
Comprehensive Log Compression

with Frequent Patterns

Kimmo Hätönen1, Jean François Boulicaut2, Mika Klemettinen1,
Markus Miettinen1, and Cyrille Masson2

1 Nokia Research Center
P.O.Box 407, FIN-00045 Nokia Group, Finland

{kimmo.hatonen,mika.klemettinen,markus.miettinen}@nokia.com
2 INSA de Lyon, LIRIS CNRS FRE 2672

F-69621 Villeurbanne, France
{Jean-Francois.Boulicaut,Cyrille.Masson}@insa-lyon.fr

Abstract. In this paper we present a comprehensive log compression
(CLC) method that uses frequent patterns and their condensed repre-
sentations to identify repetitive information from large log files generated
by communications networks. We also show how the identified informa-
tion can be used to separate and filter out frequently occurring events
that hide other, unique or only a few times occurring events. The iden-
tification can be done without any prior knowledge about the domain
or the events. For example, no pre-defined patterns or value combina-
tions are needed. This separation makes it easier for a human observer
to perceive and analyse large amounts of log data. The applicability of
the CLC method is demonstrated with real-world examples from data
communication networks.

1 Introduction

In the near future telecommunication networks will deploy an open packet-based
infrastructure which has been originally developed for data communication net-
works. The monitoring of this new packet-based infrastructure will be a challenge
for operators. The old networks will remain up and running for still some time.
At the same time the rollout of the new infrastructure will take place intro-
ducing many new information sources, between which the information needed
in, e.g., security monitoring and fault analysis will be scattered. These sources
can include different kinds of event logs, e.g., firewall logs, operating systems’
system logs and different application server logs to name a few. The problem
is becoming worse every day as operators are adding new tools for logging and
monitoring their networks. As the requirements for the quality of service per-
ceived by customers gain more importance, the operators are starting to seriously
utilise information that is hidden in these logs. Their interest towards analysing
their own processes and operation of their network increases concurrently.

Data mining and knowledge discovery methods are a promising alternative
for operators to gain more out of their data. Based on our experience, however,

Y. Kambayashi, M. Mohania, W. Wöß (Eds.): DaWaK 2003, LNCS 2737, pp. 360–370, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Comprehensive Log Compression with Frequent Patterns 361

simple-minded use of discovery algorithms in the network analysis poses prob-
lems with the amount of generated information and its relevance. In the KDD
process [6, 10, 9], it is often reasonable or even necessary to constrain the discov-
ery using background knowledge. If no constraints are applied, the discovered
result set of, say, association rules [1, 2] might become huge and contain mostly
trivial and uninteresting rules. Also, association and episode rule mining tech-
niques can only capture frequently recurring events according to some frequency
and confidence thresholds. This is needed to restrict the search space and thus
for computation tractability. Clearly, the thresholds that can be used are not
necessarily the ones that denote objective interestingness from the user point of
view. Indeed, rare combinations can be extremely interesting. When considering
our previously unknown domains, an explicit background knowledge is missing,
e.g., about the possible or reasonable values of attributes and their relationships.

When it is difficult or impossible to define and maintain a priori knowledge
about the system, there is still a possibility to use meta information that can
be extracted from the logs. Meta information characterizes different types of log
entries and log entry combinations. It can not only be used to help an expert in
filtering and browsing the logs manually but also to automatically identify and
filter out insignificant log entries. It is possible to reduce the size of an analysed
data set to a fraction of its original size without losing any critical information.

One type of meta information are frequent patterns. They capture the com-
mon value combinations that occur in the logs. Furthermore, such meta infor-
mation can be condensed by means of, e.g., the closed frequent itemsets [12, 3].
Closed sets form natural inclusion graphs between different covering sets. This
type of presentation is quite understandable for an expert and can be used
to create hierarchical views. These condensed representations can be extracted
directly from highly correlated and/or dense data, i.e., in contexts where the
approaches that compute the whole collection of the frequent patterns FS are
intractable [12, 3, 17, 13]. They can also be used to regenerate efficiently the
whole FS collection, possibly partially and on the fly.

We propose here our Comprehensive Log Compression (CLC) method. It is
based on the computation of frequent pattern condensed representations and we
use this presentation as an entry point to the data. The method provides a way
to dynamically characterize and combine log data entries before they are shown
to a human observer. It finds frequently occurring patterns from dense log data
and links patterns to the data as a data directory. It is also possible to separate
recurring data and analyse it separately. In most cases, this reduces the amount
of data needed to be evaluated by an expert to a fraction of the original volume.

