the frequency threshold
since there is a very limited number of lines.

In Section 2, we present the problems raised by the extrac-
tion of frequent sets. Section 3 proposes a solution that com-
bines the power of the closed set extraction with an original
use of the properties of the Galois connection [17; 9]. In Sec-
tion 4 we provide experimental results on two matrices built
from microarray data [2; 16]. It establishes the spectacular
gains allowed by our approach. Section 5 concludes.

2. FREQUENT SET EXTRACTION

2.1 De£nitions
Let S denote a set of biological situations and A denote a set
of attributes. In the example from Table 1, S = {s1, . . . s5}
and A = {a1, . . . a10}. Each attribute denotes a property
about the expression of a gene. The encoded expression data
is represented by the matrix of the binary relation R ⊂ S×A
defined for each situation and each attribute. (si, aj) ∈ R

denotes that situation i has the property j, i.e., that gene j is
over-expressed or under-expressed in situation i. A database
r to be mined is thus a 3-tuple (S,A, R). LA = 2A is the
power set of attributes. For the sake of clarity, sets of at-
tributes are often called sets of genes. LS = 2S is the power
set of situations.

Definition 1. Given T ⊆ S and X ⊆ A, let f(T ) = {a ∈
A | ∀s ∈ T, (s, a) ∈ R} and g(X) = {s ∈ S | ∀a ∈ X, (s, a) ∈
R}. f provides the set of over-expressed or under-expressed
genes that are common to a set of situations and g provides
the set of situations that share a given set of attributes (ex-
pression properties). (f, g) is the so-called Galois connection
between S and A. We use the classical notations h = f ◦ g
and h′ = g ◦ f to denote the Galois closure operators.
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Attributes
Situations a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

s1 1 1 1 1 0 1 1 0 0 0
s2 1 1 1 1 0 0 0 0 1 1
s3 1 1 1 1 0 0 0 0 1 1
s4 0 0 0 0 1 1 1 1 1 1
s5 1 0 1 0 1 1 1 1 0 0

Table 1: Example of a boolean matrix r1

Definition 2. A set of genes X ⊆ A is closed iff h(X) =
X. We say that X satisfies the CClose constraint in r:
CClose(X, r) ≡ h(X) = X. A set of situations T ⊆ S is
closed iff h′(T ) = T .

Definition 3. The frequency of a set of genes X ⊆ A de-
noted F(X, r) is the size of g(X). Constraint Cfreq enforces
a minimal frequency: Cfreq(X, r) ≡ F(X, r) ≥ γ where γ is
the user-defined frequency threshold.

Example 1. Given r1, we have F({a1, a3, a5}) = 1 and
F({a1, a2}) = 3. If γ = 3, {a9, a10} and {a1, a2, a3, a4}
satisfy Cfreq in r1 but {a1, a5} does not. h({a1, a2}) in r1 is
f(g({a1, a2})) = f({s1, s2, s3}) = {a1, a2, a3, a4}. {a1, a2}
does not satisfy CClose in r1 but {a1, a2, a3, a4} satisfies it.

Mining task. We want to compute the collection of the
frequent sets of genes FS = {ϕ ∈ LA | Cfreq(ϕ, r) satisfied}
where Cfreq is the minimal frequency constraint and r is a
boolean expression matrix. Furthermore, we need the fre-
quencies of each frequent itemset to, e.g., derive interesting
association rules from them.

The closure of a set of genes X, h(X), is the maximal (w.r.t.
set inclusion) superset of X which has the same frequency
than X. A closed set of genes is thus a maximal set of genes
whose expression properties (true values) are shared by a
set of situations. E.g., the closed set {a1, a3} in the data of
Table 1, is the largest set of genes that are over-expressed
(or under-expressed) simultaneously in situations s1, s2, s3
and s5.

The concept of free set has been introduced in [7] as a special
case of the δ-free sets and has been proposed independently
in [3] under the name of key pattern. This concept char-
acterizes the closed set generators [13] but is also useful for
non redundant association rule computation (see, e.g., [5]
for an illustration).

