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Introduction

Knowledge discovery in databases (KDD) aims to assist humans in making sense of voluminous
data. It consists in embedding raw data into predictive or descriptive models to elicit hypothesis
on the mechanisms that generate the data. The whole process is generally decomposed in five
steps (Fayyad, Piatetsky-shapiro, and Smyth 1996) that are: (1) the selection of a subset of the
data samples and descriptors in adequacy with the targeted goal of the user; (2) the preprocessing
of the data by handling the possible missing data, the errors of measurement or the outliers;
(3) the transformation of the data by aggregating the initial descriptors into useful features
or discretizing the descriptor values; (4) the data mining process that produces a particular
enumeration of patterns or models over the data and (5) the interpretation and evaluation of the
output of the previous step. Our contributions concern the data mining step and are all related to
the descriptive paradigm that focuses on finding human-interpretable patterns that characterize
the data and provide new and actionable insights. This unsupervised exploration of the data aims
to highlight the relationships or structures that link objects, descriptors and objects to descriptors.

Data mining algorithms are defined by the language used to describe discoverable patterns or
models, the criteria applied to evaluate the suitability of a particular pattern for the data, and the
search strategy employed to retrieve the patterns that satisfy some conditions on the evaluation
criteria. In my first contribution (Robardet 2002), I designed a co-clustering method, that, as any
other clustering approaches, seeks to group together similar objects, but also, simultaneously
clusters the object descriptors, exploiting the duality between objects and descriptors. It provides
a model, that is to say a high level global description of the data. The language used is the set of
co-clusterings, i.e. a pair made of a partition of the object set and another one of the descriptor set.
The adjustment of one partition to the other is evaluated based on the Goodman-Kruskal’s τ , a
measure for cross-association in contingency tables that quantifies the strength of the relationship
between two categorical variables. Due to the fact that this measure has a defined upper limit that
is independent of the numbers of clusters, the τ function can be used to compare co-clusterings
with different number of clusters. The co-clustering of any size that maximizes τ is approximated
by a local search strategy. This work has been recently extended to handle star-structured data
made of different views that are as many distinct descriptions of the same set of objects (Ienco,
Robardet, R. G. Pensa, and Meo 2013).

Joining Jean-François Boulicaut research team in 2001, I started to work on the constraint-
based pattern mining framework which covers data mining algorithms that use an exact search



8

strategy to extract the whole set of patterns satisfying some constraints on the evaluation criteria.
At that time, the only considered patterns were local, that is to say patterns whose validity is
evaluated independently from other patterns. Since then, this framework has been extended to
the study of the active use of constraints on sets of patterns (Crémilleux and Soulet 2008; Raedt
and Zimmermann 2007), in order to provide the correct answer to an inductive query: A query
on both data and patterns implicitly present in them. Upon my arrival in the research team, I
have been immediately involved in the cInQ European project1 and its follow-up IQ2 whose
objectives were to study this framework.

In the early 2000’s, frequent itemsets, association rules and episodes were the pattern types
the most studied within this framework. Frequent itemsets are sets of Boolean descriptors that
are simultaneously satisfied by a large number of objects. During Jérémy Besson’s PhD, we
proposed to exploit the duality between objects and descriptors by considering these patterns
as bi-sets made of a set of descriptors (or itemset) associated to a set of objects supporting
them. On this language of patterns, we defined constraints that can be applied equally to one
set or the other. In particular, we studied the constraints to extract formal concepts (Ganter and
Wille 1997). We designed an algorithm that is completely symmetrical and can be used even
on dense data sets with no small dimension (Besson, Robardet, and Boulicaut 2004; Besson,
Robardet, Boulicaut, and Rome 2005). This work has led to further developments in two main
directions: (1) the extraction of fault-tolerant patterns (Besson, Robardet, and Boulicaut 2006) to
be more robust to the possible errors of measurement in real-life data, and (2) its extension to
the extraction of patterns in n-ary relations (Cerf, Besson, Robardet, and Boulicaut 2008; Cerf,
Besson, Robardet, and Boulicaut 2009), all along Loïc Cerf’s PhD.

Ruggero Pensa’s PhD, that I co-supervised with Jean-François Boulicaut, combines the two
aforementioned contributions in a generic framework (R. G. Pensa, Robardet, and Boulicaut
2005) to compute a co-clustering from collections of local patterns. Local patterns make possible
to capture locally strong associations between objects and descriptors, but their use is limited by
the huge size of the obtained collections that makes difficult their interpretation and validation
by end-users. Building a co-clustering on top of these local patterns provides a good and robust
summary of the data. Constraints on the co-clustering specified by end-users (e.g., must-link,
cannot-link constraints between objects or descriptors) can be exploited during the local pattern
extraction as well as during the co-clustering construction. Doing so, it improves the performance
of the search strategies used in both steps.

During the first half of 2008, I received a sabbatical and went to Antwerp (Belgium) in
ADReM (Advanced Database Research and Modelling) research team led by professor Jan
Paredaens. I worked with Bart Goethals and Boris Cule on sequence pattern mining (Cule,
Goethals, and Robardet 2009). To extract knowledge from event sequences, we proposed a new
interestingness measure that evaluates the cohesion and the frequency of a pattern. We adapted
the algorithmic principles identified for the extraction of bi-sets to the extraction of set patterns
in sequences. They reduce, as soon as possible, the search space based on an upper-bound
of the constraint making the algorithm very efficient. I also worked on an inductive database
prototype called MININGVIEWS (Blockeel, Calders, Fromont, Goethals, Prado, and Robardet
2012), developed by Adriana Prado in her PhD. MININGVIEWS is an inductive database that, as
such, integrates database querying with database mining. Its particularity is to use a plain SQL
query language to express the mining queries. This intuitive and elegant framework is based on
virtual mining views, which are relational tables that virtually contain the complete output of
data mining algorithms executed over a given data table. Several types of patterns and models,
such as itemsets, association rules, and decision trees, can be represented and queried with SQL

1Consortium on knowledge discovery using Inductive Queries (cInQ) (IST FET 2000-26469), 2001-2004
2Inductive Queries (IQ) (IST FET FP6-516169), 2005-2008.
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using a unifying framework. I worked more specifically on a complete data mining scenario
with SQL queries over the mining views. This proof of concepts illustrates the potential of the
framework and was executed in MININGVIEWS system during a demonstration at SIGKDD
(Blockeel, Calders, Fromont, Goethals, Prado, and Robardet 2008).

The Rhône Alpes Complex Systems Institute IXXI offered me the opportunity to create new
collaborations with researchers on graph theory and signal processing and work with them on
real-life complex networks. I obtained in 2008-2009 an INRIA delegate position in the D-Net
team led by Éric Fleury. In this context, I worked on two analysis of dynamic graphs. In the first
one, we proposed a framework for the study of dynamic mobility networks that addresses the
description, analysis and the simulation of wireless sensor mobility networks (Scherrer, Borgnat,
Fleury, Guillaume, and Robardet 2008) using techniques from signal processing, graph theory
and data mining. The second research axis focuses on the study of the Vélo’v bicycle sharing
system of Lyon viewed as a dynamic complex network. We conducted several analysis: In
Jensen, Rouquier, Ovtracht, and Robardet 2010, we showed that bicycles compete with cars in
term of speed; We proposed in Borgnat, Abry, Flandrin, Robardet, Rouquier, and Fleury 2011
a global analysis of the activity in time for which a predictive model is developed using signal
processing tools; We presented in Borgnat, Robardet, Abry, Flandrin, Rouquier, and Tremblay
2013 a joint analysis in space and time of the Vélo’v network based on the adaptation to the
case of dynamical networks of community detection methods. In his in progress PhD, that I
co-supervised with Patrick Flandrin and Pierre Borgnat, Ronan Hamon studies the Vélo’v system,
performing a frequency analysis on the signals obtained by the transformation of the graph using
classical multidimensional scaling (CMDS) (Hamon, Borgnat, Flandrin, and Robardet 2013b).

Considering the constraint-based pattern mining framework for the analysis of relational
graphs, I contributed to the specification of three pattern types that are tailored to extract
knowledge from attributed graphs, dynamic graphs or attributed dynamic graphs. In Prado,
Plantevit, Robardet, and Boulicaut 2013, we proposed to mine the graph topology of a large
static attributed graph by finding regularities among vertex descriptors that are either the vertex
attributes or topological properties used to describe the connectivity of each vertex in the graph.
These descriptors are of numerical or ordinal types and their similarity is captured by quantifying
their co-variation, that is, if their largest or smallest values are supported mostly by the same set of
vertices. We proposed several interestingness measures and designed an efficient algorithm that
combines searching and pruning strategies in the identification of the most relevant topological
patterns. To probe relationships in real-life systems that are mostly dynamic, with vertices
and edges appearing or disappearing through time, I proposed in Robardet 2009 to look for
temporal interactions in dynamic relational graphs. The extracted evolving patterns are highly
connected sub-graphs that undergo temporal modifications from one time stamp to the next.
These subgraphs can grow, shrink, be stable, disappear or appear over time. The method first
computes subgraphs that capture locally strong associations between vertices, and then uses these
local patterns to construct a global model of the graph’s dynamics. The in progress PhD of Elise
Desmier focuses on the analysis of attributed dynamic graphs. In Desmier, Plantevit, Robardet,
and Boulicaut 2012 and Desmier, Plantevit, Robardet, and Boulicaut 2013, the constraint-based
pattern mining framework is used to identify dynamic sub-graphs in attributed dynamic graphs.
In these patterns, the subgraph vertices follow the same temporal trends over a subset of attributes.
This pattern domain relies on the graph structure and the temporal evolution of the attribute
values. Several interestingness measures are proposed to retrieve the most relevant patterns with
regard to the graph structure, the vertex attributes, and the time.

This Habilitation à Diriger des Recherches thesis is organized as follows. In the first chapter,
I present the constraint-based pattern mining framework, exhibit the constraints properties that
have been identified as useful either to reduce the number of irrelevant patterns or to truncate the
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search space while preserving the completeness of the extraction. The special case of formal
concept extraction under constraints on objects and descriptors is then discussed. After that,
I introduce the principles of a generic algorithmic that pushes monotone, anti-monotone and
piecewise monotone constraints. The instantiation of this generic algorithm on two particular
problems, that are the extraction of closed patterns in n-ary relations and the mining of parallel
episodes in sequences, ends this chapter.

The second chapter presents two case studies of mobility networks. In the first one, the
analysis focuses on sensor wireless mobility networks, where sensors were attached to people
and measured their proximity to other people. To describe these networks, some graph properties,
viewed as function of time, are studied so as to give an empirical statistical characterization of
the dynamics. Global indicators from the dynamics of the network are also computed that are
measured over several time steps. Then, several generic random dynamic models are proposed
that make possible to generate random dynamic graphs which have a behavior similar to the
one observed in experimental data sets. Their ability to simulate credible data is assessed by the
similarity of the descriptors on both original and simulated data. The second case study is the
bicycle sharing system of Lyon, called Vélo’v. I present an analysis on the spatial and temporal
aspects of this dynamical network. Community detection mining tools are used to extract either
communities of stations that exchange regularly a large number of bicycles, or communities of
stations that are similar in the time patterns of bicycle flows. These analyzes provide a significant
understanding of the social use of the Vélo’v program in Lyon.

The third chapter discusses my main contributions on local pattern discovery in attributed
and/or dynamic relational graphs. I first present an approach to characterize the relationship
between vertex attributes and the graph topology in static attributed graphs. It consists in the
extraction of co-variations between vertex attributes and measures describing the relationship of
the vertex with the rest of the graph. Then, I propose to analyze dynamic graphs by discovering
the main temporal changes as locally strong associations between vertices and their evolution
through time. Finally, I introduce the mining of trends in attributed dynamic graphs to identify
connected parts of the graph whose vertex attributes evolve in the same way.

The last chapter concludes this report and sketches some future works.



General framework
Constraint properties
Constraint-based formal concept mining

Pattern domain
D-MINER algorithm

A generic algorithm that handles several types
of constraints

Generalization of the language of patterns
Exploiting the constraints
Pseudo-code

Case studies
Closed pattern mining in n-ary Relations
Parallel episode mining in a sequence

Discussion

1 — Constraint-based pattern mining

1.1 General framework

Constraint-based pattern mining covers data mining algorithms that use an exact search strategy
to achieve the exhaustive extraction of the whole set of patterns satisfying some constraints over
the data. These constraints are Boolean expressions based on evaluation criteria that measure the
relevance of patterns in a specific data set. As the languages of patterns are of exponential size, it
is impossible to list all the patterns and verify the constraints on them all. Therefore, constraints
are needed for two reasons. First, the constraints make it possible to discover knowledge in the
data by reducing the number of patterns that are presented to the user while retrieving those that
may best summarize the highlights of the data. The constraints diminish the number of irrelevant
patterns and constitute as such a solution to the pattern flooding problem. Second, they increase
the computational efficiency of the process. More precisely, they make the extraction feasible by
reducing drastically the number of patterns on which the constraints must be evaluated. They can
be pushed deep inside the mining algorithm in order to truncate the search space while preserving
the completeness of the extraction. This framework requires the specification of a language
of patterns and of a set of constraints to compute all the patterns that satisfy the constraints in
the data. Formally, it is defined (Mannila and Toivonen 1997) as the discovery of the theory
Th(L ,D ,C ) = {ϕ ∈L | C (ϕ,D) is true} where D is the data to be mined, L is the language
of patterns, and C (ϕ,D) is a constraint that states whether the pattern ϕ fit the data D . The
constraint C is specified by the user to drive the mining process towards what is potentially
interesting for the current application.