This type of representation is general w.r.t. different log types. Frequent sets
can be generated from most of the logs that have structure and contain repeating
symbolic values in their fields, e.g., in Web Usage Mining applications [11, 16].
The main difference between the proposed method and those applications is the
objective setting of the mining task. Most of the web usage applications try
to identify and somehow validate common access patterns in web sites. These
patterns are then used to do some sort of optimization of the site. The proposed

362 Kimmo Hätönen et al.

...
777;11May2000; 0:00:23;a_daemon;B1;12.12.123.12;tcp;;
778;11May2000; 0:00:31;a_daemon;B1;12.12.123.12;tcp;;
779;11May2000; 0:00:32;1234;B1;255.255.255.255;udp;;
781;11May2000; 0:00:43;a_daemon;B1;12.12.123.12;tcp;;
782;11May2000; 0:00:51;a_daemon;B1;12.12.123.12;tcp;;
...

Fig. 1. An example of a firewall log

method, however, doesn’t say anything about semantic correctness or relations
between the found frequent patterns. It only summarizes the most frequent value
combinations in entries. This gives either a human expert or computationally
more intensive algorithms a change to continue with data, which doesn’t contain
too common and trivial entries. Based on our experience with real-life log data,
e.g., large application and firewall logs, the original data set of tens of thousands
of rows can often be represented by just a couple of identified patterns and the
exceptions not matching these patterns.

2 Log Data and Log Data Analysis

A log data consists of entries that represent a specific condition or an event that
has occurred somewhere in the system. The entries have several fields, which
are called variables from now on. The structure of entries might change over
time from entry to another, although some variables are common to all of them.
Each variable has a set of possible values called a value space. Values of one
value space can be considered as binary attributes. Variable value spaces are
separated. A small example of a log data is given in Figure 1. It shows a sample
from a log file produced by CheckPoint’s Firewall-1.

In a data set a value range in a variable value space might be very large
or very limited. For example, there may be only few firewalls in an enterprise,
but every IP address in the internet might try to contact the enterprise domain.
There are also several variables that have such a large value space but contain
only a fraction of the possible values. Therefore, it is unpractical and almost
impossible to fix the size of the value spaces as a priori knowledge.

A log file may be very large. During one day, there might accumulate millions
of lines into a log file. A solution to browse the data is either to search for
patterns that are known to be interesting with high probability or to filter out
patterns that most probably are uninteresting. A system can assist in this but
the evaluation of interestingness is left for an expert. To be able to make the
evaluation an expert has to check the found log entries by hand. He has to return
to the original log file and iteratively check all those probably interesting entries
and their surroundings. Many of the most dangerous attacks are new and unseen
for an enterprise defense system. Therefore, when the data exploration is limited
only to known patterns it may be impossible to find the new attacks.

Comprehensive Log Compression (CLC) is an operation where meta informa-
tion is extracted from the log entries and used to summarize redundant entries

Comprehensive Log Compression with Frequent Patterns 363

{Proto:tcp, Service:a_daemon, Src:B1} 11161
{Proto:tcp, SPort:, Src:B1} 11161
{Proto:tcp, SPort:, Service:a_daemon} 11161
{SPort:, Service:a_daemon, Src:B1} 11161
...
{Destination:123.12.123.12, SPort:, Service:a_daemon, Src:B1} 10283
{Destination:123.12.123.12, Proto:tcp, Service:a_daemon, Src:B1} 10283
{Destination:123.12.123.12, Proto:tcp, SPort:, Src:B1} 10283
{Destination:123.12.123.12, Proto:tcp, SPort:, Service:a_daemon} 10283
{Proto:tcp, SPort:, Service:a_daemon, Src:B1} 11161
...
{Destination:123.12.123.12, Proto:tcp, SPort:, Service:a_daemon, Src:B1} 10283

Fig. 2. A sample of frequent sets extracted from a firewall log

without losing any important information. By combining log entries with their
frequencies and identifying recurring patterns, we are able to separate correlating
entries from infrequent ones and display them with accompanying information.
Thus, an expert has a more covering overview of the logged system and he can
identify interesting phenomena and concentrate on his analysis.

The summary has to be understandable for an expert and must contain all
the relevant information that is available in the original log. Presentation has
also to provide a mechanism to move back and forth between the summary and
the original logs.