Definition 4. A set of genes X ⊆ A is free iff X is not
included in the closure (i.e., h = f ◦ g) of one of its strict
subsets. We say that X satisfies the Cfree constraint in r. An
alternative definition is that X is free in r iff the frequency
of X in r is strictly lower than the frequency of every strict
subset of X.

Example 2. {a1, a6} satisfies Cfree in r1 but {a1, a2, a3}
does not.

It is easy to adapt these definitions to sets of situations.
An important result is that the closures of the free sets are
closed sets. The size of the collection of the free sets is, by
construction, greater or equal to the size of the collection of
the closed sets (see, e.g., [8]).

It is well known that LA can be represented by a lattice
ordered by set inclusion. On top of the lattice, we have the

empty set, then the singletons, the pairs, etc. The last level
for our example from Table 1 contains the unique set of size
10. A classical framework [11; 10] for an efficient exploration
of such a search space is based on the monotonicity of the
used constraints w.r.t. the specialization relation, i.e., set
inclusion.

Definition 5. A constraint C on sets is said anti-monotonic
when ∀X,X ′: (X ′ ⊆ X ∧X satisfies C) ⇒ X ′ satisfies C. A
constraint C is said monotonic when ∀X,X ′: (X ⊆ X ′ ∧X
satisfies C) ⇒ X ′ satisfies C.

Example 3. Cfreq, Cfree and Cfreq∧Cfree are anti-monotonic.
Csize(X) ≡ |X| > 3 is monotonic.

The negation of a monotonic (resp. anti-monotonic) con-
straint is an anti-monotonic (resp. monotonic) constraint.
Anti-monotonic constraints can be pushed efficiently into
the extraction process: when a set X does not satisfy an
anti-monotonic constraint, we can prune large parts of the
lattice since no superset of X can satisfy it. For instance,
the Apriori algorithm [1] computes all the frequent sets
by a levelwise search on the lattice, starting from the most
general sentences (the singletons) until it reaches the most
specific sentences that are frequent (the maximal frequent
sets w.r.t. set inclusion). Apriori and its variants work well
on very large boolean matrices (millions of lines, hundreds
or thousands of columns) that are not dense and for lowly
correlated data. Notice that such algorithms have to count
the frequency of at least every frequent set.

2.2 Extraction tractability
The computation of sets that satisfy a given constraint C is
a very hard problem. Indeed, as soon as we have more than
a few tens of columns, only a quite small subset of the search
space can be explored. Then, the size of the solution, i.e., the
collection of the sets that satisfy C can be so huge that none
algorithm can compute them all. When the used constraint
is Cfreq, it is possible to take a greater frequency threshold
to decrease a priori the size of the solution and thus provide
the whole collection of the frequent sets. The used threshold
can however be disappointing for the biologist: extracted
patterns are so frequent that they are already known.

In the expression matrices we have to analyze, the number
of the frequent sets can be huge, whatever is the frequency
threshold. It comes from the rather low number of lines
and thus the small number of possible frequencies. Clearly,
Apriori and its variants can not be used here. Since we need
for the frequencies of every frequent set, e.g., for deriving
valid association rules, algorithms that compute only the
maximal frequent itemsets, e.g., [4] do not solve the problem.

We decided to investigate the use of the so-called condensed

representations of the frequent sets by the frequent closed
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sets, i.e., CFS = {ϕ ∈ LA | Cfreq(ϕ, r)∧CClose(ϕ, r) satisfied}
because FS can be efficiently derived from CFS [13; 6].
CFS is a compact representation of the information about
every frequent set and its frequency. Furthermore, sev-
eral recent algorithms can compute efficiently the frequent
closed sets [13; 7; 8; 14; 18; 3]. To be efficient, these al-
gorithms can not use the properties of CClose which is nei-
ther anti-monotonic nor monotonic. However, we can com-
pute the frequent free sets and provide their closures, i.e.,
{h(ϕ) ∈ LA | Cfreq(ϕ, r) ∧ Cfree(ϕ, r) satisfied} [7; 8; 3]. The
lattice is still explored levelwise. At level k, the data is
accessed to compute the frequency and the closure of each
candidate set. The infrequent sets can be pruned. Thanks
to pruning at level k-1, the frequent sets are free sets. Can-
didates for the next level can be generated from two free sets
(using an Apriori-like generation procedure [1]) and can-
didates for which at least one subset is not frequent (Cfreq