Thus, a constraint is particularly interesting if (1) it makes possible to properly assess
the quality of patterns, and (2) has properties that, when combined with a smart enumeration
process, provides the means to infer its value on many patterns without having to evaluate them
individually. Several useful constraint properties have been identified so far and designing fast,
scalable and generic algorithm requires to be able to simultaneously handle a large variety of
constraints. Such algorithms may implement pruning strategies and propagation mechanisms for
as much as possible types of constraints.

In the following section, I present the constraint properties that have been identified as useful
in constraint-based pattern mining. Then, section 1.3 presents D-MINER, an algorithm that
extracts formal concepts using monotone constraints. In section 1.4, I present a generic algorithm
that has capabilities to push monotone, anti-monotone and piecewise monotone constraints.
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Finally, section 1.5 reviews two contributions on the extraction of specific pattern types.

1.2 Constraint properties

Constraint properties are defined up to a partial order relation between patterns. Therefore,
before presenting the different constraint properties and their computational use, we introduce
the notation �, which refers to the partial order used when listing the patterns.

Definition 1.1 — Partial order on patterns. Let � be a partial order over L , that is to say
a binary relation that is reflexive, anti-symmetric and transitive. Given two patterns ϕ1 and
ϕ2 in L , ϕ1 is said to be more specific than ϕ2 iff ϕ1 � ϕ2.

The examples given in the following assumes that L is the language of set patterns that are
partially ordered by ⊆.

Constraints that have monotone or anti-monotone property can be exploited to prune large
part of the search space.

Definition 1.2 — Monotone and anti-monotone constraints. Let ϕ1,ϕ2 ∈L such that
ϕ1 � ϕ2. A constraint C is monotone if and only if C (ϕ1,D)⇒ C (ϕ2,D). C is anti-
monotone if and only if C (ϕ2,D)⇒ C (ϕ1,D).

Constraints that are either monotone or anti-monotone are the ones that are easiest to exploit
in constraint-based pattern mining. If a pattern ϕ2 does not satisfy a monotone constraint C ,
then all the patterns ϕ1 such that ϕ1 � ϕ2 can be pruned. If a pattern ϕ1 does not satisfy an
anti-monotone constraint C , then all the patterns ϕ2 such that ϕ1 � ϕ2 can be pruned.

� Example 1.1 Let v be a positive real-valued attribute associated to the elements of a pattern
ϕ and let C (ϕ,v) ≡ sum(v(ϕ)) ≤ σ , which states that the sum of ϕ on v should be smaller
than σ , with sum(v(ϕ)) = ∑e∈ϕ v(e). This constraint is anti-monotone: if ϕ does not satisfy the
constraint then adding an element e to ϕ and the positive value v(e) to its sum cannot lead to the
satisfaction of the constraint. �

Any conjunction of monotone (resp. anti-monotone) constraints is a monotone (resp. anti-
monotone) constraint. As a consequence, any conjunction of monotone and anti-monotone
constraints can be reduced to Cmonotone∧Canti−monotone.

Mining algorithms can also profit from constraints known to be succinct. A constraint
satisfying this property can be translated into another constraint that has to be satisfied by each
element of the pattern:

Definition 1.3 — Succinct constraints. A constraint C is succinct if and only if there
exists a constraint S such that for all pattern ϕ ∈L , C (ϕ,D)≡ ∀e ∈ ϕ, S (e,D) = true.

One can test whether a pattern satisfies a succinct constraint by testing that all its members satisfy
the related constraint. Such constraint can generally be exploited in a pre-processing step by
restraining the language of patterns to the ones with elements satisfying S .

� Example 1.2 Let v be a real-valued attribute associated to the elements of a pattern ϕ and let
C (ϕ,v)≡max(v(ϕ))< σ , which states that the maximum value of ϕ on v should be smaller
than σ . Thus, C (ϕ,v)≡ ∀e ∈ ϕ, v(e)< σ . Not enumerating the elements having a value on v
greater than σ leads to the constraint satisfaction. �
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Convertible constraints, introduced in Pei and Han 2000, are constraints for which there does
not exist a reciprocal relationship between the partial order � on patterns and the constraint
satisfaction. However, such an interplay can be obtained by specifying a prefix order ≤ over
the patterns. Such a prefix order is a partial order that is downward total: ∀ϕ1 � ϕ2, then either
ϕ1 ≤ ϕ2 or ϕ2 ≤ ϕ1.

Definition 1.4 — Convertible constraints. A constraint C is convertible anti-monotone if
(1) the partial order � is extended to a prefix order ≤ on patterns of L and (2) whenever ϕ2
satisfies C , so does any pattern ϕ1 such that ϕ1 ≤ ϕ2.

Similarly, C is convertible monotone iff ∀ϕ1,ϕ2 ∈L such that ϕ1 ≤ ϕ2, C (ϕ1,D)⇒
C (ϕ2,D).

Handling such constraint requires to completely specify the enumeration order of the patterns
of L : Patterns are enumerated according to ≤ in order to make the constraint monotone (resp.
anti-monotone) on every branch of the enumeration tree. Thus, the same pruning techniques, as
those used for monotone (resp. anti-monotone) constraints can be used. However, it is impossible
to take advantage of several convertible constraints in a single extraction process.

� Example 1.3 Let v be a real-valued attribute associated to the elements of a pattern ϕ and
let C (ϕ,v) ≡ avg(v(ϕ)) > σ , which states that the average value of ϕ on v should be larger
than σ . Listing the elements of ϕ in descending order of their value on v makes the constraint
anti-monotone. �

Bonchi and Lucchese 2007 defines a loose anti-monotone constraint as such that, if it is
satisfied by a pattern of cardinality k then it is satisfied by at least one of its subsets of cardinality
k−1:

Definition 1.5 — Loose anti-monotone constraints. Given a pattern ϕ , a constraint C is
loose anti- monotone if: C (ϕ,D)⇒∃e ∈ ϕ : C (ϕ \{e},D).

� Example 1.4 Let v be a real-valued attribute associated to the elements of a pattern ϕ and
let C (ϕ,v) ≡ var(v(ϕ)) ≤ σ , which states that the variance of ϕ on v should be smaller than

σ , with var(v(ϕ)) = ∑e∈ϕ (v(e)−avg(v(ϕ)))2

|ϕ| . If ϕ satisfies the constraint, so does ϕ \ {e}, where
e is the element of ϕ whose value on v is the most far away from avg(v(ϕ)), that is to say
arg maxe∈ϕ (v(e)− avg(v(ϕ))2. �

Loose anti-monotone constraints can be evaluated directly into a level-wise breadth-first explo-
ration of the search space, performed by Apriori-like algorithms. In this algorithm, patterns of
cardinality k are generated from patterns of cardinality k−1. Therefore, the set of valid patterns
of cardinality k−1 is completely available when considering a pattern of size k and the constraint
can be checked. However, breadth-first traversal of the search space is generally memory-space
consuming which can incline to prefer a depth-first traversal of the search space.

Reverse search algorithms (Avis and Fukuda 1996; Georgii, Tsuda, and Schölkopf 2011;
Uno 2010) are depth-first search algorithms suited to handle such constraints. In the reverse
search approach, the search tree is specified by defining a reduction map m(ϕ), which transforms
a pattern ϕ into a unique pattern ϕ ′ = ϕ \{e} that satisfies the constraint. This pattern is the
parent of ϕ in the enumeration tree. This makes the constraint anti-monotone on the search tree
induced by the reduction map: Any pattern that satisfies the constraint descends from a pattern
that also satisfies the constraint. To enumerate all the patterns that satisfy the anti-monotone
constraint, one has to traverse the implicitly defined search tree in a depth-first manner. During
the traversal, children are generated on demand if the constraint is satisfied. As the reduction
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map defines how to get from children to parents and not vice versa, children cannot be directly
derived from a given parent. Instead, to generate the children of a pattern ϕ , all candidates
ϕ ∪{e}, e 6∈ ϕ have to be considered. The actual children are the ones such that m(ϕ ∪{e}) = ϕ

(reverse search principle).

� Example 1.5 Considering the constraint C (ϕ,v)≡ var(v(ϕ))≤ σ presented in Example 1.4,
the reduction map is m(ϕ) = m(ϕ \ {u}) with u = arg maxe∈ϕ (v(e)− avg(v(ϕ))2. If several
elements satisfy this equation, the one of smallest index is taken. �

Since C is now anti-monotone of the search tree, the enumeration can be stopped as soon as the
constraint is not satisfied.

More generally, if one is capable to derive a bound with monotone property from a constraint
that relies on a non-monotone measure, we say that the constraint is boundable. The idea
of pruning with the information of upper bounds is a standard technique in combinatorial
optimization than can also be used in pattern set mining (Morishita and Sese 2000).

Definition 1.6 — Boundable constraints. A constraint C (ϕ,D) ≡ g(ϕ) ≥ σ , with g :
L →R, is said to be upper-boundable if one can derive a function g′ such that g(ϕ2)≤ g′(ϕ1)
for all ϕ1 � ϕ2. Therefore, if g′(ϕ1)< σ all patterns ϕ2 can be pruned.
Similarly, C (ϕ,D)≡ g(ϕ)≤ σ is said to be lower-boundable if one can derive a function
g′ such that g(ϕ2)≥ g′(ϕ1) for all ϕ1 � ϕ2. Therefore, if g′(ϕ1)> σ all patterns ϕ2 can be
pruned.

An example of such constraint is presented in Section 3.1.1. However, from this definition, we
cannot infer a systematic method for deriving a bound from any boundable constraint.

On the contrary, in Cerf, Besson, Robardet, and Boulicaut 2008; Cerf, Besson, Robardet,
and Boulicaut 2009, we identify a new class of constraints, the piecewise monotone and anti-
monotone constraints, for which a bound can be systematically inferred.

Definition 1.7 — Piecewise monotone and anti-monotone constraints. Let C be a
compound constraint whose expression involves p times the pattern ϕ . C can be reformulated
as C (ϕ,D) = f (ϕ1, · · ·ϕp,D). Thus, we can study the partial monotony of the constraint by
considering the function fi,ϕ(x) = (ϕ1, · · ·ϕi−1,x,ϕi+1, · · · ,ϕp,D). C is piecewise monotone
and anti-monotone iff ∀i = 1 . . . p, fi,ϕ is either monotone or anti-monotone:

∀x,y ∈L such that x� y,
{

fi,ϕ(x)⇒ fi,ϕ(y) iff fi,ϕ is monotone
fi,ϕ(y)⇒ fi,ϕ(x) iff fi,ϕ is anti-monotone

� Example 1.6 Let v be a positive real-valued attribute associated to the elements of a pattern
ϕ , C (ϕ,D)≡ avg(v(ϕ))> σ , and avg(v(ϕ)) = ∑e∈ϕ v(e)

|ϕ| . C (ϕ,D) is piecewise monotone and
anti-monotone with C (ϕ,D) = f (ϕ1,ϕ2,D) and

f (ϕ1,ϕ2,D) =
∑e∈ϕ1 v(e)
|ϕ2|

• f1,ϕ is monotone: ∀x� y, f (x,ϕ2,D) = ∑e∈x v(e)
|ϕ2| > σ ⇒ ∑e∈y v(e)

|ϕ2| > σ

• f2,ϕ is anti-monotone: ∀x� y, f (ϕ1,y,D) =
∑e∈ϕ1

v(e)
|y| > σ ⇒ ∑e∈ϕ1

v(e)
|x| > σ .

�

This definition provides an operational way to handle this type of constraint on condition that
the mining algorithm has capabilities to exploit both monotone and anti-monotone constraints.
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The way these constraints are pushed into such a generic algorithm presented in Section 1.4
is detailed in Section 1.4.2. Note that piecewise monotone and anti-monotone constraints are
similar to the primitive-based constraints defined in Soulet and Crémilleux 2006.

1.3 Constraint-based formal concept mining

1.3.1 Pattern domain
The first mining task we worked on is that of formal concepts extraction (Besson, Robardet,
and Boulicaut 2004; Besson, Robardet, Boulicaut, and Rome 2005). Considering data tables
that represent binary relations between objects and properties, a formal concept is a pair (O,P)
composed of a set of objects O and a set of properties P such that objects in O have all the
properties from P, and vise-versa. Besides, the pair is maximal: any object, that does not belong
to O, does not satisfy a property from P, and any property, that does not belong to P is not
satisfied by at least an object from O.

More formally, let O be a set of objects or transactions and P a set of properties or items.
The data to be mined are the relation D ⊆O×P . Figure 1.1 provides an example of such data
set where O = {o1, . . . ,o5} and P = {p1, . . . , p10}. (oi, p j) ∈D denotes that property p j holds
for objects oi.

On such data, we are looking for bi-sets, that is a set of objects that is associated to a set of
properties:

Definition 1.8 — Language of bi-sets. The language of bi-sets L is the set of pairs (O,P)
such that O⊆ O , P⊆P .

