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Université de Lyon, CNRS

LIRIS, UMR5205, F-69622, France
Lyon, France

Email: firstname. surname@ liris. cnrs. fr

Salim Berbar
Audience Labs

Place Louis Pradel, 69001,
Lyon, France

Email: sb@ alabs. io

Abstract—Nowadays, the Web offers huge amounts
of data sources for the benefit of the community.
However, there is a lack of practical approach for
converting and linking multi-origin data sources into
one coherent smart data set. In this paper, we define
a service-oriented architecture to attach explicit se-
mantics to data, to solve heterogeneity issues, and to
remove data inconsistencies in order to convert raw
documents to quality Linked Data. We motivate the
need for a service oriented architecture for smart data
with a live scenario based on the Audience Labs com-
pany information system. We show how our service-
oriented architecture adapts to the company needs
and facilitates semantic annotation, data integration
and exploitation of the resulting smart data.
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I. Introduction

Nowadays, the Web offers advanced interaction per-
spectives where users are both data providers and con-
sumers. Users comment and review cultural products,
they instantly put together their interests and wish
lists in profiles, blogs and social networks, producing a
huge amount of data across the Web. On top of that,
government and big companies open their databases to
the world across the Web, especially thanks to initia-
tive such as the open data project[1]. Data sources are
typically exposed via Web APIs [2] that can be com-
bined in service mashups [3] to produce highly valuable
services. As an example, we could mention the sets of
APIs provided by Twitter, Facebook, LinkedIn, Amazon,
Youtube, Wordpress, Flickr, Dropbox and many more
available, reused in thousands of mashups1. These facts
allow organizations to open their information systems,
enabling for example a better listening to customer
needs, or improving their productivity. They have the
possibility to integrate available data from Web sources
together with their own data, in order to produce smart
data2. We define smart data as significant, semantically

1See also http://www.programmableweb.com/
2Data integration is the task that consists in combining data

from different sources to provide a unified view to the user [4]

explicit data, ready to be useful to fulfill the stakehold-
ers’ objectives.

A. Challenges

Despite the aforementioned advantages, the integra-
tion of data from diverse Web sources remains a com-
plex and tedious process, relying mainly on human-
based and error-prone tasks. Globally, there is a lack
of practical approach for converting and linking multi-
origin data pieces into one coherent smart data set.
More specifically, the following scientific locks make the
transformation of data into smart data a difficult task.

First of all, data usually comes in variable quality,
unorganized or not described, and not linked to other
sources on the Web. There is a need for providing
machine-readable explicit description of data semantics,
and linking data sets to each other and to ontologies3.

Secondly, the combination of heterogeneous data from
different sources generates issues. We classify these is-
sues along three levels, which are syntactic, i.e. re-
lated to data formats and syntax; structural, due to
differences in data organization; and semantic when
different knowledge representations are used [6]. These
data heterogeneity issues need to be solved to enable
data integration.

Thirdly, the integration of multi-origin data sources
generates duplicates and noisy, imprecise or inconsistent
data, causing loss of meaning or misunderstandings.
Specific algorithms are required to clean data from noise
and to generate consistent, duplicate-free data.

Therefore, there is a need for a smart data architec-
ture that enables the integration of heterogeneous data
sources, by providing the means to annotate data with
explicit semantics, merge the annotated data sets, and
handle the cleaning and conflict resolution process.

B. Our Approach

In this paper, we define a data source independent and
service-oriented architecture that offers the mechanisms

3Ontologies are shared representations of a domain knowledge,
concretely speaking, they are vocabularies to facilitate data inter-
pretation [5]



to detect and resolve data heterogeneity issues, and pro-
vides tools to aggregate and process information in order
to generate smart data from diverse Web data sources.
Each operation in our architecture, as well as smart
data access, is available through a linked data service.
A linked data service is a Web resource identified via an
URI and accessible with HTTP verbs. It exchanges its
representations with JSON-LD data. We motivate the
need for a service-oriented smart data architecture with
a live scenario based on the Audience Labs company
information system. We show how our service-oriented
architecture adapts to the company needs, facilitates
data integration and semantic annotation, and improves
the exploitation of resulting data. In addition, we demon-
strate how our solution adapts to any scenario and to
large scale contexts thanks to its modular architecture
and RESTful design.

The challenges mentioned previously are addressed as
follows. For the semantic annotation challenge, domain
ontologies and linked data tools provide us with the con-
cepts that allow us to extend data with semantic annota-
tions. Our solution relies on a scalable architecture that
includes algorithms, available as linked data services,
to semantically annotate data. For the data integration
challenge, our proposal relies on our Data Mediation
as a Service (DMaaS) approach [7], [8], that allows to
perform on-the-fly adaptation of semantically annotated
data, to resolve data conflicts that appear during the
data integration process. For the data cleaning challenge,
the data cleaning operations are exposed as linked data
services to facilitate data manipulation.