is violated) or that are included in the closure of one their
subsets (i.e., Cfree is violated) are pruned before the next
iteration can start. At the end, we compute h(X) for each
frequent free set that has been extracted. It turns out that
the anti-monotonicity of a constraint like Cfreq∧Cfree is used
in two phases. First (Criterion 1), we avoid the computa-
tion of supersets that do not satisfy the constraint thanks to
the Apriori-like generation procedure. Next (Criterion 2),
we prune the sets for which some subsets do not satisfy the
constraint. The number of pruned candidates in the second
phase, i.e., failures for Criterion 2, can be huge for matrices
with a number of lines that is small w.r.t. the number of
columns and it can lead to intractable extractions. In other
terms, even though these approaches have given excellent
results on large matrices for transactional data (e.g., corre-
lated and dense data in WWW usage mining applications),
they can fail on expression matrices because of their “patho-
logical” dimensions. Furthermore, we want to enable the use
of various discretization procedures and thus the analysis of
more or less dense matrices. It appears crucial to us that we
can achieve a breakthrough w.r.t. extraction intractability
and it has lead to the following original method.

3. A NEW METHOD
We have considered the extraction from a transposed matrix
using the Galois connection to infer the results that would
have been extracted from the initial matrix. Indeed, one can
associate to the lattice on genes the lattice on situations.
Elements from these lattices are linked by the Galois opera-
tors. The Galois connection gives rise to concepts [17] that
associate sets of genes with sets of situations, or in the trans-
posed matrix, sets of situations with sets of genes. When we
have only few situations and many genes, the transposition
enables to reduce the complexity of the search.

Definition 6. If X ∈ LA and T ∈ LS , we consider the
so-called concepts (X,T ) where T = g(X) and X = f(T ).
By construction, concepts are built on closed sets and, each
closed set of genes (resp. situations) is linked to a closed set
of situations (resp. genes).

Definition 7. The concept theory w.r.t. r, L = LA ×
LS , and a constraint C is denoted Thc(L, r, C). It is the
collection of concepts (X,T ) such that X ∈ {ϕ ∈ LA |
C(ϕ, r) satisfied}.

On Figure 1, we provide the so-called Galois lattice for the
concepts in the data from Table 1. The specialization re-
lation on the sets of genes which is oriented from the top
towards the bottom of the lattice is now associated to a spe-
cialization relation on sets of situations which is oriented in
the reverse direction. Indeed, if X ⊂ Y then g(X) ⊇ g(Y ).

The collection of the maximally specific sets of genes (e.g.,
the maximal frequent itemsets) has been called the positive
border in [10]. A dual concept is the one of negative border,
i.e., the minimally general sets (e.g., the smallest infrequent
sets whose every subset is frequent). The lattice is thus
split in two parts. On the top, we have the solution which
is bordered by the positive border. On the bottom, we have
the sets that do not belong to the solution. The minimal
elements of this part constitute the negative border. This
duality is interesting: borders are related to a specialisa-
tion relation and an anti-monotonic constraint. The bottom
part of the lattice can be considered as the solution for the
negated constraint, the former positive border becomes the
negative border and vice versa.

On the Galois lattice, it is possible to perform two types
of extraction: one on the gene space (1), starting from the
top of the lattice and following the specialisation relation
on the genes, and the other one on the biological situations
(2), starting from the bottom of the lattice and following the
specialisation relation on the situations. We now define the
matrix transposition for a matrix r, the constraint transpo-
sition for a constraint C and we state the central result of
the complementarity of the extractions.