Properties
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

o1 1 1 1 1 0 1 1 0 0 0
o2 1 1 1 1 0 0 0 0 1 1
o3 1 1 1 1 0 0 0 0 1 1
o4 0 0 0 0 1 1 1 1 1 1
o5 1 0 1 0 1 1 1 1 0 0

Figure 1.1: Example of a data set D1

Formal concepts are specific bi-sets that satisfy constraints defined thanks to derivation
operators.

Definition 1.9 — Derivation operators. For a set of object O ⊆ O , we define the set of
properties that all objects in O have in common as follows:

φ(O,D) = {p ∈P | ∀o ∈ O, (o, p) ∈D}

In a dual way, for a set of properties P ⊆P , we define the set of objects that have all
properties from P as follows:

ψ(P,D) = {o ∈ O | ∀p ∈ P, (o, p) ∈D}

� Example 1.7 In D1 from Figure 1.1, φ({o3,o4},D1) = {p9, p10} and ψ({p1, p2},D1) =
{o1,o2,o3}. �
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Definition 1.10 — Formal concept. A formal concept of D is a bi-set (O,P) such that
φ(O,D) = P and ψ(P,D) = O.

� Example 1.8 In D1 from Figure 1.1, there are twelve formal concepts including ({o2,o3},
{p1, p2, p3, p4, p9, p10}) and ({o1,o2,o3,o5}, {p1, p3}). �

D-MINER computes the language of formal concepts under monotone constraints. Its
enumeration process relies on the following partial order on bi-sets.

Definition 1.11 — Partial order on bi-sets. Let (O1,P1) and (O2,P2) be two bi-sets.
(O1,P1)� (O2,P2) iff O1 ⊆ O2 and P1 ⊆ P2.

The monotone constraints that are implemented in D-MINER are the minimal size constraints
together with syntactical constraints on both sets O and P:
• The monotone constraint on O pushed in the algorithm is CO((O,P),D) ≡ |O| ≥ σO ∧

SO ⊆ O, with σO a real value that specifies the minimal number of elements that O must
contain, and SO ⊆ O is a set of objects that has to belong to O.
• In a dual way, CP((O,P),D)≡ |P| ≥ σP ∧SP ⊆ P.

1.3.2 D-MINER algorithm

A formal concept (O,P) is a maximal bi-set such that all its properties and objects are in
relation by D . Thus, the absence of relation between an object o and a property p generates two
formal concepts: One that contains p but not o, and another one that contains o but not p. To be
able to quickly remove objects and properties that are not in relation, D-MINER uses a set H
of all pairs (o,Q) with o ∈ O , Q = P \φ({o},D). Such elements are called “cutters” and are
bi-sets made of an object o and the set of properties not in relation with o in D .

� Example 1.9 The set H of cutters used to mine D1 (see Figure 1.1) is made of ({o1},
{p5, p8, p9, p10}), ({o2}, {p5, p6, p7, p8}), ({o3},{p5, p6, p7, p8}), ({o4}, {p1, p2, p3, p4}) and
({o5}, {p2, p4, p9, p10}). �

Starting from the pair (O ,P), D-MINER recursively splits the current pair using the elements
of H. If all the elements of H have been used (line 1 of the function), the current pair (X ,Y ) is a
formal concept that is added to the output. Otherwise, (o,Q), the ist element of H, is considered
(line 4). If (o,Q) cannot be applied to (X ,Y ) because there is no intersections between (o,Q)
and (X ,Y ), that is to say o 6∈ X or P∩Y = /0, the next cutter is considered thanks to a recursive
call (line 6). Otherwise, (o,Q) is used to cut (X ,Y ):
• If the monotone constraint CO is satisfied (line 8), o is removed from X since the properties

of Y ∩Q are not satisfied by o. (o,Q) is added to HL to further check that Y ∩Q will not get
empty, otherwise (X ,Y ) might not be maximal. Then, the enumeration process continues
with a recursive call of the function (line 9); Note that, as each object o belongs to one
and only one element of H, an object o is at most removed once during the enumeration
process.
• The process is a bite more tricky when considering the removal of properties, as a property

may belong to several elements of H. So, similarly as what was done in the previous case,
if the monotone constraint CP is satisfied (line 11), the properties of Q might be removed
from Y , provided that the candidate (X ,Y \Q) is still maximal. This is evaluated from
line 12 to line 18: if there exists an element (o′,Q′) from HL such that (Y \Q)∩Q′ = then
(X ,Y \Q) is not maximal as o′ could be added to it. In that case the enumeration process
stops. Otherwise Q is removed from Y and the enumeration continues (line 19).
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Algorithm 1 D-MINER

Require: Relation D with O the set of objects, P the set of properties, CO and CP the
monotone constraints on O and P .

Ensure: R the set of all formal concepts that satisfy the constraints CO and CP .
1: HL← empty()
2: H←{(o,Q) | o ∈ O and Q = P \φ({o},D)}
3: R ← D-Miner_Enumeration((O, P),H,HL,0)

Function D-Miner_Enumeration((X ,Y ),H,HL, i)

Require: (X ,Y ) a couple of 2O ×2P , H the list of cutters, HL the set of elements of H used to
removed objects, i the depth of the recursion.

Ensure: R the set of concepts that contain (X ,Y ) and satisfy CO and CP

1: if i = |H| then
2: return R←R ∪ (X ,Y )
3: else
4: (o,Q)← H[i]
5: if ((o∩X = /0) or (Q∩Y = /0)) then
6: R←R ∪D-Miner_Enumeration((X ,Y ),H,HL, i+1)
7: else
8: if CO((X \{o},Y ),D) is satisfied then
9: R←R ∪ D-Miner_Enumeration((X \{o},Y ),H,HL∪ (o,Q), i+1)

10: end if
11: if CP((X ,Y \Q),D) is satisfied then
12: isClosed← true
13: for all (o′,Q′) ∈ HL do
14: if ((Q′∩Y )\Q = /0) then
15: isClosed← false
16: end if
17: end for
18: if isClosed then
19: R←R ∪D-Miner_Enumeration((X ,Y \Q),H,HL, i+1)
20: end if
21: end if
22: end if
23: end if
24: return R

� Example 1.10 Let us consider again Figure 1.1 and suppose that (X ,Y ) = ({o1,o2,o3},
{p1, p2, p3, p4, p5, p6, p7}) and let first remove o1 using ({o1}, {p5, p8, p9, p10}). In a recursive
call, we will consider the cutter ({o2}, {p5, p6, p7, p8}). If we use it to remove the properties p5,
p6 and p7, we will have as current candidate the pattern ({o2,o3},{p1, p2, p3, p4}) that is not a
formal concept, as o1 satisfies the properties p1, p2, p3 and p4. �

In D-MINER, sets are implemented using bisets that makes possible to quickly perform set
operations using bitewise operations. Proofs of correctness and completeness of are given in
(Besson, Robardet, Boulicaut, and Rome 2005). Jérémy Besson has proved in his PhD thesis
(Besson 2005) that the complexity delay of D-MINER is in the worst case in O(n2m), where n is
|O| and m is |P|. The complexity delay of D-MINER is in average in (n− log(K)+1)O(nm),
with K the number of formal concepts of D .
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1.4 A generic algorithm that handles several types of constraints

The work we have carried out subsequently aimed to abstract the algorithmic principles of
D-MINER in two directions: (1) generalize the language of patterns and (2) expand the type of
constraints pushed in the algorithm to optimize its efficiency. Let us re-examine the properties
of constraints as defined in section 1.2. There is no doubt that monotone and anti-monotone
constraints have to be handled by a generic algorithm. Succinct constraints can be used in a
pre-processing step by removing from the data the elements that do not satisfy the constraint. To
be pushed, convertible constraints requires to completely specify the enumeration order of the
patterns. This way of handling convertible constraints has two drawbacks:
• It is impossible to enforce several convertible constraints unless they rely on the same

order of patterns (in other terms, the convertibility is not preserved by conjunction);
• It is not possible to use heuristics on the listing process to speed up the extraction.

For these reasons, we believe that in a generic algorithm it is not desirable to lock the order
in which the patterns are listed. Loose anti-monotone constraints are pushed either by using
a level-wise exploration of the search space, known to be memory-space consuming, or by
employing reverse search algorithmic principles that also fix the order in which the patterns are
listed. Therefore, convertible and loose anti-monotone constraints are not pushed into the generic
algorithm. Regarding boundable constraints, there is no systematic way to derive a bound from
such constraints. Therefore, it seems very difficult to use them in a generic algorithm. Finally,
piecewise monotone and anti-monotone constraints constitute a general class of constraints that
can be exploited and propagated in a systematic manner.

In the following, I present a generic algorithm that pushes monotone, anti-monotone and
piecewise monotone constraints.

1.4.1 Generalization of the language of patterns

Considering the data D ⊆D1×·· ·×Dd and a language of set patterns L ⊆ 2D1 ×·· ·×2Dd
,

a natural partial order � of L relies on set inclusion: ϕ1 = (D1
1, . . . ,D

d
1) � ϕ2 = (D1

2, . . . ,D
d
2)

iff D`
1 ⊆ D`

2, ∀`= 1 . . .d. This partial order forms a lattice: For any nonempty finite subset of
patterns F = {ϕi ∈L , i = 1 . . .k}, F∨ =

(⋃
i ϕi
)
=
(
∪i D1

i , . . . ,∪iDd
i
)

and F∧ =
(⋂

i ϕi
)
=(

∩i D1
i , . . . ,∩iDd

i
)

are respectively the join and meet elements. The bounds of the lattice are
>= L ∨ and ⊥= L ∧.

All the patterns of the theory R = Th(L ,D ,C ) can be enumerated using a binary partition
algorithm (Uno 2010). It consists in choosing an element e ∈D1×·· ·×Dd and divides R into
two sets: R+e and R−e. R+e gathers all the patterns of R that contain e, and R−e groups those
that do not contain e. Therefore, the element e belongs to R∧+e and e does not belong to R∨−e.
If R+e (resp. R−e) is not empty and R∨+e 6= R∧+e (resp. R∨−e 6= R∧−e), it is recursively divided
by choosing another element in R∨+e \R∧+e (resp. R∨−e \R∧−e). If R∨+e = R∧+e and C (R∨+e,D)
(resp. R∨−e = R∧−e and C (R∨−e,D)), then R∨+e (resp. R∨−e) is a pattern of R.

The number of iterations of a binary partition algorithm is linear in |R|, which is the output
size, if it is possible to check whether either R+e or R−e are empty in constant time. If this
check can be done in polynomial time of the input data size, the binary partition algorithm is said
to be polynomial delay. In the following, we explain how this test can be performed, depending
on the constraint properties.

1.4.2 Exploiting the constraints

Monotone, anti-monotone and piecewise monotone constraints can be used in this generic
algorithm to prune large parts of the search space. This is done thanks to two mechanisms: The
verification and the propagation of constraints.
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Constraint verification

Checking whether the search space is empty can be done by evaluating the constraints on the
join or the meet elements of the search space. Indeed, if a monotone constraint is not satisfied by
the join element R∨, then R is empty. Similarly, if an anti-monotone constraint is not satisfied
by the meet element R∧, then R is also empty.

Property 1.1 — Monotone constraint evaluation. Let C be a monotone constraint. If
C (R∨,D) is not satisfied, then ∀ϕ ∈R, C (ϕ,D) is not satisfied.

Proof. ∀ϕ ∈R, ϕ �R∨. Therefore, ¬C (R∨,D)⇒¬C (ϕ,D). �

Property 1.2 — Anti-monotone constraint evaluation. Let C be an anti-monotone con-
straint. If C (R∧,D) is not satisfied, then ∀ϕ ∈R, C (ϕ,D) is not satisfied.

Proof. ∀ϕ ∈R, R∧ � ϕ . Therefore, ¬C (R∧,D)⇒¬C (ϕ,D). �

Constraints that are piecewise monotone and anti-monotone can also be pushed, as it is
explained below.

Property 1.3 — Piecewise monotone and anti-monotone constraint evaluation. Let
C be a piecewise monotone and anti-monotone constraint whose expression involves p times
the pattern ϕ: C (ϕ,D) = f (ϕ1, · · ·ϕp,D). ∀i ∈ {1, . . . , p}, the partial function fi,ϕ(x) =
(ϕ1, · · ·ϕi−1,x,ϕi+1, · · · ,ϕp,D) is either monotone or anti-monotone. Without lost of gen-
erality, let us consider that ∀i ∈ {1, . . . ,k}, fi,ϕ is monotone and ∀i ∈ {k + 1, . . . , p}, fi,ϕ

is anti-monotone. Therefore, if f (R∨, . . . ,R∨︸ ︷︷ ︸
k terms

,R∧, . . . ,R∧︸ ︷︷ ︸
p−k terms

,D) is not satisfied, then ∀ϕ ∈

R, C (ϕ,D) is not satisfied.

Proof. Suppose there exists ϕ ∈ R such that C (ϕ,D) is satisfied. Then, R∧ � ϕ � R∨

and f (ϕ1, · · ·ϕp,D) is satisfied. ∀i ∈ {1, . . . ,k}, fi,ϕ(R∨) is satisfied and ∀i ∈ {k+ 1, . . . , p},
fi,ϕ(R∧) is satisfied. Therefore, f (R∨, . . . ,R∨︸ ︷︷ ︸

k terms

,R∧, . . . ,R∧︸ ︷︷ ︸
p−k terms

,D) is satisfied. �

Constraint propagation mechanisms

The propagation mechanisms are as follows:

Monotone constraints: If there exists an element v ∈R∨ \R∧ such that ¬C ((R∨ \{v}),D)
then v can be moved into R∧.