C. Paper Organization

This paper is organized as follows. Section II illus-
trates our motivation through our company scenario and
presents the use cases for the architecture. Section III
details our approach and our service-oriented architec-
ture for semantic annotation, filtering and integration of
data from diverse sources. Section IV presents related
work and highlights the advantages of our approach.
Section V discusses our work and provides guidelines for
future work.

II. Scaling the Solution to a Scenario

Our scenario comes from the Audience Labs company
which has a need for a recommendation system that
broadcasts information through communication media,
essentially through Web and emails. The main goal of
our solution stands in providing tools for studying the
impact of a broadcasting campaign upon a customer
database in the first place, and then to provide help
decision tools as well as a recommendation systems for
future campaigns. The objective is to broadcast docu-
ments of any kind, such as a newsletter or commercial

campaign, to a set of customers. Typically, documents
are email-embedded HTML pages containing texts and
images and links to points of interest represented as key-
words related to points of interest described in ontologies
such as DBPedia4. The document includes transparent
tracking mechanisms that allow us to harvest contextual
data about users’ interactions with the document. These
contextual data about the customer, which are saved
in our customer profile database for later use, includes
browser information, action date and time, IP addresses,
and helps us to build and extend a profile for each
customer. Fig. 1 illustrates how our solution operates in
the context of the Audiences Labs scenario. It shows the
interaction patterns between the system user, customers
and the architecture.

Figure 1. Querying the architecture

A. Querying the Architecture

It is possible to query the architecture through its GUI
that offers a set of criteria. The system user creates a
query through the GUI and extracts relevant profiles
from the diverse data sources that are connected to
the platform. The system user has access to several
criteria including : age, gender, points of interest and
related activities, socio-professional categories, localiza-
tion (country, region), browser used, and so on. Once the
query is formulated, the architecture goes through the
semantic annotation, cleaning and integration tasks, as
described in the following, and replies to the user query.

B. Annotating Data with Semantics

In order to enrich the raw profiles stored in our
database and turn informal data to smart data, there
is a need to collect additional information. We need
to attach semantic concepts to each piece of data in
the scenario to perform data integration. To do so, we
link keywords to ontology concepts and reuse external
sources such as DBpedia. To attach these descriptive
concepts, we use different semantic extraction systems
such as named entity extraction [9]. Each piece of data,
profile or document is described with a set of criteria,
keywords and concepts, also allowing to compute a
similarity score between these objects.

4http://dbpedia.org/



In addition to the automated mechanisms, we provide
the user with tools to manually add complementary
information. The manual specifications add declarative
information about the foreseen targeted populations,
such as gender, age group, socio-professional categories.
This declarative task allows the system user to add a
business oriented input to the data, specifying its own
keywords and concepts.

C. Profile Extraction Process

Upon campaign broadcast feedback, we transparently
collect customers’ interaction traces simultaneously sav-
ing all contextual information about these interaction
traces such as geolocalization, browser version, device
type, and so on. By analyzing the customers’ interaction
traces, each customer is being attributed a specific profile
that describes its points of interests. The interest profile
is updated upon each of the customer’s interaction.
External data sources are also used to enhance the clas-
sification and evaluation of the user’s points of interest.
The semantic concepts that have been attached to data
are reused to compute similarity between customers. The
harvested data helps to retrieve all users that are the
more likely to be interested in a document, when the
user performs a new query on the interface, closing the
usage loop.

III. Enabling our Service Oriented
Architecture

Our approach relies on a service oriented architecture
in which we define the different tasks required to prepare,
semantically annotate and clean data so that it becomes
a consistent “smart data” set.

A. Global Overview : A service oriented architecture

Erl et Al. [10] defined eight service design princi-
ples that form a methodology for engineering software
components that are decoupled, cohesive and reusable,
regardless of their location. These principles are stan-
dardized service contract, loose coupling, abstraction
from implementation, autonomy, statelessness, discover-
ability and composability. Based on these principles, we
design and implement a generic, scalable and modular
architecture, divided into different layers, represented in
figure 2. Each architecture layer handles a specific task
of the data integration process.

We defined a set of layers according to the different
tasks to be performed on data: the data source man-
agement layer, the semantic annotation layer, the data
integration layer, the data filtering layer and the data
consumption layer. The data filtering layer being a cross-
cutting concern, between each task execution, we insert
a cleaning and filtering task to filter data, removing
duplicates and malformed pieces of information and

correcting data inconsistencies when possible. We deploy
each software component as a linked data service.