Definition 8. If r = (S,A, R) is an expression matrix, the
transposed matrix is tr = (A,S, tR) where (a, s) ∈ tR ⇐⇒
(s, a) ∈ R.

Whereas the matrix transposition is quite obvious, it is not
the same for the transposition of constraints. In the case
of the minimal frequency constraint Cfreq, the dual notion
of the frequency for the sets of genes is the length of the
corresponding sets of situations.

Definition 9. Let C be a constraint on LA, its transposed
constraint tC is defined on LS by ∀T ∈ LS ,

tC(T, r) ⇐⇒
C(f(T ), r) where f is the Galois operator. Thus, tCfreq(T, r) ≡
|T | ≥ γ if γ is the frequency threshold for Cfreq.

With respect to gene specialization, tC is monotonic (resp.
anti-monotonic) if C is monotonic (resp. anti-monotonic).
However, if C is anti-monotonic (e.g., Cfreq) following the
gene specialization relation, tC is monotonic according to
the specialization relation on the situations: it has to be
negated to get an anti-monotonic constraint that can be use
efficiently.

Property 1. If C is anti-monotonic w.r.t. gene specializa-
tion, then ¬tC is anti-monotonic w.r.t. situation specializa-
tion.

We have an operation for the transposition of the data and
a new anti-monotonic constraint w.r.t. to the specializa-
tion relation on the situations. However, to obtain this new
anti-monotonic constraint, we had to transpose the original
constraint and take its negation: the new extraction turns
to be complementary to the collection we would get with
the standard extraction.
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Figure 1: A Galois lattice
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Definition 10. Given tr and ¬tC, the transposed theory
Thc(L,

tr,¬tC) is the transposition of Thc(L, r, C).

Property 2. The concept theory Thc(L, r, C) and its trans-
posed theory Thc(L,

tr,¬tC) are complementary w.r.t. the
whole collection of concepts.

Example 4. On the data from Table 1, the sets of genes
with a frequency of at least 3 are {a1, a3}, {a6, a7}, {a9, a10},
and {a1, a2, a3, a4}. A closed set of genes has a frequency
greater than 3 if the size of the corresponding situation set
is greater than 3. When taking the negation of this con-
straint, we look for the sets of situations whose size are at
most 3 (anti-monotonic constraint w.r.t. the situation spe-
cialization). The sets {s1, s5}, {s4, s5} and {s2, s3} are ex-
tracted. Clearly, the two collections are complementary (see
Figure 2).

The correctness of this extraction method for finding the
closed sets of genes from the extractions on transposed ma-
trices relies on this complementary property. Due to the lack
of space, we consider only a straightforward application of
this framework that concerns the computation of concepts.

If we compute the closed sets from the gene space, the Ga-
lois connection allows to infer the closed sets of situations.
Reciprocally, the extraction on the transposed matrix pro-
vides the closed sets on the situations and we can infer the
closed sets of genes. Thus, the same collection of closed
sets can be extracted from a matrix or its transposed. The
choice between one or the other method can be guided by
the dimension of the matrix. On the data from Table 1, the
smallest dimension concerns the situations (5 elements) and
it leads to 25 = 32 possible sets. Among these 32 elements,
only 10 are closed. However extracting the closed sets from
the original matrix, which contains 10 columns, leads to a
search space of 210 = 1024 sets of genes whereas there is still
10 closed sets. To compute the closed sets, we output the
closures of the free sets. This is an efficient solution since
Cfree is anti-monotonic. Several free sets can however gen-
erate the same closed set. On the data from Table 1, the
free set extraction provides 41 sets which generate the 10
closed sets, whereas the transposed matrix extraction pro-
vides only 17 free sets. We provide real examples in the next
section.