� Example 1.11 Let v be a positive real-valued attribute associated to the elements of ϕ and
let C (ϕ,v) ≡ sum(v(ϕ)) ≥ σ , which states that the sum of ϕ on v should be greater than σ ,
with sum(v(ϕ)) = ∑e∈ϕ v(e). This constraint is monotone. Suppose now that R∧ = {e1,e3,e4}
and R∨ = {e1,e2,e3,e4,e5} with v(e1) = 2, v(e2) = 8, v(e3) = 4, v(e4) = 3 and v(e5) = 13. If
σ = 20, then C (({e1,e2,e3,e4,e5}\{e2}),D)≡ 22≥ 20 and consequently e2 is not propagated.
As C (({e1,e2,e3,e4,e5}\{e5}),D)≡ 17≥ 20, e5 can be moved into R∧. �
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Anti-monotone constraints: If there exists v ∈R∨ \R∧ such that ¬C ((R∧∪{v}),D) then v
can be removed from R∨.

� Example 1.12 Let v be a positive real-valued attribute associated to the elements of ϕ and let
C (ϕ,v)≡ sum(v(ϕ))≤ σ , which states that the sum of ϕ on v should be smaller than σ , with
sum(v(ϕ)) = ∑e∈ϕ v(e). This constraint is anti-monotone. Suppose now that R∧ = {e1,e3,e4}
and R∨ = {e1,e2,e3,e4,e5} with v(e1) = 2, v(e2) = 8, v(e3) = 4, v(e4) = 3 and v(e5) = 13. If
σ = 20, then C (({e1,e3,e4}∪{e2}),D)≡ 17≤ 20 and consequently e2 is not propagated. As
C (({e1,e3,e4}∩{e5}),D)≡ 22≤ 20, e5 can be removed from R∨. �

Piecewise monotone and anti-monotone constraints: If there exists an element v ∈R∨ \R∧
such that ¬ f (R∨ \{v}, . . . ,R∨ \{v}︸ ︷︷ ︸

k terms

,R∧, . . . ,R∧︸ ︷︷ ︸
p−k terms

,D) then v can be moved into R∧. If there

exists an element v ∈R∨ \R∧ such that ¬ f (R∨, . . . ,R∨︸ ︷︷ ︸
k terms

,R∧∪{v}, . . . ,R∧∪{v}︸ ︷︷ ︸
p−k terms

,D) then v

can be removed from R∨.

� Example 1.13 Let v be a positive real-valued attribute associated to the elements of ϕ ,
C (ϕ,D) = avg(v(ϕ)) ≥ σ , and avg(v(ϕ)) = ∑e∈ϕ v(e)

|ϕ| . C (ϕ,D) is piecewise monotone and
anti-monotone with C (ϕ,D) = f (ϕ1,ϕ2,D) and

f (ϕ1,ϕ2,D) =
∑e∈ϕ1 v(e)
|ϕ2|

with f1,ϕ monotone and f2,ϕ anti-monotone. Suppose now that R∧ = {e1,e3,e4} and R∨ =
{e1,e2,e3,e4,e5} with v(e1) = 2, v(e2) = 8, v(e3) = 4, v(e4) = 3 and v(e5) = 20. If σ = 8, then

• f (R∨\{e2},R∧,D)≡ ∑e∈{e1 ,e3 ,e4 ,e5} v(e)
|{e1,e3,e4}| ≥ σ ≡ 29

3 ≥ 8≡ 9.66≥ 8 and e2 is not propagated;

• f (R∨ \ {e5},R∧,D) ≡ ∑e∈{e1 ,e2 ,e3 ,e4} v(e)
|{e1,e3,e4}| ≥ σ ≡ 17

3 ≥ 8 ≡ 5.66 ≥ 8 and e5 is moved into
R∧;
• Now, we have R∧ = {e1,e3,e4,e5} and f (R∨,R∧∪{e2},D)≡ ∑e∈{e1 ,e2 ,e3 ,e4 ,e5} v(e)

|{e1,e2,e3,e4,e5}| ≥ σ ≡
37
5 ≥ 8≡ 7.4≥ 8 and e2 is removed from R∨.

�

1.4.3 Pseudo-code
Algorithm 2 presents the steps of the generic algorithm. Lines 1 and 2 initialize R join
value to the lattice top and the meet value to the lattice bottom. Line 3 is the first call to
Generic_CBPM_enumeration function which enumerates once and only once each pattern.
The first line of the function evaluates the constraints on the meet and join elements of R. If
so, line 2 tests if the search space contains a single pattern that is output line 3. Line 5 reduces
the search space by removing elements whose enumeration will emptied the search or moving
elements in R∧ as they are mandatory for the constraint satisfaction. Then, line 6, a new element,
that belongs to the join but not to the meet, is enumerated according to the binary partition
algorithm. This element is first added to the search space meet in the recursive call line 7, and
then it is removed from the search space join in the second recursive call line 8.

1.5 Case studies

These generic algorithmic principles have been used in different contexts. In the following I
present their use in two distinct pattern domain mining, for which pattern languages and specific



1.5 Case studies 21

Algorithm 2 Generic_CBPM

Require: The data D ⊆ D1× ·· ·×Dd , a language of set patterns L ⊆ 2D1 × ·· ·× 2Dd
, C

a conjunction of monotone, anti-monotone and piecewise monotone and anti-monotone
constraints.

Ensure: T = Th(L ,D ,C )
1: R∨←D1×·· ·×Dd

2: R∧← /0×·· ·× /0
3: T ← Generic_CBPM_Enumeration(R∨,R∧)

Function Generic_CBPM_enumeration(R∨,R∧)

1: if Check_constraints(R∧,R∨) then
2: if R∧ = R∨ then
3: T ←T ∪R∧

4: else
5: (R∧,R∨)← Constraint_Propagation(R∧,R∨)
6: for all e ∈R∨ \R∧ do
7: T ←T ∪ Generic_CBPM_Enumeration(R∧∪{e},R∨)
8: T ←T ∪ Generic_CBPM_Enumeration(R∧,R∨ \{e})
9: end for

10: end if
11: end if
12: return T

constraints have been implemented: N-sets mining in n-ary Relations (Cerf, Besson, Robardet,
and Boulicaut 2008; Cerf, Besson, Robardet, and Boulicaut 2009), a work done during the PhD
of Loïc Cerf, and parallel episode mining in sequence database (Cule, Goethals, and Robardet
2009), realized with Boris Cule during his PhD. Chapter 3 presents their use for dynamic attribute
graph mining.

1.5.1 Closed pattern mining in n-ary Relations

In (Cerf, Besson, Robardet, and Boulicaut 2008; Cerf, Besson, Robardet, and Boulicaut 2009)
we consider the problem of extracting closed patterns in n-ary relations. Associations relating
multiple types of instances are often represented by multi-way arrays (also known as tensors). As
an example, we can consider sales data that gather information about the products, the regions,
and the weeks of customer transactions. These data form a three-ary relation where the first
dimension represents the products, the second dimension represents the regions, and the third
dimension represents the weeks. It generalizes to n-ary relations the concept of itemsets (Agrawal
and Srikant 1994), that has been extensively studied during the last decade. Closed patterns in
n-ary relations reveal associations between groups of instances and thereby yield insights into the
higher-level association structure in the data. In our above example, such patterns would detect
maximal groups of products that were popular in certain regions during a number of weeks.

Dataset and language of patterns

In this context, the dataset is a n-ary data array, or tensor. Let n > 0 be the number of dimensions
in the given array and A1, · · · ,An be n discrete-valued attributes whose domains are respectively
D1, · · · ,Dn. The n-ary relation D is such as

D ⊆ D1×·· ·×Dn
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From this dataset, we are interested in extracting n-sets, defined by specifying, for each dimension,
a non-empty subset. The language of patterns is thus

L = {ϕ = (ϕ1, · · · ,ϕn) | ϕ i ⊆ Di, |ϕ i| ≥ 1, i = 1, · · · ,n}

Definition of the constraints
To identify closed n-sets as an extension of formal concepts to n-ary relations, we introduce two
constraints CCONNECTED and CCLOSED. CCONNECTED(ϕ,D) guarantees that all elements of each set
ϕ i are in relation with all the other elements of the other sets in D , and CCLOSED(ϕ,D) certifies
that adding an element to any dimension of ϕ violates the CCONNECTED constraint. Formally,

CCONNECTED(ϕ,D) ≡ ∀X = (x1, · · · ,xn), xi ∈ ϕ
i,X ∈D

CCLOSED(ϕ,D) ≡ ∀y j ∈ D j \ϕ
j, j ∈ {1, · · · ,n}, ∃xi ∈ ϕ

i, ∀i 6= j such that

(x1, . . . ,x j−1,y j,x j+1, . . . ,xn) 6∈D

To guide the search toward most interesting patterns, we consider two other constraints that
coerce the patterns to contain a minimal number of elements (CSIZE) or to have a minimal volume
(CVOLUME):

CSIZE(ϕ,D) ≡ ∧n
i=1|ϕ i| ≥ αi

CVOLUME(ϕ,D) ≡ Π
n
i=1|ϕ i| ≥ α

However, for a given closed n-set, there may exist outside elements that are in relation with
“almost” all inside elements. Such patterns are not “isolated”. To avoid the extraction of such
n-sets, we propose a new constraint: CISOLATED. We first consider the projection of a n-set ϕ on
an element y j ∈ D j:

Projection(ϕ,y j) = (ϕ1×·· ·×ϕ
j−1×{y j}×ϕ

j+1×·· ·ϕn)

A projection is a kind of hyper plane of ϕ whose dimension j is fixed. By considering the
proportion of elements of this projection that belongs to D to the total number of elements of the
projection, we obtain the density of y j on ϕ . The less this density, the more isolated ϕ:

CISOLATED(ϕ,D) ≡ max
j

max
y j∈D j\ϕ j

|Projection(ϕ,y j)∩D |
|Projection(ϕ,y j)|

≤ α

α ∈ [0,1] is a user-defined parameter. When α = 0, any element of D j outside the n-set are not
in relation with elements from the (Di) j 6=i contained in the n-set.

Illustrative example
Figure 1.2 provides a ternary relation DE . 〈(A,B),(1,2),(α,γ)〉 and 〈(C),(4),(α,β ,γ)〉 are
examples of 3-sets in DE . The 3-set 〈(A,B),(1,2,3),(α,γ)〉 violates CCONNECTED because
(A,3,α) 6∈DE or (B,3,γ) 6∈DE . 〈(C),(3,4),(β )〉 satisfies CCONNECTED but not CCLOSED because
(C,1,β )∈DE or (C,3,γ)∈DE∧(C,4,γ)∈DE . Considering the 3-set H = 〈(A,B,C),(1),(α,β )〉,
CISOLATED(H,D) is true with α = 0.5 but false with α = 0.4 because of elements 2 and 4.

Constraint properties
Let L be partially ordered by the set inclusion, that is to say ϕ1 � ϕ2 iff ϕ i

1 ⊆ ϕ i
2, ∀i = 1 . . .n, the

constraints CCONNECTED(ϕ,D), CCLOSED(ϕ,D), CSIZE(ϕ,D), CVOLUME(ϕ,D) and CISOLATED(ϕ,D)
satisfy the following properties.
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A B C A B C A B C
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1
4 1 1 1 1 1 1

α β γ

Figure 1.2: Boolean representation of a relation DE ⊆ {A,B,C}×{1,2,3,4}×{α,β ,γ}

Property 1.4 CCONNECTED(ϕ,D) is anti-monotone with respect to �.

Proof. For all ϕ1,ϕ2 ∈L such that ϕ1 � ϕ2, if CCONNECTED(ϕ1,D) is not satisfied, then there ex-
ists (x1, . . . ,xn), xi ∈ ϕ i

1 such that (x1, . . . ,xn) 6∈D . However, ∀i, xi ∈ ϕ i
2 and CCONNECTED(ϕ2,D)

is not satisfied. �

Property 1.5 CSIZE(ϕ,D) and CVOLUME(ϕ,D) are monotone constraints.

Proof. For all ϕ1,ϕ2 ∈L such that ϕ1 � ϕ2, if CSIZE(ϕ1,D) (resp. CVOLUME(ϕ1,D)) is satisfied,
then CSIZE(ϕ2,D) (resp. CVOLUME(ϕ2,D)) is also satisfied since it contains more elements than
ϕ1. �

Property 1.6 CISOLATED(ϕ,D) is piecewise monotone and anti-monotone with CISOLATED(ϕ,D)=
f (ϕ1,ϕ2,ϕ3,D) and

f (ϕ1,ϕ2,ϕ3,D) = max
j

max
y j∈D j\ϕ j

1

|Projection(ϕ2,y j)∩D |
|Projection(ϕ3,y j)|

f1,ϕ and f3,ϕ are monotone, whereas f2,ϕ is anti-monotone.