Summarization can be done by finding correlating value combinations from
large amount of log entries. Due to the nature of the logging mechanism, there
are always several value combinations that are common to a large number of
the entries. When these patterns are combined with information about how
uncorrelating values are changing w.r.t. to these correlating patterns it gives
a comprehensive description of the contents of the logs. In many cases it is
possible to detect such patterns by browsing the log data but unfortunately it
is also tedious. E.g., a clever attack against a firewall cluster of an enterprise is
scattered over all of its firewalls and executed slowly from several different IP
addresses using all the possible protocols alternately.

Figure 2 provides a sample of frequent sets extracted from the data intro-
duced in Figure 1. In Figure 2, the last pattern, which contains five attributes,
has five subpatterns out of which four have the same frequency as the longer pat-
tern and only one has larger frequency. In fact, many frequent patterns have the
same frequency and it is the key idea of the frequent closed set mining technique
to consider only some representative patterns, i.e., the frequent closed itemsets
(see next section for a formalization). Figure 3 gives a sample of frequent closed
sets that correspond to the frequent patterns shown in Figure 2.

An example of the results of applying the CLC method to a firewall log
data set can be seen in Table 1. It shows three patterns with highest coverage
values found from the firewall log introduced in Figure 1. If the supports of these
patterns are combined, then 91% of the data in the log is covered. The blank
fields in the figure are intentionally left empty in the original log data. The fields
marked with ’*’ can have varying values. For example, in the pattern 1 the field

364 Kimmo Hätönen et al.

{Proto:tcp, SPort:, Service:a_daemon, Src:B1} 11161
{Destination:123.12.123.12, Proto:tcp, SPort:, Service:a_daemon, Src:B1} 10283
{Destination:123.12.123.13, Proto:tcp, SPort:, Service:a_daemon, Src:B1} 878

Fig. 3. A sample of closed sets extracted from a firewall log

Table 1. The three most frequent patterns found from a firewall log

No Destination Proto SPort Service Src Count
1. * tcp A daemon B1 11161
2. 255.255.255.255 udp 1234 * 1437
3. 123.12.123.12 udp B-dgm * 1607

’Destination’ gets two different values on lines matched by it, as it is shown in
Figure 3.

3 Formalization

The definition of a LOG pattern domain is made of the definition of a language
of patterns L, evaluation functions that assign a description to each pattern in
a given log r, and languages for primitive constraints that specify the desired pat-
terns. We introduce some notations that are used for defining the LOG pattern
domain. A so-called log contains the data in a form of log entries and patterns
are the so-called itemsets, which are sets of (field, value) pairs of log entries.

Definition 1 (Log). Assume that Items is a finite set of (field, value) pairs
denoted by field name combined with value, e.g., Items= {A : ai, B : bj , C :
ck, . . .}. A log entry t is a subset of Items. A log r is a finite and non empty
multiset r = {e1, e2, . . . , en} of log entries.

Definition 2 (Itemsets). An itemset is a subset of Items. The language of
patterns for itemsets is L = 2Items.

Definition 3 (Constraint). If T denotes the set of all logs and 2Items the set
of all itemsets, an itemset constraint C is a predicate over 2Items×T . An itemset
S ∈ 2Items satisfies a constraint C in the database r ∈ T iff C(S, r) = true.When
it is clear from the context, we write C(S).

Evaluation functions return information about the properties of a given item-
set in a given log. These functions provide an expert information about the events
and conditions in the network. They also form a basis for summary creation.
They are used to select the proper entry points to the log data.

Definition 4 (Support for Itemsets). A log entry e supports an itemset S
if every item in S belongs to e, i.e., S ⊆ e. The support (denoted support(S, r))
of an itemset S is the multiset of all log entries of r that supports S (e.g.,
support(∅) = r).

Comprehensive Log Compression with Frequent Patterns 365

Definition 5 (Frequency). The frequency of an itemset S in a log r is defined
by F(S, r) = |support(S)| where |.| denotes the cardinality of the multiset.

Definition 6 (Coverage). The coverage of an itemset S in a log r is defined
by Cov(S, r) = F(S, r) · |S|, where |.| denotes the cardinality of the itemset S.

Definition 7 (Perfectness). The perfectness of an itemset S in a log r is de-
fined by Perf(S, r) = Cov(S, r)/

∑F(S,r)
i=0 |ei|, where ∀ei : ei ∈ support(S, r) and

|ei| denotes to the cardinality of log entry ei. Please, notice that if the cardinality
of all the log entries is constant it applies then Perf(S, r) = Cov(S, r)/(F(S, r) ·
|e|), where e is an arbitrary log entry.