4. APPLICATIONS
We have been working on data sets produced with cDNA mi-
croarrays at the Stanford Genome Technology Center (Paolo
Alto, CA 94306, USA). The first data set is described in [16].
It concerns the study of human insulino-resistance. From 6
cDNA microarrays (around 42 557 spots for 29 308 Uni-
Gene clusters), a typical preprocessing for microarray data
has given an expression matrix with 6 lines (situations) and
1 065 columns (genes). It is denoted as the inra matrix.
The second data set concerns gene expression during the
development of the drosophila [2]. With the same kind of
preprocessing, we got an expression matrix with 162 lines
and 1 230 columns denoted droso. To derive boolean ma-
trices, we have encoded the over-expression of genes: for
each gene i, we have computed a threshold σi under which
the attribute boolean value is false, and true otherwise. Dif-
ferent methods can be used for the definition of threshold σi

and we have done as follows [2]: σi = Maxi × (1− σ discr)
where Maxi is the maximal expression value for gene i and
σ discr is a parameter that is common to every genes.

We used the prototype mv-miner implemented by F. Ri-
oult and have extracted the closed sets under the frequency
threshold 1 to get all of them. These experiments have been
performed on a 800MHz processor with RAM 4GB and 3GB
for swap (linux operating system). We have used parameter
σ disc to study the extraction complexity w.r.t. the density
of the boolean matrices (ratio of the number of true values
on the number of values).

First, we compare the extraction in inra and t
inra for a

given value of σ disc (Table 2).

We have 41 closed sets in these boolean matrices. The free
set extraction on inra provides 667 831 free sets of genes
whereas the extraction on t

inra provides 42 free sets of sit-
uations. In Section 2.2, we have seen that algorithms use
anti-monotonic constraints in two ways. Criterion 1 avoids
to generate some candidates that would have to be pruned.
Criterion 2 enables to prune candidates for which the con-
straint is not satisfied. Checking Criterion 2 is expensive
because it needs to store the sets and check the properties
of all their subsets. Table 2 provides the number of sets
(for each level in the levelwise search) which satisfy these
two criteria and the number of sets that have been exam-
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Figure 2: Complementarity of the extractions
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Table 2: Failure/success in pruning for inra and t
inra

t
inra inra

size success failure success failure
1 6 0 777 0
2 15 0 172 548 128 928
3 16 4 2 315 383 4 713 114
4 6 9 2 965 726 9 371 325
5 0 2 0 1 544 485

Total 43 15 5 454 434 15 757 852
Nb free sets 42 667 831

Nb closed sets 41

ined when processing inra and t
inra. Extraction in t

inra

is clearly more efficient. Not only it provides less candidate
sets to test (43 vs. 5 454 434) but also it leads to far less
failures: 15 vs. 15 757 852.

We have performed experiments on the two microarray data
sets for various discretization thresholds. Considering droso,
Table 3 shows that extraction becomes feasible for larger
densities. It enables that the biologist explore alternatives
for discretizations.

Results on inra confirm the observations (see Table 4). The
difference between standard extraction and transposed ma-
trix extraction is even more spectacular. Indeed, extraction
time on the transposed matrix can become negligible w.r.t.
the standard extraction time (e.g., 120 ms vs. 368 409 ms).
Notice that the number of free sets of genes can be very large
w.r.t. the number of closed sets to be found, e.g., 51 881 free
sets for only 34 closed sets.

Also, the method has been applied on very large expres-
sion matrices derived from human SAGE data (matrix 90×
12 636) [15]. In these matrices and for different discretiza-
tion techniques, none of the standard extractions have been
tractable while extractions on the transposed matrix have
been easy.

5. USING THE CLOSED SETS
An algorithm like mv-miner takes a boolean matrix and pro-
vides the free sets on the columns and the closed sets on both
the lines and the columns with their frequencies in the data.
From the closed sets of genes and their frequencies, it is in-

deed possible to select the frequent closed sets provided a
frequency threshold. When using Cfreq with γ > 1, it is pos-
sible to use its transposed constraint and make use of the
transposed extractions.

Let us discuss informally how to use the closed sets to derive
some knowledge. It is possible to regenerate the whole col-
lection of the frequent sets of genes (resp. situations) from
the frequent closed sets of genes (resp. situations). So, the
multiples applications of the frequent itemsets are available
(e.g., association rule mining, class characterization, some
types of clustering, approximation of the joint distribution).
Notice also that the extracted collections can be represented
as concepts [17] and thus many knowledge discovery tasks
based on concept lattices can be considered.