Proof. For all x,y ∈L such that x� y,
1. D j \ x⊇ D j \ y and

f1,ϕ(x) = max
j

max
y j∈D j\x

|Projection(ϕ2,y j)∩D |
|Projection(ϕ3,y j)|

≥max
j

max
y j∈D j\y

|Projection(ϕ2,y j)∩D |
|Projection(ϕ3,y j)|

Therefore, f1,ϕ(y)> α implies f1,ϕ(x)> α and f1,ϕ is monotone.
2. |Projection(x,y j)| ≤ |Projection(y,y j)| and

f2,ϕ(x) = max
j

max
y j∈D j\ϕ j

1

|Projection(x,y j)∩D |
|Projection(ϕ3,y j)|

≤max
j

max
y j∈D j\ϕ j

1

|Projection(y,y j)∩D |
|Projection(ϕ3,y j)|

Therefore, f2,ϕ(x)> α implies f2,ϕ(y)> α and f2,ϕ is anti-monotone.
3. 1≤ |Projection(x,y j)| ≤ |Projection(y,y j)| and 1

|Projection(y,y j)| ≤
1

|Projection(x,y j)| ≤ 1

f3,ϕ(x) = max
j

max
y j∈D j\ϕ j

1

|Projection(ϕ2,y j)∩D |
|Projection(y,y j)|

≤max
j

max
y j∈D j\ϕ j

1

|Projection(ϕ2,y j)∩D |
|Projection(x,y j)|

Therefore, f3,ϕ(y)> α implies f3,ϕ(x)> α and f3,ϕ is monotone.
�
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Experiments
The instanciation of the generic algorithm to this pattern domain is called DATA-PEELER. To
study the behavior of DATA-PEELER and to compare it to competitors, we have used the IBM
QUEST data generator (Agrawal and Srikant 1995). Various data sets with predefined densities
have been generated that are made of three attributes: The customers, the bought items, and
the time periods (in months). We also have been working on logs from the DistroWatch.com
website. This popular website gathers comprehensive information about GNU/Linux and BSD
distributions. Every distribution being described on a separate page, a visitor loading such a
page is considered “interested” in the distribution. Every IP address is analyzed to identify the
country it comes from. Time steps allow to study the evolution of the interest granted to the
different distributions along time. The whole data set gathers 36 months, 243 countries and 538
distributions. Two different data sets have been derived from it. In both cases, data have been
normalized so that every country and every time period has the same importance. They have
been transformed in 0/1 data in the following way: For each distribution, we kept the elements
of D containing this distribution and such that its normalized interest exceeds a threshold equals
to one quarter of the maximal normalized interest for this distribution in D .

Comparisons with competitors: DATA-PEELER is compared to CUBEMINER (Ji, Tan, and
Anthony 2006) and TRIAS (Jäschke, Hotho, Schmitz, Ganter, and Stumme 2006) on 3-ary
synthetic data sets generated by QUEST, using the implementations provided by their authors.
The data sets simulate 144 customers buying in average 6 items out of 72 (density of about 8.3%)
per month. We make the number of months vary from 6 to 66 and constrain every closed 3-set to
gather at least 2 customers, 2 items and 2 months. The results are represented in Figure 1.3 (left).
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Figure 1.3: Comparison w.r.t. CUBEMINER and TRIAS on synthetic data (left) and real data (right).

DATA-PEELER outperforms its competitors by several orders of magnitude. The growing number
of months (the smallest domain) consequently alters the performance of TRIAS, whereas it has
less effect on CUBEMINER. For example, considering data along 48 months, to extract all the
5801 valid closed n-sets, CUBEMINER takes 1 hour and 50 minutes, TRIAS 3 hours and 14
minutes, whereas DATA-PEELER only needs 2.5 seconds. Unlike its competitors, even with 600
months, DATA-PEELER is still able to extract all valid closed n-sets in a reasonable time, i.e., 1
minute and 21 seconds for 431’892 closed n-sets.

The data set derived from the logs of DistroWatch.com indicates, month after month,
whether visitors from a country seem interested in a distribution. All data (36 months, 243
countries and 538 distributions) have been kept. Compared to the synthetic data sets considered
above, this one is relatively large even if it has one small attribute domain. It is also much sparser
since its density is 0.55%. We have constrained every closed 3-set to gather at least 2 countries
and 2 distributions. The minimal number of months a closed 3-set must contain has been varying
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from 0 to 36. The results are represented in Figure 1.3 (right). DATA-PEELER outperforms
its competitors by several orders of magnitude. Thanks to the small number of months in the
data set, TRIAS succeeds in extracting the closed 3-sets even without any constraint on the
time attribute. CUBEMINER suffers a lot from the global size of the data set. It is unable to
perform the extraction under a size constraint of 33/36 months. For example, with a minimal
size constraint of 6 months, DATA-PEELER needs 2.6 seconds and TRIAS 69.3 seconds to extract
all the 87 patterns. Without any minimal size constraint on the number of months, 10 658 closed
n-sets are computed in less than 4.4 seconds by DATA-PEELER and in 1531 seconds by TRIAS.
In both cases, CUBEMINER can not perform the task.

A real-life application: We considered an interesting 4-ary relation from DistroWatch.com
logs. It takes in consideration visitors who have loaded at least two different distribution pages
the same day. We assumed that this is a sign of a common interest in the visited distributions.
The less relevant countries and distributions have been removed. The days have been aggregated
in semesters (the release period of many distributions). In the end, we obtained a 4-ary relation
DDW (D1,D2,S,C) indicating that people from country C (among 39) show a common interest in
distributions D1 and D2 (among 323) during the semester S (among 6). This relation covers 1.7%
of the possible associations between attributes. We extracted all the maximal sets of distributions
which are simultaneously interesting for people from a maximal set countries during a maximal
set of semesters. To obtain them, we mined the closed 4-sets 〈X1,X2,X3,X4〉 ∈ 2D1×2D2×2S×2C

of DDW such that X1 = X2. This additional constraint is anti-monotone. DATA-PEELER extracted
every closed 4-set from the data set in 229 seconds. Since it is impossible to inspect all the
602 290 closed 4-set, minimal sizes are enforced on every set: We constrained every closed 4-set
to gather at least 2 semesters, 2 countries and 3 distributions. After 20 seconds, DATA-PEELER

returned 17 196 closed 4-sets. Again, it prevents from a systematic interpretation of each closed
4-set. Therefore, we enforced a volume constraint to keep only the largest patterns. It reduced
the computation to 14 seconds and the number of extracted closed 4-sets to 352. Given such a
collection of 352 patterns, it was possible to manually inspect them and assess their relevancy.
• 94 closed 4-sets having on the distribution domains a subset of {Fedora, FreeBSD, Debian,

Ubuntu, Gentoo, MEPIS, Slackware, Yellow Dog, Mandriva, openSUSE}. Considering
all of them, every semester is mentioned. All these distributions are mainstream general-
purpose distributions. These closed 4-sets gather many countries all over the world.
However Great Britain shows off by being present in all these n-sets but one.
• 64 closed 4-sets having on the distribution domains a subset of {Astaro, ClarkConnect,

IPCop, m0n0wall, Devil, SmoothWall, CensorNet}. Every semester is involved. These
seven distributions are meant to serve a common interest: they are all specifically designed
to act as a firewall. These closed 4-sets gather countries from every continent. Australia
(closely followed by Belgium) is the most present country.
• 80 4-sets having on the distribution domains a subset of {dyne:bolic, ArtistX, AGNULA,

MoviX, GeeXboX}. Every semester is involved. These five distributions are meant to
serve a common interest: they are all specifically designed to manipulate movies and
music. These 4-sets mainly contain occidental countries but India is very present too.
Switzerland belongs to all these 4-sets. GNU/Linux is obviously a popular choice among
Swiss artists.
• 83 closed 4-sets having on the distribution domains a subset of {dyne:bolic, ArtistX,

AGNULA, MoviX, GeeXboX} ∪ {Ubuntu, Damn Small, KNOPPIX, MEPIS, PCLinuxOS,
Xandros}. It could be seen as a “collision” between two separate interests. Nevertheless,
the distributions from the second set being primarily designed for desktop use, they are
also suited to play movies and music. Furthermore, every distribution from these two sets
uses the APT package management system (if any).
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The few remaining closed 4-sets are not out of interest. Among the distributions which
appear once in the returned closed 4-sets, Gentoox and GentooTH form with Gentoo a closed
4-set running along the last four semesters (GentooTH did not exist before) in 11 countries.
Their common point is obvious from their names: they are all based on Gentoo. In the same way,
Knopperdisk and Feather are mentioned in one single closed 4-set where they are associated with
Damn Small along the last five semesters (Knopperdisk did not exist before). These distributions
have a strong common point: all of them are KNOPPIX light derivatives aimed at being installed
on a USB pen drive.

Instead of searching for large closed patterns, we now focus on extracting closed 4-sets
which are isolated in the country domain using CISOLATED constraint. We first set δ = 0.25 on
the country attribute. Keeping the size constraints from the previous section, DATA-PEELER

returns one single closed 4-set. It gathers, during two semesters, the distributions B2D, Linpus
and PUD for Taiwan and Hong Kong. These three distributions are Taiwanese and insist on
the direct support of traditional Chinese. Traditional Chinese characters are almost exclusively
used in Taiwan, Hong Kong and Macao (which was not kept among the 39 countries in the data
set). Indeed, the impact of this strong particularity is well revealed by enforcing the CISOLATED

constraint. When increasing δ to 0.3, DATA-PEELER returns two additional closed 4-sets. Both
of them refer to Russia and Ukraine during 2006 and gather ALT, ASP and one mainstream
distribution (either Ubuntu or Mandriva). Both ALT and ASP are Russian distributions. Again,
the particularity of the Russian alphabet as the default character encoding is caught by the
CISOLATED constraint.

1.5.2 Parallel episode mining in a sequence

In (Cule, Goethals, and Robardet 2009) we consider the problem of extracting parallel episodes
in a single sequence. Discovering interesting episodes (Mannila, Toivonen, and Inkeri Verkamo
1997) is a popular area in temporal or sequential data mining, examples of which are text or
protein sequences mining. In such data, the order in which the events appear is being analysed
and the user’s goal is to identify the regularities that may appear in the dataset, consisting of one
or more sequences. The usual approach to episode discovery is to look for episodes consisting of
events that frequently appear close to each other. Most of the current state-of-the-art methods
first use a window of fixed length to find sufficiently cohesive episodes and then retrieve those
that occur in more windows than a given minimum threshold (Mannila, Toivonen, and Inkeri
Verkamo 1997). The use of a window of fixed length is a major limitation of such approaches as
no episodes longer than this window can ever be discovered. A different method that increases
the window length proportionally to the size of the candidate set has been proposed in order to
overcome this limitation (Garriga 2003). Still, in this proposal, the window length remains fixed
for a particular candidate when counting its frequency in the sequence. Hence, when the episode
occurs in the sequence, but in a time frame larger than the window size, then such occurrences are
disregarded. The high frequency of a set of events appearing close together gives no guarantee
that a subset of that set will not sometimes appear far away from the rest of the set.

This observation motivates us to propose a new constraint to select interesting sets of events
in a dataset consisting of a single sequence of events. We focus on parallel episodes which are
unordered sets of events, and these can also be considered as sets of items, better known as
itemsets. We define the interestingness of a parallel episode based on a combination of how
often the events in the candidate set appear in the sequence and how close to each other they
appear on average. Hence, this approach does not use a fixed window length but instead also
takes the occurrences of the events far from the rest of the set into account. It is precisely such
occurrences that might sufficiently lower the cohesion of an episode to render it uninteresting.
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Dataset and language of patterns
In this context, the dataset D is a single sequence of events from E , the set of all possible events.
All consecutive events of the sequence are considered to be equidistant and thus the time steps
of the sequence are considered to be the elements of the interval [1,k] of natural numbers. As
two events do not occur at the same time, the sequence is denoted by D = 〈e1, · · · ,ek〉, where
ei ∈ E , i ∈ [1,k] and k is the number of events in D . The mapping T S(e,D) associates to each
event e of E the set of the indices at which e appears:

T S(e,D) = {t | et ∈D and et = e}

As previously mentioned, we want to identify events that appear next to each other, but the order
in which they occur does not matter. Therefore, the language of patterns we considered is the
one of parallel episodes, that is the language of sets of events: L = {ϕ | ϕ ⊆ E }.