Primitive constraints are a tool set that is used to create and control sum-
maries. For instance, the summaries are composed by using the frequent (closed)
sets, i.e., sets that satisfy a conjunction of a minimal frequency constraint and
the closeness constraint plus the original data.

Definition 8 (Minimal Frequency). Given an itemset S, a log r, and a fre-
quency threshold γ ∈ [1, |r|], Cminfreq(S, r) ≡ F(S, r) ≥ γ. Itemsets that satisfy
Cminfreq are called γ-frequent or frequent in r.

Definition 9 (Minimal Perfectness). Given an itemset S, a log r, and a per-
fectness threshold π ∈ [0, 1], Cminperf(S, r) ≡ Perf(S, r) ≥ π. Itemsets that sat-
isfy Cminperf are called π-perfect or perfect in r.

Definition 10 (Closures, Closed Itemsets and Constraint Cclose). The
closure of an itemset S in r (denoted by closure(S, r)) is the maximal (for set
inclusion) superset of S which has the same support than S. In other terms, the
closure of S is the set of items that are common to all the log entries which
support S. A closed itemset is an itemset that is equal to its closure in r, i.e.,
we define Cclose(S, r) ≡ closure(S, r) = S. Closed itemsets are maximal sets of
items that are supported by a multiset of log entries.

If we consider the equivalence class that group all the itemsets that have the
same closure (and thus the same frequency), the closed sets are the maximal
elements of each equivalence class. Thus, when the collection of the frequent
itemsets FS is available, a simple post-processing technique can be applied to
compute only the frequent closed itemsets. When the data is sparse, it is possible
to compute FS, e.g., by using Apriori-like algorithms [2]. However, the number
of frequent itemsets can be extremely large, especially in dense logs that contain
many highly correlated field values. In that case, computing FS might not be
feasible while the frequent closed sets CFS can often be computed for the same
frequency threshold or even a lower one. CFS = {φ ∈ L | Cminfreq(φ, r) ∧
Cclose(φ, r) satisfied}. On one hand, FS can be efficiently derived from CFS
without scanning the data again [12, 3]. On the other hand, CFS is a compact
representation of the information about every frequent set and its frequency
and thus fulfills the needs for CLC. Several algorithms can compute efficiently
the frequent closed sets. In this work, we compute the frequent closed sets by

366 Kimmo Hätönen et al.

computing the frequent free sets and providing their closures [4, 5]. This is
efficient since the freeness property is anti-monotonic, i.e., a key property for an
efficient processing of the search space.

For a user, displaying of the adequate information is the most important
phase of the CLC method. This phase gets the original log file and a condensed
set of frequent patterns as input. An objective of the method is to select the
most informative patterns as starting points for navigating the condensed set of
patterns and data. As it has been shown [12], the frequent closed sets give rise
to a lattice structure, ordered by set inclusion. These inclusion relations between
patterns can be used as navigational links.

What are the most informative patterns depends on the application and
a task in hand. There are at least three possible measures that can be used to
sort the patterns: frequency, i.e., on how many lines the pattern exists in a data
set; perfectness, i.e., how big part of the line has been fixed in the pattern; and
coverage of the pattern, i.e., how large part of the database is covered by the
pattern. Coverage is a measure, which balances the trade-off between patterns
that are short but whose frequency is high and patterns that are long but whose
frequency is lower. Selection of the most informative patterns can also be based
on the optimality w.r.t. coverage. It is possible that an expert wishes to see
only n most covering patterns or most covering patterns that together cover
more than m% of the data. Examples of optimality constraints are considered
in [14, 15].

An interesting issue is the treatment of the patterns, whose perfectness is
close to zero. It is often the case that the support of such a small pattern is
almost entirely covered by supports of larger patterns, subset of which the small
pattern is. The most interesting property of this kind of lines is the possibility
to find those rare and exceptional entries that are not covered by any of the
frequent patterns.

In the domain that we are working on, log entries of telecommunication
applications, we have found out that coverage and perfectness are very good
measures to find good and informative starting points for pattern and data
browsing. This is probably because of the fact that if there are too many fields
that have not fixed values, then the meaning of the entry is not clear and those
patterns are not understandable for an expert. On the other hand, in those logs
there are a lot of repeating patterns, whose coverage is high and perfectness is
close to 100 percent.