It is quite possible that the number of frequent sets of genes
is too huge and that a “blind” regeneration process is not
feasible. It is possible to filter at regeneration time, e.g., to
take into account some syntactical constraints on the sets
of interests. Notice also that the free sets that have been
proved useful for non redundant association rule computa-
tion are missing. When mining the transposed matrix, we
get the free sets on situations but not the free sets on genes.

Let us however sketch typical uses of the extracted patterns.
Part of this has been already validated on SAGE data anal-
ysis in [5]. It is useful to look at the patterns extracted
after several discretizations on the same expression matrix.
These extractions can provide different sets of co-regulated
genes for the same expression data. So, after such compu-
tations, the biologist want to compare different closed set
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Table 3: Results for the drosophila data
σ discr density time (ms) nb free sets nb closed sets

t
droso 0.02 0.08 160 965 434
droso 0.02 0.08 1 622 5 732 434
t
droso 0.075 0.015 420 3 667 1 508
droso 0.075 0.015 35 390 60 742 1 508
t
droso 0.1 0.019 721 6 890 2 569
droso 0.1 0.019 146 861 162 907 2 569
t
droso 0.15 0.032 4 526 36 309 10 447
droso 0.15 0.032 failure - -
t
droso 0.2 0.047 36 722 410 666 4 6751
droso 0.2 0.047 failure - -
t
droso 0.25 0.067 455 575 1 330 099 259 938
droso 0.25 0.067 failure - -
t
droso 0.3 0.09 failure - -
droso 0.3 0.09 failure - -

collections, looking at the common patterns, the dissimilari-
ties, etc. Browsing these collections of closed sets can lead to
the selection of some of them, e.g., the one that are almost
always extracted.

Then, the biologists can select some concepts for an in-
depth study of the interactions between the involved genes.
Clearly, one objective criterion for selection can be based on
the frequency. One important method concerns the use of
information sources about gene functions. Quite often, one
of the first post-processing is to look for the homogeneity
of the sets (e.g., they all share the same function). It is
then quite interesting to focus on almost homogeneous sets
of genes and look at the outliers. This approach has been
used in the SAGE data analysis described in [5] and has
provided a valuable result: one EST (Expressed Sequence
Tag) was always co-regulated with a set of around 20 genes
that had the same function and it is reasonable to suspect
that this EST has that function. For this type of post-
processing, it is possible to use the various ontologies that
are available, e.g., http://www.geneontology.org/, and, e.g.,
study the homogeneity of the selected sets of genes at dif-
ferent levels (biological process, molecular function, cellular
function).

Last but not the least, the biologist can chose a given closed
set of genes X and then project the original expression ma-
trix on X. Since the size of a closed set will be generally
small w.r.t. the size of whole collection of genes, it is then
possible to mine this restricted matrix. For instance, it be-
comes possible to extract the whole collection of non redun-
dant association rules (free sets of genes in the left-hand
side) from this non transposed restricted matrix.

6. CONCLUSION
We have been studying the extraction of groups of genes
found to be frequently co-regulated in expression matrices.
This type of data raises difficult problems due to the huge
size of the search space and to the huge size of the solutions.
In [5], it has been shown that the use of condensed represen-
tations as described in e.g. [6; 7], was useful, at least when
the number of biological situations is not too small in light of
the number of genes. Unfortunately this situation is rarely
observed in most of the available gene expression data. We
therefore explored the possibility to process the transposed

matrices by making use of properties of the Galois connec-
tions. This resulted in a very spectacular improvement of
the extraction procedure, allowing to work in context where
previous approaches failed. [5] has validated the interest of
frequent closed sets in biological terms on a reduced set of
genes. We are pretty confident that given the algorithmic
breakthrough, biological significant information will be ex-
tracted from the expression data we have to mine. We are
furthermore exploring the transposition of other constraints.
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