Definition of the constraints
To identify parallel episodes whose events appear frequently in the sequence and consist of
events that, on average, appear close to each other, we introduce an interestingness measure that
takes into account the number of occurrences of the events in D and the average length of the
shortest time intervals in which all their events appear. The interestingness of a parallel episode
depends therefore on two factors: its support and its cohesion. The support measures how often
an event of the episode appears in D , while cohesion measures how close together the events
making up the episode appear on average. For a given parallel episode ϕ , we denote the set of
all occurrences of its events as

SUPPORT(ϕ,D) = {
⋃
e∈ϕ

T S(e,D)}

The coverage of ϕ can be defined as:

COVERAGE(ϕ,D) =
|SUPPORT(ϕ)|

|D |

In order to calculate the cohesion of ϕ in D , we must first evaluate the length of the shortest
interval containing all the events of ϕ for a given time step t in D :

Length(ϕ, t) = min{t2− t1 +1 | t1 ≤ t ≤ t2 and ∀e ∈ ϕ,∃t ′ ∈ T S(e,D), t1 ≤ t ′ ≤ t2}

We can now compute the average length of such shortest intervals for each time step in
SUPPORT(ϕ,D):

Length(ϕ,D) =
∑t∈SUPPORT(ϕ,D) Length(ϕ, t)

|SUPPORT(ϕ,D)|

It is clear that Length(ϕ,D) is greater than or equal to the number of events in ϕ . Furthermore,
for a fully cohesive parallel episode, where no other events ever occur between the events making
the episode, Length(ϕ,D) = |ϕ|. To normalize, we want the cohesion of a fully cohesive episode
to be equal to 1, and the cohesion of other episodes to be lower. Therefore, we define cohesion
of ϕ as

COHESION(ϕ,D) =
|ϕ|

Length(ϕ,D)

We can now define the interestingness of an episode ϕ as

INTEREST(ϕ,D) = COHESION(ϕ,D)× COVERAGE(ϕ,D)

=
|SUPPORT(ϕ,D)|× |SUPPORT(ϕ,D)|× |ϕ|

∑t∈SUPPORT(ϕ,D) Length(ϕ, t)×|D |
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Note that both SUPPORT(ϕ,D) and COHESION(ϕ,D) are between 0 and 1, and the same
is therefore true for INTEREST(ϕ,D). This makes it possible to apply the same interesting-
ness thresholds to any kind of dataset. Given three user defined thresholds, min_support,
min_cohesion and min_interest, a parallel episode ϕ must satisfied

CCOVERAGE(ϕ,D) ≡ COVERAGE(ϕ,D)≥ min_support

CCOHESION(ϕ,D) ≡ COHESION(ϕ,D)≥ min_cohesion

CINTEREST(ϕ,D) ≡ INTEREST(ϕ,D)≥ min_interest

Illustrative example
In the example of Figure 1.4, cd and cde are both fully cohesive, but cde clearly covers more
of the sequence than cd, and will therefore be considered more interesting. According to our
definition, COVERAGE(cd,D) = 4

12 and COVERAGE(cde,D) = 6
12 . As cd and cde are both fully

cohesive, COHESION(cd,D) = 1 and COHESION(cde,D) = 1. Therefore, INTEREST(cd,D) =
4

12 and INTEREST(cde,D) = 6
12 . In general, an episode will always have a lower coverage than

any of its supersets, and, provided that they are equally cohesive, will always have a lower
interestingness than the superset.

1 2 4 5 63 7 98 10 11 12

a b dc g dc e ife h

Time Steps

Sequence

Figure 1.4: An illustrative example.

Let us now consider the results obtained by Winepi algorithm (Mannila, Toivonen, and Inkeri
Verkamo 1997; Mannila, Toivonen, and Verkamo 1995), that finds all episodes that occur in a
sufficient number of windows of fixed length. Applying WINEPI (with a window length greater
than 1) to this sequence will result in cd having a larger frequency than cde. For example, using a
window of length 3 gives f req(cd) = 4

14 and f req(cde) = 2
14 . This is clearly unintuitive. Garriga

(Garriga 2003) proposes to solve this problem by increasing the window length proportionally to
the episode length, using a parameter tus equal to the maximal gap allowed between two events
in an episode. Therefore, using tus = 2 (equivalent to using a window of length 3 for an episode
made of two event types) would result in a window of length 5 for episodes made of three event
types. Frequencies of cd and cde are in this context f r(cd) = 4

14 and f r(cde) = 8
16 .

eh b ba caf i c k d l c djd m

16 17 19 2013 14 15 18

g

2 4 5 63 7 98 10 11 12

c

1Time
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Sequence

Figure 1.5: A second example

On the other hand, we should note that the cohesion of an episode alone is also not suitable
for estimating its interestingness. In the example of Figure 1.5, e f is just as cohesive as ab, but its
frequency is too small to be considered more interesting than cd. This is why our interestingness
measure consists of combining both coverage and cohesion.

If we apply the WINEPI method on the example of Figure 1.5 with a window of length 3,
we obtain the following frequencies: f r(cd) = 5

22 , f r(ab) = 4
22 and f r(e f ) = 2

22 . The ranking
will be the same for all windows of length greater than 3. The same method with a window of
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length 2 would give: f r(cd) = 0, f r(ab) = 3
21 and f r(e f ) = 1

21 . We can observe that no chosen
window length gives the desired result. The method of Garriga (Garriga 2003) would give the
same results depending on the used parameter. This is not a surprise, since both WINEPI and
Garriga methods are trying to find how likely we are to encounter an episode, while it may be
more interesting to find how likely we are to encounter an event from an episode, and, once we
encountered it, how likely we are to encounter the other events of the episode nearby.

ϕ |SUPPORT(ϕ,D)| Length(ϕ,D) COHESION(ϕ,D) COVERAGE(ϕ,D) INTEREST(ϕ,D)

ab 4 2 1 0.2 0.2
cd 7 4.29 0.47 0.35 0.16
e f 2 2 1 0.1 0.1

Table 1.1: Computation of interestingness for example of Figure 1.5

The summary of the computation of the interestingness for the 3 itemsets previously consid-
ered is given in Table 1.1. Comparing these results with those obtained with WINEPI and Garriga,
it can be observed that our method gives more intuitive results than WINEPI and Garriga.

Constraint properties
Given that L is partially ordered by the set inclusion, that is to say ϕ1 � ϕ2 iff ϕ1 ⊆ ϕ2,
the constraints CCOVERAGE(ϕ,D), CCOHESION(ϕ,D) and CINTEREST(ϕ,D) satisfy the following
properties.

Property 1.7 CCOVERAGE(ϕ,D) is monotone with respect to �.

Proof. For all ϕ1,ϕ2 ∈ L such that ϕ1 � ϕ2, we have SUPPORT(ϕ1,D) ⊆ SUPPORT(ϕ2,D)

and |SUPPORT(ϕ1,D)| ≤ |SUPPORT(ϕ2,D)|. Therefore, |SUPPORT(ϕ1)|
|D | ≥ min_support implies

|SUPPORT(ϕ2)|
|D | ≥ min_support. �

Property 1.8 CCOHESION(ϕ,D) is piecewise monotone and anti-monotone with CCOHESION(ϕ,D)=
f (ϕ1,ϕ2,ϕ3,ϕ4,D) and

f (ϕ1,ϕ2,ϕ3,ϕ4,D) =
|ϕ1||SUPPORT(ϕ2,D)|

∑t∈SUPPORT(ϕ3,D) Length(ϕ4, t)

f1,ϕ and f2,ϕ are monotone, whereas f3,ϕ and f4,ϕ are anti-monotone.

Proof. For all x,y ∈L such that x� y,
1. |x| ≤ |y| and

f1,ϕ(x) =
|x||SUPPORT(ϕ2,D)|

∑t∈SUPPORT(ϕ3,D) Length(ϕ4, t)
≤ |y||SUPPORT(ϕ2,D)|

∑t∈SUPPORT(ϕ3,D) Length(ϕ4, t)
= f1,ϕ(y)

Therefore, f1,ϕ(x)≥ min_cohesion implies f1,ϕ(y)≥ min_cohesion and f1,ϕ is monotone.
2. |SUPPORT(x,D)| ≤ |SUPPORT(y,D)| and

f2,ϕ(x) =
|ϕ1||SUPPORT(x,D)|

∑t∈SUPPORT(ϕ3,D) Length(ϕ4, t)
≤ |ϕ1||SUPPORT(y,D)|

∑t∈SUPPORT(ϕ3,D) Length(ϕ4, t)
= f2,ϕ(y)

Therefore, f2,ϕ(x)≥ min_cohesion implies f2,ϕ(y)≥ min_cohesion and f2,ϕ is monotone.
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3. As SUPPORT(x,D)⊆ SUPPORT(y,D) and Length(ϕ, t)≥ 1,
1≤ ∑

t∈SUPPORT(x,D)

Length(ϕ4, t)≤ ∑
t∈SUPPORT(y,D)

Length(ϕ4, t)

|ϕ1||SUPPORT(ϕ2,D)|
∑t∈SUPPORT(y,D) Length(ϕ4, t)

≤ |ϕ1||SUPPORT(ϕ2,D)|
∑t∈SUPPORT(x,D) Length(ϕ4, t)

and f3,ϕ is anti-monotone.
4. ∀t ∈ [1,k], Length(x, t)≤ Length(y, t). Therefore,

1≤ ∑
t∈SUPPORT(ϕ3,D)

Length(x, t)≤ ∑
t∈SUPPORT(ϕ3,D)

Length(y, t)

|ϕ1||SUPPORT(ϕ2,D)|
∑t∈SUPPORT(ϕ3,D) Length(y, t)

≤ |ϕ1||SUPPORT(ϕ2,D)|
∑t∈SUPPORT(ϕ3,D) Length(x, t)

and f4,ϕ is anti-monotone.
�

Property 1.9 CINTEREST(ϕ,D) is piecewise monotone and anti-monotone.

Proof. As a product of a monotone and a piecewise monotone and anti-monotone constraints,
CINTEREST(ϕ,D) is piecewise monotone and anti-monotone. �

Experiments
In this section, we present the results of our experiments performed on various synthetic and
real-life datasets, and analyse their implications.

Synthetic datasets: Fully random datasets would not be suitable for our purposes because all
itemsets of equal length would be likely to have similar interestingness values. A more suitable
dataset would be one generated using a Markov chain model, which enables us to increase the
likelihood of certain items appearing close together and thus forming interesting itemsets.

In our experiments, we use a memoryless model, also called a simple random walk, in which
the next item depends only on its immediate predecessor. We can therefore easily describe such
a model using a transition matrix. The transition matrix used to generate the dataset is given
in Table 1.2. Our goal is to generate a sequence in which abc would be an interesting pattern
hidden among occurrences of several other items denoted x in the table. When a transition leads
to an occurrence of x, a random item is picked from a group of 25 items, not including a, b or c.
Doing this ensures that none of these 25 items will form interesting itemsets.

a b c x
a 0.2 0.35 0.35 0.1
b 0.35 0.2 0.35 0.1
c 0.35 0.35 0.2 0.1
x 0.05 0.05 0.05 0.85

Table 1.2: Transition matrix defining a Markov model

Using this model, we generated a sequence of 2000 events. We then ran our algorithm
varying the interestingness threshold min_interest from 0.9 down to 0.2, 0.05 at a time. In
all experiments no thresholds were set for coverage and cohesion separately. The results of
our experiments can be seen in Figures 1.6 (a) and (b). Figure 1.6 (a) shows that as long as
there are few interesting itemsets to be found, our pruning method works very efficiently. The
most interesting itemset abc is found using a relatively high interestingness threshold of 0.45.
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No further interesting itemsets can be found without lowering the threshold below 0.3, which
confirms the intuitiveness of our method. With the interestingness level of 0.25, itemsets ab, ac
and bc are also discovered as interesting. Because of the uniform distribution of the remaining
25 items, the number of considered candidates grows significantly once the threshold is lowered
further. We can observe in Figure 1.6 (b) that the execution time grows proportionally with the
number of generated candidates indicating that the most interesting itemsets can be discovered in
a reasonable amount of time. To determine the most appropriate interestingness threshold value
for a given dataset, an inexperienced user can start with a high value and decrease it until the
first results come through. Running the algorithm with a high interestingness threshold takes
only few seconds.
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Figure 1.6: MARKOV CHAIN generated data: (a) Number of generated candidates and interesting
episodes with varying min_interest; (b) Execution time in seconds with varying min_interest; (c) Execu-
tion time in seconds when min_interest = 0.3 and the sequence length is varying.

Analyzing the generated dataset, we observed that the coverage of abc was around 0.6. Its
interestingness was around 0.46, which means its cohesion was around 0.77. In order to show
that the high interestingness of abc was not only due to its coverage, we investigate what is
obtained in a randomly ordered sequence in which items have the same frequency as in the
Markov Chain dataset. We generated such a sequence of 2000 events made of 28 items. As can
be seen in Figure 1.7 (a), we have to lower the interestingness threshold much further in order
to get the first results. Episode abc is found to have interestingness of around 0.3 indicating a
cohesion of 0.5. Figure 1.7 (b) shows that, once again, the execution time is fully proportional
with number of generated candidates.
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Figure 1.7: RANDOM dataset: (a) Number of generated candidates and interesting episodes with varying
min_interest; (b) Execution time in seconds with varying min_interest.

To test how much the execution time depends on the size of the sequence, we generated
several Markov chain datasets of different sizes, varying between 1000 and 25000. For each
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size, we generated 10 datasets and applied our algorithm with min_interest = 0.3, because it is
around this threshold that the first results usually appeared. Figure 1.6 (c) shows the obtained
results. Each vertical line corresponds to one sequence length showing the mean execution time
of the 10 algorithm runs and their standard deviation. It can be observed that the execution
time depends much more on the structure of the dataset than on its size, even for such similarly
structured datasets (all the datasets contained exactly the same number of different items that
were distributed according to the same transition matrix).

Real-life datasets: The first real-life dataset we used is one obtained from the amino-acid
sequence from human alcohol dehydrogenase (G. Wu 2000). This enzyme has been heavily
researched and its genomic sequence is widely available and therefore reliable1. The sequence
consists of 20 different amino-acids making a chain of 375. In Figure 1.8 (a), we can see
that we get some results with an interestingness value below 0.4, but no itemset really sticks
out, suggesting a uniform distribution of items in the sequence. It turns out that the most
interesting itemsets are quite large and can be found in a reasonable amount of time. These
results were not surprising, as biologists confirmed that items were distributed in such a way.
To double-check, we once again created a synthetic dataset, 375 items long, where items were
distributed randomly, using their frequency in the DNA dataset to determine their probability
of occurrence. Figure 1.8 (b) shows that the results obtained on this dataset are very similar to
those in Figure 1.8 (a).
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Figure 1.8: Execution time in seconds and number of extracted episodes (log-scale) with varying
min_interest: (a) DNA dataset; (b) Random DNA-like dataset; (c) MUSIC dataset.