4 Experiments

Our experiments were done with two separate log sets. The first of them was
a firewall log that was divided into several files so that each file contained entries
logged during one day. From this collection we selected logs of four days with
which we executed the CLC method with different frequency thresholds. The
purpose of this test was to find out how large a portion of the original log it is
possible to cover with the patterns found and what the optimal value for the

Comprehensive Log Compression with Frequent Patterns 367

Table 2. Summary of the CLC experiments with firewall data

Firewall days
Sup Day 1 Day 2 Day 3 Day 4

Freq Clsd Sel Lines % Freq Clsd Sel Lines % Freq Clsd Sel Lines % Freq Clsd Sel Lines %
100 8655 48 5 5162 96.3 9151 54 5 15366 98.6 10572 82 7 12287 97.1 8001 37 4 4902 97.3
50 9213 55 6 5224 97.5 9771 66 7 15457 99.2 11880 95 11 12427 98.2 8315 42 5 4911 97.5
10 11381 74 12 5347 99.8 12580 88 12 15537 99.7 19897 155 19 12552 99.2 10079 58 8 4999 99.2
5 13013 82 13 5351 99.9 14346 104 14 15569 99.9 22887 208 20 12573 99.3 12183 69 10 5036 99.9

Tot 5358 15588 12656 5039

frequency threshold would be. In Table 2, a summary of the experiment results
is presented.

Table 2 shows, for each firewall daily log file, the number of frequent sets
(Freq), closed sets (Clsd) derived from those, selected closed sets (Sel), the num-
ber of lines that the selected sets cover (Lines) and how big part of the log these
lines are covering (%). The tests were executed with several frequency thresholds
(Sup). The pattern selection was based on the coverage of each pattern.

As can be seen from the result, already with the rather high frequency thresh-
old of 50 lines, the coverage percentage is high. With this threshold there were,
e.g., only 229 (1.8%) lines not covered in the log file of day 3. This was basically
because there was an exceptionally well distributed port scan during that day.
Those entries were so fragmented that they escaped from the CLC algorithm,
but were clearly visible when all the other information was taken away.

In Table 2, we also show the sizes of the different representations compared
to each other. As can be seen, the reduction from the number of frequent sets to
the number of closed sets is remarkable. However, by selecting the most covering
patterns, it is possible to reduce the number of shown patterns to very few
without losing the descriptive power of the representation.

Another data set that was used to test our method was an application log
of a large software system. The log contains information about the execution of
different application modules. The main purpose of the log is to provide informa-
tion for system operation, maintenance and debugging. The log entries provide
a continuous flow of data, not occasional bursts, which are typical for firewall
entries. The interesting thing in the flow are the possible error messages that are
rare and often hidden in the mass.

The size of the application log was more than 105 000 lines, which were
collected during a period of 42 days. From these entries, with the frequency
threshold of 1000 lines (about 1%), the CLC method was able to identify 13 in-
teresting patterns that covered 91.5% of the data. When the frequency threshold
was still lowered to 50 lines, the coverage rose up to 95.8%. With that threshold
value, there were 33 patterns found. The resulting patterns, however, started to
be so fragmented that they were not very useful anymore.

These experiments show the usefulness of the condensed representation of
the frequent itemsets by means of the frequent closed itemsets. In a data set
like a firewall log, it is possible to select only a few most covering of the found
frequent closed sets and cover the majority of the data. After this bulk has been

368 Kimmo Hätönen et al.

removed from the log it is much easier for any human expert to inspect the rest
of the log, even manually.

Notice also that the computation of our results has been easy. This is partly
because of our test data sets reported here are not very large; the largest set being
a little over 100 000 lines. However, in a real environment of a large corporation,
the daily firewall logs might contain millions of lines and much more variables.
The amount of data — the number of lines and the number of variables —
will continue to grow in the future, when the number of service types, different
services and their use will grow. The scalability of the algorithms that compute
the frequent closed sets is quite good compared to the Apriori approach: fewer
data scans are needed and the search space can be drastically reduced in the
case of dense data [12, 3, 5]. In particular, we have done preliminary testing
with ac-miner designed by A. Bykowski [5]. It discovers free sets, from which
it is straightforward to compute closed sets. These tests have shown promising
results w.r.t. execution times. This approach seems to scale up more easily than
the search for a whole set of frequent sets.

Also, other condensed representations have been recently proposed like the
δ-free sets, the ∨-free sets or the Non Derivable Itemsets [5, 7, 8]. They could
be used in even more difficult contexts (very dense and highly-correlated data).
Notice however, that from the end user point of view, these representations do
not have the intuitive semantics of the closed itemsets.