B. The Data Source Management Layer

The data source management layer, handles the
data access tasks, and communicates with the different
data sources available to the architecture. Data sources
are available in various forms, such as databases, tabular
files or web data services. Each sources is described in a
data dource configuration resources which are used for
data source administration and access. Each file con-
tains the necessary informations for consuming the data
source : a location (URI notation), a data type (CSV
file, SQL database, etc), and the method for accessing
data. Listing 1 illustrates data source configuration file
structure.

"source":{
"id" : "U1",
"type":"database",
"format":"mongodb",
"uri":"mongodb://153.75.28.26:8080/myDBendpoint",
"username":"user1",
"password":"76ls6h",
"databasename":"maindb"

}

Listing 1. A datasource configuration file examples

This layer benefits from “data source configuration”
resources, allowing to perform the four CRUD (Cre-
ate, Read, Update and Delete) operations to man-
age data sources. The CRUD operations allow to up-
load (PUT), modify (POST), retrieve (GET) and re-
move (DELETE) data source configuration resources.
As an example, a GET request over the data source
configuration resource with the id of a data source

Figure 2. Architecture Layers



: GET /datasource/get?id=U1 will return a JSON
object representing the database source with the id U1
described in listing 1. This object contains the properties
(url, username, password, databasename, etc...) which
allows the architecture to connect and retrieve data from
the database.

C. The Semantic Annotation Layer

The semantic annotation layer handles the second
task of the data integration process. It adds explicit
semantics to data. This layer helps to extract semantics
from data, analyzing data without pre-existing semantic
annotation. The system relies on different contextual
elements, such as data source, field name, plain text
data analysis, comparison and matching with existent
annotated data. If the data is provided by a service, the
algorithm analyzes its description, and detect whether
or not the source type is specified. In case of databases,
contextual information coupled with tuple analysis, pro-
vides us with the necessary information to describe it as
linked data. For all other use cases, such as data files, our
mechanisms rely on file structure to detect and identify
concepts. These tools identify raw data concepts and
link fields to concepts from ontologies, when available, or
from DBpedia. Each piece of data is then annotated with
the help of these concepts. This layer is one of the most
important component of the system, since it provides
a machine-readable description of data semantics to be
manipulated.

Here we defined different linked data services to se-
mantically annotate flowing data. The first semantic
annotation tools generates an annotation process from a
data source configuration resource. We defined another
linked data service which allows to add (PUT), update
(POST), retrieve (GET) and delete (DELETE) a seman-
tic annotation process for each data source. As an exam-
ple, the request GET /annotation?id=U1 provides the
process (mapping) for the datasource with the id U1.

D. The Data Integration Layer

The data integration layer enhances the intercon-
nection of the data piece, relying on query that has
been created, to automatically connect concepts. On
complex query execution, data which has been prepared
and semantically annotated through the previously de-
scribed layer, could be put in correlation to construct
the request response. The architecture analyses the dif-
ferent concepts in the query and prepares data for the
merging process, relying on metadata to connect data
from the different sources. It generates a composition
that provides the requested pieces of information.

To detect possible heterogeneity problems, could they
be syntactic or structural, and to reconcile them, we rely

on our previous DMaaS approach [8], which is an auto-
mated solution for resolving data heterogeneity problems
between semantically described data, using a decentral-
ized (peer to peer) repository of mediation services5. The
DMaaS approach classifies data heterogeneity issues ac-
cording to the syntactic, structural and semantic levels,
and provides adapted mediation along these levels. We
set up the automatic conflict detection mecanism, which
analyses input metadata, and intercepts data responses
to performs reconciliation. These data mediation services
are published into a peer to peer repository, distributed
around a chord ring. Discovery task is made possible
thanks to the publication method, each data mediation
service is published by its input and output concepts.
The architecture submit a composition, defined by a
list of resource URIs, to DMaaS which analyses data
homogeneity. DMaaS core analyzes input and output
metadata of the composition and veriy the semantic
matching of each data field. On conflicts detection, the
system performs discovery request to find the data medi-
ation service that will handle the transformation of the
heterogeneous data. DMaaS returns the new generated
composition.

E. The Data Filtering Layer

In our architecture, each time data flows from one ser-
vice to another, a cross-cutting layer called the data fil-
tering layer analyzes data. The layer provides cleaning
and filtering linked data services that cleanup and format
data samples, remove duplicate tuples and reformat
malformed data, including eventual encoding issues. In
addition, it is possible to specify filtering rules, allowing
to ignore specific data values, or to limit a request to a
range domain. We defined a linked data service which
performs the management of filtering rules, allowing to
create (POST), retrieve (GET), modify (UPDATE) and
remove (DELETE) a filtering rule.