Our second dataset consisted of music notes, collected from one track of a midi-file. We
used the notes of the song Abide With Me2, having first converted the midi-file into a text file,
and then pruned all other elements (pitch, channel, velocity, etc.3) from the file. This left us
with a sequence of 400 notes, made of 18 distinct notes. Figure 1.8 (c) shows that no interesting
itemsets were found using high interesting thresholds, but what was encouraging was the fact
that the execution time was minimal. We found the first three interesting itemsets at the level
of 0.2: one consisting of four notes, one of five, and the third was a singleton, which was also
included in the other two sets. This indicated that this note appeared most often in the sequence,
and that the other four notes always appeared relatively close to it (certainly closer than the other
13 notes). A larger number of itemsets was found to be interesting as we lowered the threshold
further, growing consistently even for small decreases in the threshold.

1http://www.expasy.org/cgi-bin/sprot-ft-details.pl?P07327@SEQUENCE@2@375
2http://www.tc.umn.edu/∼sorem002/hymn_midi.html
3http://www.fourmilab.ch/webtools/midicsv/
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1.6 Discussion
In this chapter, I presented the constraint-based pattern mining framework that makes possible
to achieve the exhaustive extraction of the whole set of patterns by exploiting the constraint
properties to reduce the number of generated patterns. Several constraint properties, that have
been identified as useful in this framework, were studied. Then I presented the formal concept
pattern domain, its associated constraints and an algorithm to solve it. The principles of this
algorithm can be abstracted so as to extract other pattern domains whose constraints are either
monotone, anti-monotone or piecewise monotone and anti-monotone. Its foundations are the
reducing of the search space either by enumerating elements, or by using the constraints. The
constraints are applied (1) to determine as soon as possible that the candidate set is empty and
(2) to certify that some elements must belong or be excluded to every pattern of the search space.
Two case studies were detailed to illustrate the relevance of this algorithm and its usefulness in
different contexts. Other use cases for attributed dynamic graph mining are given in Chapter 3.

The prospects of this work are numerous. It is still necessary to continue the study of
constraint properties to understand their impact on the pattern search space as well as the data
search space (Bonchi, Giannotti, Mazzanti, and Pedreschi 2005) with the prospect, for example,
of developing efficient parallel algorithms (Negrevergne, Termier, Rousset, and Mehaut 2013).
Another recent research topic is the study of set patterns (Crémilleux and Soulet 2008; Fürnkranz
and Knobbe 2010; Raedt and Zimmermann 2007) and their associated constraints and algorithms.
This very promising framework needs to be further investigated as new constraints on sets of
patterns have to be identified to express the expected relationships between the retrieved local
patterns. Finally, one of the main difficulties when using local pattern algorithms is how to fix the
thresholds. This problem can be overcome for example by looking for skyline patterns (that is to
say a set of incomparable patterns with respect to a domination relationship on the constraint
thresholds (Soulet, Raïssi, Plantevit, and Crémilleux 2011)) or by statistically assessing the
value of the measure and automatically deriving the constraint thresholds (Robardet, Scuturici,
Plantevit, and Fraboulet 2013). This line of research is still to be followed.
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2 — Relational dynamic graphs

While conducting our research to extend the formal framework of constraint-based pattern
mining toward new pattern types, we have always considered real-world problems and try to
extract knowledge in these contexts. To that end, in 2001, our data mining research team has
established original collaborations with biologists to mine patterns in their gene expression data.
The objective was to identify groups of genes whose expressions were similar in some biological
contexts. These collaborations have resulted in the elicitation of hypothesis that have been
validated by the involved biologists (Besson, Robardet, Boulicaut, and Rome 2005; Blachon,
R. Pensa, Besson, Robardet, Boulicaut, and Gandrillon 2007; Leyritz et al. 2008). In 2006, we
joined the Rhône Alpes Complex Systems Institute IXXI that was set up at that time. Our aim
was to explore a new type of data, named as complex network, and to create new collaborations
with researchers of graph theory and signal processing. We were motivated by the fact that
complex network refers to a broad class of data – the systems composed by a large number
of highly interconnected dynamical units – that covers lots of data generated by real systems.
These systems can be modeled as relational graphs whose vertices represent dynamical units,
and whose edges stand for interactions between them.

An important amount of complex network studies focused on the comparison of the topology
of different real-world static networks and produced a series of unexpected results (see Boccaletti,
Latora, Moreno, Chavez, and Hwang 2006 for a review on these works). They started by defining
graph properties that can be used to characterize the topology of real networks and studied their
statistical behavior on real-world complex networks. In a rather surprising manner, it appeared
that some of these properties behaved the same way on many networks. The most cited result
is probably the fact that the degree of a vertex – the number of edges that connect it to other
vertices – has a distribution that significantly deviates from the Poisson distribution expected for
a random graph and, in many cases, exhibits a power law tail (scale-free property, Barabási and
Albert 1999). It has also been shown that real networks tend to have a degree assortativity, that
is to say vertices tend to be linked to vertices with similar degree (degree correlation property,
Echenique, Gómez-Gardeñes, Moreno, and Vázquez 2005) and to have relatively short paths
between any two vertices (small-world property, Watts and Strogatz 1998). These properties
have been used to model complex systems that can mimic real-world evolutionary mechanisms.

However, the way complex networks evolve, that is to say the way new vertices and edges
appear while some old ones disappear, has been understudied and it appears crucial to better
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understand these mechanisms. Their analysis brings new knowledge on the common rules that
may govern the transformation of the network, and makes possible to generate random evolving
networks that can be used for simulation purposes. In this context we conducted two in-depth
analysis of mobility networks that are reported in the two following sections: In Scherrer,
Borgnat, Fleury, Guillaume, and Robardet 2008, we proposed a framework for the study of
wireless sensor mobility networks that addresses the description, analysis and the simulation of
networks using techniques from signal processing, graph theory and data mining; In Borgnat,
Robardet, Abry, Flandrin, Rouquier, and Tremblay 2013, we presented a joint analysis in space
and time of the Vélo’v bicycle sharing system of Lyon based on the adaptation to the case of
dynamical networks of community detection methods.

2.1 Description and simulation of wireless sensor mobility networks

While most of real-life complex networks are inherently dynamic, with vertices and edges
appearing or disappearing through time, the dynamic of these networks was less studied and
there is a strong need for dynamic network models in order to sustain fundamental analysis,
and in the context of sensor networks, support protocol performance evaluations. In Scherrer,
Borgnat, Fleury, Guillaume, and Robardet 2008, we proposed a novel framework for the study of
dynamic mobility networks. This framework consists in first characterizing dynamic graphs by
considering graph properties as function of time (see Section 2.1.2), such as the number of edges
or the average degree, so as to give an empirical statistical signature of the dynamics. Global
indicators of the dynamics are also presented (see Section 2.1.3). Based on the appearance or
disappearance of edges, they do not simply relate to independent measures in the succession of
static graphs of the dynamic network, but account for its evolution through time. From those
observations, we design simple yet very accurate models (see Section 2.1.4) that generate random
mobility graphs with similar temporal behavior as the one observed in experimental data.

2.1.1 The data
We study wireless sensor mobility networks, in which vertices are human beings and edges
stand for the ability of a wireless communication to take place between them. This who-is-near-
whom network evolves every time users move and communication services (such as the spread
of any information) will deeply rely on the characteristics of the underlying network. More
precisely, we analyze two mobility networks based on sensor measurements: The IMOTE data
set (Hui, Chaintreau, Scott, Gass, Crowcroft, and Diot 2005), that has been collected during
the Infocom 2005 conference – 41 participants kept a sensor during nearly 3 days – and the
MIT experimental data set (Eagle and Pentland 2006) that is made of records from Bluetooth
cell-phones contacts between 100 MIT students during 9 months.

2.1.2 Graph properties as function of time
The most natural way to describe the dynamics of a complex network is to study the evolution
of static properties through time. At a given time step, a snapshot of the interactions that exist
in the data set is modeled by a graph Gt = (V,Et) with t ∈ N, the time index, constructed as
follows: An edge {u,v} ∈ Et exists if the edge {u,v} is present in the data at time t. Here, the
set of vertices V does not change in time and we are interested in the dynamical aspect of the
vertex interactions. The sampling period of Gt is 1 second for all analysis.

Static networks have been widely studied and a lot a simple parameters are available to
describe a network: The number of connected vertices V (t), the number of edges E(t), the
number of triangles T (t), the number of connected components (excluding isolated vertices)
Nc(t), the average degree of connected vertices D(t), the number of edge creations E⊕(t) =
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IMOTE MIT

Properties Mean Std. Dev. Corr. Time (s) Mean Std. Dev. Corr. Time (s)
#Active links E(t) 21.9 12.4 5200 13 17.7 16800
#Connected vertices V (t) 19.9 4.7 7400 12.3 11.6 17500
Avg degree D(t) 2.1 0.8 3600 1.5 0.8 7300
#CC Nc(t) 4.8 2.1 5600 3.7 2.7 5200
# Triangles T (t) 6.9 8.3 4700 6.6 19.8 5500
Edge creation E⊕(t) 0.15 0.55 680 0.005 0.11 30
Edge deletion E	(t) 0.15 0.55 680 0.004 0.08 260

Table 2.1: Graph properties: Mean and Standard Deviation of PDF, Correlation Times.

|{e ∈ Et ,e /∈ Et−1}| and the number of edge deletions E	(t) = |{e ∈ Et−1,e /∈ Et}|.
For each time series, the probability distribution function is estimated over the duration

of the observation, using empirical histograms of the data. The various estimated probability
distributions obtained are not heavy tailed, meaning that the variability is not very large and the
standard deviation is a good measurement of the variability. The mean and the standard deviation
of the distributions are reported in Table 2.1 for a typical day of the IMOTE data set and a typical
week of the MIT data.

The temporal evolution of a property X(t) can be characterized by its correlation time (Abar-
banel 1996). It is estimated as CX(τ) =< X(t + τ)X(t)>t −(< X(t)>t)

2, where < ·>t is the
mean over time. The correlation time is then defined as the first time where the function CX(τ)
goes to zero (this always happens due to the summation rule of empirical CX ). It quantifies the
“memory” of the series: The longer it is, the greater is the persistence of fluctuations in the data.
The correlation times (see Table 2.1) of E, and V are rather large and all of the same magnitude:
∼ 1h45 for IMOTE and ∼ 4h45 for MIT. The properties D, Nc and T have comparable corre-
lation times. This suggests that these properties evolve under a common cause. However, the
correlation time of the edge creation and deletion properties is really much smaller (∼ 11 min.
for IMOTE and∼ 2 min. for MIT) than the correlation time of all other characteristics. Therefore,
these properties can almost be considered memory-less.

We also consider contact and inter-contact duration distributions, that are dynamic charac-
teristics interesting for mobility networks. The contact duration is the time during which two
vertices remain directly and continuously adjacent. The inter-contact duration is the duration
between two periods of contact for two vertices. As observed in Hui, Chaintreau, Scott, Gass,
Crowcroft, and Diot 2005 for the IMOTE data, both distributions have a tail that can be modeled
by a power law, so that the complementary cumulative distribution functions (CCDF) of contact
or inter-contact durations X (seen as a random variable) follows: P[X > x] ∼

x→∞
cx−α . For α > 2,

the associated random variable X has a finite mean and a finite variance. For α < 2, X has an
infinite variance and is said heavy tailed. Moreover, if α < 1, X has both an infinite mean and an
infinite variance. When the variance is infinite, the tail dominates the behavior of the variable,
especially it causes large events much more frequently than for non-heavy tailed distributions.
Therefore high variability in the data is sometimes explained by heavy tails, as opposed to lower
variability which appears for instance with exponentially decaying tails.

Figure 2.1 shows the CCDF of contact and inter-contact durations and the fitted power-
law distributions (mean and estimated α are reported in captions), respectively for the IMOTE

and MIT data sets. The fits show relevancy of the power-law behavior for both contact and
inter-contact duration distributions over a wide range of scales. As already discussed in Hui,
Chaintreau, Scott, Gass, Crowcroft, and Diot 2005 for the IMOTE data, the heavy-tailed nature
of these distributions seems to be an ubiquitous property of dynamic mobility networks. For
both data sets, inter-contact duration distributions have an α lower than 1, meaning very strong
variability due to long periods of lack of contact for some vertices, whereas the distribution of
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Figure 2.1: Contact (left) and Inter-contact (right) duration distributions (CCDF).

contact durations is less heavy-tailed (for MIT it is actually not heavy-tailed at all, with α = 2.4).

Let us emphasize as a conclusion to this subsection, that, in the dynamic mobility networks
studied, (1) the edges creation and deletion processes are memory-less, and (2) the contact and
inter-contact duration distributions can be modeled by a power-law. These properties are used in
our simulation algorithms presented in Section 2.1.4.