5 Conclusions and Future Work

The Comprehensive Log Compression (CLC) method provides a powerful tool for
any analysis that inspects data with lot of redundancy. Only very little a priori
knowledge is needed to perform the analysis: knowledge structures: only a min-
imum frequency threshold for the discovery of closed sets and e.g., the number
of displayed patterns, to guide the selection of the most covering patterns.

The method provides a mechanism to separate different information types
from each other. The CLC method identifies frequent repetitive patterns from
a log database and can be used to emphasize either the normal course of actions
or exceptional log entries or events in the normal course of actions. This is
especially useful in getting knowledge out of previously unknown domains or in
analyzing logs that are used to record unstructured and unclassified information.

In the future we are interested in generalizing and testing the described
method with frequent episodes: how to utilize relations between selected closed
sets. Other interesting issues concern the theoretical foundations of the CLC
method as well as ways to utilize this method in different real world applications.

Acknowledgements

The authors have partly been supported by the Nokia Foundation and the
consortium on discovering knowledge with Inductive Queries (cInQ), a project

Comprehensive Log Compression with Frequent Patterns 369

funded by the Future and Emerging Technologies arm of the IST Programme
(Contract no. IST-2000-26469).

References

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules
between sets of items in large databases. In SIGMOD’93, pages 207–216, Wash-
ington, USA, May 1993. ACM Press. 361

[2] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
A. Inkeri Verkamo. Fast discovery of association rules. In Advances in Knowledge
Discovery and Data Mining, pages 307–328. AAAI Press, 1996. 361, 365

[3] Jean-François Boulicaut and Artur Bykowski. Frequent closures as a concise
representation for binary data mining. In PAKDD’00, volume 1805 of LNAI,
pages 62–73, Kyoto, JP, April 2000. Springer-Verlag. 361, 365, 368

[4] Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Approximation
of frequency queries by mean of free-sets. In PKDD’00, volume 1910 of LNAI,
pages 75–85, Lyon, F, September 2000. Springer-Verlag. 366

[5] Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-sets: a
condensed representation of boolean data for the approximation of frequency
queries. Data Mining and Knowledge Discovery journal, 7(1):5–22, 2003. 366,
368

[6] Ronald J. Brachman and Tej Anand. The process of knowledge discovery in
databases: A first sketch. In Advances in Knowledge Discovery and Data Mining,
July 1994. 361

[7] Artur Bykowski and Christophe Rigotti. A condensed representation to find fre-
quent patterns. In PODS’01, pages 267 – 273. ACM Press, May 2001. 368

[8] Toon Calders and Bart Goethals. Mining all non derivable frequent itemsets.
In PKDD’02, volume 2431 of LNAI, pages 74–83, Helsinki, FIN, August 2002.
Springer-Verlag. 368

[9] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The KDD pro-
cess for extracting useful knowledge from volumes of data. Communications of
the ACM, 39(11):27 – 34, November 1996. 361

[10] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data
mining to knowledge discovery: An overview. In Advances in Knowledge Discovery
and Data Mining, pages 1 – 34. AAAI Press, Menlo Park, CA, 1996. 361

[11] R. Kosala and H. Blockeel. Web mining research: A survey. SIGKDD: SIGKDD
Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Dis-
covery & Data Mining, ACM, 2(1):1–15, 2000. 361

[12] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining of
association rules using closed itemset lattices. Information Systems, 24(1):25–46,
January 1999. 361, 365, 366, 368

[13] Jian Pei, Jiawei Han, and Runying Mao. CLOSET an efficient algorithm for
mining frequent closed itemsets. In SIGMOD Workshop DMKD’00, Dallas, USA,
May 2000. 361

[14] Tobias Scheffer. Finding association rules that trade support optimally against
confidence. In PKDD’01, volume 2168 of LNCS, pages 424–435, Freiburg, D,
September 2001. Springer-Verlag. 366

[15] Jun Sese and Shinichi Morishita. Answering the most correlated N association
rules efficiently. In PKDD’02, volume 2431 of LNAI, pages 410–422, Helsinki,
FIN, August 2002. Springer-Verlag. 366

370 Kimmo Hätönen et al.

[16] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan.
Web usage mining: Discovery and applications of usage patterns from web data.
SIGKDD Explorations, 1(2):12–23, 2000. 361

[17] Mohammed Javeed Zaki. Generating non-redundant association rules. In
SIGKDD’00, pages 34–43, Boston, USA, August 2000. ACM Press. 361

	Comprehensive Log Compression with Frequent Patterns
	Introduction
	Log Data and Log Data Analysis
	Formalization
	Experiments
	Conclusions and Future Work