F. The Data Reasoning Layer

Our architecture also integrates an inference engine
which we call statistics engine, which runs in back-
ground, regularly analyzing data, generating rules and
producing statistical knowledge. This statistical machine
learning engine constantly updates a specific database
with additional knowledge. We integrate such an engine
to deal on-the-fly with complex user queries and get an
answer in a reasonable time. We also add the possibility,
for an agent, to manually add business rules. In this
layer, we use data and customer traces, to infer these
rules and create data. We use classical IA mechanisms
and algorithms such as collaborative filtering (Apache

5Mediation services are Web services dedicated to data conver-
sion.



Mahout) and semantic Web inference engine (Jena, Pel-
let, Euler EYE, HermiT)6. We defined a linked data
services allowing the agent to add (POST), modify
(UPDATE) or delete (DELETE) business rules. We
also provide the possibility to search for a business
rule according to different criteria, these criteria passed
as JSONLD objects. As an example, the following re-
quest will list all the business rules of type SameAs.
GET /reasoner/search?rule=type&query=sameas

G. Architecture Orchestration

Each component of our architecture is available
through a Web resource, the architecture handles re-
source orchestration. The architecture disposes from
a user interface, which generates data requests (i.e.
queries) from customer activities.

We identify two global cases in our architecture: data
queries and data import. Our architecture adapts to
our scenario as follows. Data queries come from system
users, when they interact with the user interface, for
example, when users want to generate a list of profiles
corresponding to a set of criterias. Data import comes
from customers when they interact with broadcasted
documents. These two tasks represent read and write
actions, not completely independent in our architecture.
The write task will be computed by descending in the
layers, ending up the actual write operation in the data
source, whereas the read task begins by reading from
data sources, and then ascending through the layers.

When the architecture receives a query, the architec-
ture selects the appropriate data sources to generate
query results. The architecture creates a composition of
these data sources, adds semantic annotation and filters
data. Then the architecture executes the composition,
invokes resources, analyzes the data produced and checks
whether or not data mediation is required. The gener-
ated smart data is then returned to the system user.

IV. Related Work

Smart data architecture is currently a hot research
topic explored by the community. Dustdar et al.
present a peer data network architecture in [11], where
data sources are independent databases and where tasks
are separated into levels, isolating data management
and service integration. Their solution provides service-
based optimization, such as peer replication, to resolve
data issues. However, the paper does not address data
heterogeneity problems, assuming that schema mapping
is sufficient. QuerioCity [12] presents a smart platform
to index and query heterogeneous information from com-
plex systems such as city data portals7. The approach

6See http://www.semantic-web-journal.net/sites/default/files/
swj120 2.pdf for a comparison of reasoners.

7Such as Dublinked http://www.dublinked.ie/

clearly distinguishes between the data integration and
data consumption tasks. In order to harmonize data
usage, data fields are converted to a standard format,
annotated with metadata and aligned with public on-
tologies (Dublin Core[13] or FOAF[14]). We rely on
these approaches to build our proposal, improving the
reusability and loose coupling through usage of linked
data services, automating the linked data efforts and re-
structuring the different layers of the platform according
to our needs that require reasoning about data and
proposing a loosely-coupled approach for the different
tasks to perform on data.

In another context, some approaches propose tech-
niques for semantically annotating raw data from het-
erogeneous sources. Furth et Al. [15] propose a tech-
nique based on natural language processing applied on
technical documents for extracting a set of ranked con-
cepts that represent the main subject of the document.
Venetis et Al. [16] describe a system that recovers
semantics from tables on the Web. Their solution relies
on similarity computation with help from a set of mil-
lions of other tables. Han et Al. present in RDF123[17]
an open-source tool for translating spreadsheet data to
RDF, relying on a column-based mapping, where a set of
expressions represents the structure and orchestration of
cells in a tabular row. We rely on this latter approach to
perform our semantic annotation task, improving it by
automating the creation of the mapping expression with
help from external and third party services for semantics
extraction and concept recognition.

V. Conclusion

In this paper, we present a service-oriented architec-
ture that provides a layered approach for combining,
converting and linking multi-origin data sources into one
coherent smart data set. We structured our architecture
to be as generic as possible, independent from data
sources, and adaptable to any use case. We demonstrate
the applicability of our architecture in the context of a
scenario that answers the needs of our partner company.
Future work includes performing additional evaluation
over large data sets and exploring issues related to data
management such as data quality and freshness issues,
and reasoning about inconsistent or imprecise data.
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