2.1.3 Analyzing dynamic properties

Considering the evolution as a sequence of snapshots is an efficient and simple approach in many
cases but some properties cannot be directly observed in this framework. This is the case of
global properties that can be used to characterize the dynamics of a graph as a whole. To that
end, one has to consider the evolution of the network from one time step to the next. We study
hereafter the stability of connected components (and hence of the information paths between
vertices), the proportion of creation of triangles observed as well as the communities embedded
in the network.

Stability of Connected Components

A connected component (CC) is a maximal sub-graph such that a path exists between every pair
of vertices. We consider the total lifetime of a connected component c defined as the number
of time steps for which c exists, and the number of appearances of c defined as the number of
time steps t for which this CC is absent at t and present at t +1. Figures 2.2 (left) and (right)
display the distributions of the total lifetime and the number of appearances of all CC for IMOTE.
These plots exhibit a strong heterogeneity for both parameters. While more than 52% of the CC
exist only during one time step, some of them exist during a quarter to a third of the whole time.
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To give a better insight, Figure 2.3 (left) shows a joint distribution of the number of vertices
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Figure 2.2: Distribution of the total lifetime (left), number of appearances (right) for all CC of IMOTE.

and total lifetime for all CC of IMOTE. The absence of stability of large CC is striking: There
is no CC with more than 8 vertices (while 67% CC have more than 8 vertices) which have a
lifetime greater than 100 seconds. The more edges and vertices a CC contains the more potential
modifications may happen, which explains in part the curves. However, we could have expected
that such sets would be stable for longer periods. Figure 2.3 (right) presents similar results for
the joint distributions of the number of vertices and number of appearances for all CC of IMOTE.
Again the CC which reappear regularly are only small components. The plots might lead us
to believe that some large CC appear regularly more than once. However, if we admit that a
component reappears only if it has disappeared for more than five minutes, then no CC of size
greater than 6 appears more than once (representing 73% of all CC). This means that most CC
reappear very soon after they have disappeared, which is a direct consequence of edges and
vertices flickering.

 1

 10

 100

 1000

 10000

 100000

 0  5  10  15  20  25  30  35

T
o
ta

l 
li
fe

ti
m

e

Number of vertices

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35

N
u
m

b
e
r 

o
f 
a
p
p
e
a
ra

n
c
e
s

Number of vertices

Figure 2.3: Joint distribution of the number of vertices and total lifetime (left), and joint distribution of
the number of vertices and number of appearances (right) for all CC of IMOTE.

Edge appearance and triangle creations
The existence and persistence of connected components is generally associated with a rather
large number of triangles in the graph. Therefore, it is interesting to evaluate the proportion
of edges whose appearance creates triangles. To that end, we count the proportion of edge
creations that leads to an increase of the number of triangles in the graph (P+/tri+) or does not
change this amount of triangles (P+/tri=). Let further f+/tri+ (resp. f+/tri=) be the average
proportion of inactive edges that would create (resp. would not create) a triangle if activated.
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These proportions are given in Table 2.2 (in percentage) for IMOTE data, MIT data and for
a simple random dynamical graph – with independent contact and inter-contact distributions
distributed as a power-law. One can see that for both data sets, around 40% of edge creations
increase the number of triangles in the graph, which is a fairly large proportion when compared
to a simple random dynamical graph (∼ 10%). The proportion of inactive edges that would
create a triangle is very low for both experimental data sets as well as for the simple random
graph. This emphasizes the fact that this is not because more edges can create triangles that the
proportion P+/tri+ is higher in experimental data sets: It is on the contrary an intrinsic property
of the dynamics.

P+/tri+ P+/tri= f+/tri+ f+/tri=
IMOTE 44 % 56 % 6 % 94 %

MIT 40 % 60 % 7 % 93 %
RANDOM 10 % 90 % 5 % 95 %

Table 2.2: Proportion of edge creations that adds a new triangle or not (P), and proportion of inactive
edges that, if created, would add a triangle, or not ( f ).

Qualitative summary of the dynamic interactions
To account for the dynamics of the network, it is also important to provide a qualitative summary
of the interactions that durably take place in the network. This can be achieved by isolating
“communities” that are commonly considered as groups of individuals with many and dense
interactions between each other over a (not necessarily continuous) long period of time. In
other words, a community can be seen as a dense connected sub-graph with many edges that
appears in a large number of time steps. We propose to identify such communities using the
constraint-based pattern mining framework (see Chapter 1). The procedure consists of two steps
whose execution requires to set several parameters. In the first step, it gathers information on
groups of edges over time by computing sub-graphs with at least σ edges, a density greater than
δ and that appear in at least τ time steps of the network. In the second step, sub-graphs that
concern similar individuals and time steps (the difference between two time steps is at most ∆)
are merged to obtain important and established groups of persons that durably interact. This
enables us to take into account the variability (edge flickering) observed in the experimental
measurements. Finally, the dynamic trajectories of the persons are built by considering, for each
individual, the communities she belongs to and ordering them with respect to time to obtain the
trajectories.

Computing large, frequent and dense connected sub-graphs: Let ϕ = (N,L) be a partial
sub-graph of Gt = (V,Et), denoted hereafter ϕ ⊆ Gt , if L⊆ Et and N is the set of vertices that
appear as endpoint of at least one edge of L. The sub-graphs can be partially ordered using the
inclusion relation of their edge sets: ϕ1 = (N1,L1)� ϕ2 = (N2,L2) iff L1 ⊆ L2. The sub-graphs
of interest in D = {Gt , t ∈ N} are defined thanks to four constraints. To be sufficiently large,
these sub-graphs must be made of at least σ edges:

Clarge(ϕ,D)≡ |L| ≥ σ

To be sufficiently frequent, they must be included in at least τ time steps:

C f requent(ϕ,D)≡ |{t,ϕ ⊆ Gt}| ≥ τ

They are also expected to be connected:

Cconnected(ϕ,D)≡ ∀w0,wk ∈ N, ∃(w0,w1)(w1,w2) · · ·(wk−1,wk) with (wi,wi+1) ∈ L
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Finally, these induce sub-graphs have to be dense:

Cdense(ϕ,D)≡ 2 |L|
|N|(|N|−1)

≥ δ

We can observe that these constraints satisfy the following properties.

Property 2.1 Clarge(ϕ,D) is monotone with respect to �.

Proof. Let ϕ1 = (N1,L1) � ϕ2 = (N2,L2). If Clarge(ϕ1,D) is satisfied then |L1| ≥ σ and as
L1 ⊆ L2, we have |L2| ≥ σ . Thus, Clarge(ϕ2,D) is also satisfied. �

Property 2.2 C f requent(ϕ,D) is anti-monotone with respect to �.

Proof. Let ϕ1 = (N1,L1)� ϕ2 = (N2,L2). If C f requent(ϕ2,D) is satisfied then |{t,ϕ2 ⊆Gt}| ≥ τ .
As ϕ2⊆Gt implies ϕ1⊆Gt , we have |{t,ϕ1⊆Gt}|≥ τ and C f requent(ϕ1,D) is also satisfied. �

Property 2.3 Cconnected(ϕ,D) is loose anti-monotone with respect to �.

Proof. Let ϕ = (N,L) be a sub-graph that satisfies Cconnected(ϕ,D). There exists an edge
(u,v) ∈ L such that Cconnected(ϕ \ (u,v),D) is also satisfied. Indeed,
• either ϕ contains a cycle, and removing (u,v), an edge of this cycle, does not disconnect

the sub-graph – there is still a path from u to v,
• or ϕ is a tree and thus it contains at least two vertices of degree 1 (the extremities of a

path of maximum length in the tree). Removing an edge whose one of its endpoints is of
degree 1 will decrease the number of vertices of the sub-graph but not disconnect it.

�

Cdense constraint does not satisfy appropriate properties when considering partial sub-graphs,
that is to say sub-graphs enumerated by their set of edges. Indeed, this constraint is known to be
loose anti-monotone when considering the sub-graph induced by a subset of vertices (see Uno
2010 for a proof), but there is no such property when enumerating them by their set of edges.

Therefore, we use the generic algorithm presented in Section 1.4 to compute such patterns,
only exploiting the three first constraints during the enumeration process. The two first ones
can be directly implemented in the algorithm. The third one requires to specify the enumeration
process of the edges to only list connected partial sub-graphs: Starting from a partial sub-graph
ϕ , the next edge to be enumerated by the algorithm is one whose at least one of its endpoints
belongs to ϕ . If no such edge exists, no more connected sub-graphs can be generated from ϕ

and the enumeration stops. This enumeration process is complete since, as stated by property
2.3, for any connected partial sub-graph there exists a connected sub-graph with an edge less.
Finally, Cdense constraint is checked in a post-treatment.

Identifying communities and individual trajectories: The second step consists in merging
the obtained sub-graphs that share similar vertices and time steps. Two sub-graphs ϕ1 = (N1,L1)
and ϕ2 = (N2,L2), whose supports are respectively T1 and T2, are merged with respect to ∆ if
N1 ⊆ N2, and ∀t ∈ T1 \T2,∃t0 ∈ T2, |t− t0| < ∆. The obtained sub-graph ϕ = (N2,L1 ∪L2) is
associated with time steps T1∪T2 and is considered as a community. Individual trajectories are
built from these communities.
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τ σ # sub-graphs Avg. # vertices Avg. # edges. Avg. # time steps
IMOTE 7 6 27507 7.9 8.3 8.2

MIT 10 14 30144 10.5 12.8 18.1

Table 2.3: Algorithm parameters and frequent connected sub-graphs properties.

Results obtained on IMOTE and MIT data sets: Table 2.3 reports the number and size of large,
frequent and connected sub-graphs that have been extracted, as well as the parameters used.
Among these sub-graphs, only those with a density greater than δ = 0.8 are kept. This gives us
138 dense connected sub-graphs for IMOTE and 1226 for MIT. As these patterns overlap, we use
the second step using ∆ = 15 (30 min. in real time) to obtain communities, i.e. distinct dense
connected sub-graphs and their associated time steps. It results that IMOTE data set is structured
by 14 communities (see Figure 2.4), whereas there are 9 communities on the MIT data set.

From these communities we derive the trajectories of the individuals. The trajectory of
each individual in the communities of IMOTE data is displayed in Figure 2.4. Boxes represent
individuals entering a group and edges are labeled by the individual number when he/she goes
from one group to another. Notice that the graph is oriented: An arc (u,v) represents individuals
moving at least once in the data from group u to group v. For example, individual 8 initially
belongs to group 13, he/she further moves into group 6, and finally enters group 7. Results on
MIT are similar and are not reported here. Note that these techniques use exhaustive methods
and algorithms but still require a supervisor to fix several parameters (σ ,δ ,τ,∆) to drive the
graph structural exploration.

Figure 2.4: Individual trajectories in groups ordered by time. ix (boxes) are individuals while gx (circles)
denotes social groups.

Let us emphasize as a conclusion to this subsection, that the dynamic mobility networks
studied display non-trivial global properties: The connected components have all the more short
lifetime since they are large; Around 40% of edge creations increase the number of triangles
in the graph; From these dynamic graphs, one can identify ten groups into which individuals
are moving. These properties are to be central ones to keep in modeling those networks. In the
following section, we propose simulation algorithms that generate data with similar properties.
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2.1.4 Simulation of Dynamic Graphs

From the observations detailed in Sections 2.1.2 and 2.1.3, we propose several generic random
dynamic models that make possible to generate random dynamic graphs which have a behavior
similar to the one observed in experimental data sets. These algorithms simulate the edge creation
and deletion processes by considering several input data: The number of vertices, the contact
and inter-contact duration distributions, the connected component number distribution or the
dynamics of triangle creation. Their ability to simulate credible data is assessed by comparing
the previously mentioned properties on both original and simulated data.

Simulation algorithm

The simulation is based on a transition model with Markovian property. For each time step
and for each edge independently, each edge e will change its state (active or inactive) with
transition probability Ptr(e,Gt). The corresponding algorithm is displayed as Algorithm 3. The
transition probability depends only on the state of the network, in particular on the duration
τ(e) since the link e has last changed its status (up-time if the edge is active, down-time if it
is inactive). The assumptions that the transition probabilities are independent from one time
step to another hold because the processes of edge creation and deletion were found to have a
correlation time much smaller than any other property of the graph. Moreover, we can consider
each edge independently since edge correlation coefficients (in time) were found very low1.
Four models for the transition probabilities are proposed hereafter, that combine the contact and
inter-contact duration distributions, as well as the number of connected component distribution,
and the triangle creation process.

Algorithm 3 Simulation algorithm
Require: Simulation time
Ensure: Random Dynamic Graph

1: for all Simulation Time Step t do
2: for all Edge e do
3: Ptr(e,Gt) = TransitionProbability(e) given the state Gt

4: pr = Uniform(0,1)
5: if (pr ≤ Ptr(e)) then
6: ChangeState(e)
7: end if
8: end for
9: end for

Model A: A basic point of the dynamics was expressed as heavy-tailed distributions for
contact and inter-contact durations (referred to as PON and POFF respectively), as discussed
in Section 2.1.2. Supposing them to be stationary distributions for the system, we derive the
transition probabilities of the edge, depending on τ(e) (time since the edge is in the state). Let
P+(τ) be the probability that one edge that was OFF (i.e., inactive) since τ (τ ≥ 1) is activated
(going from OFF to ON), at a given time. Similarly, let P−(τ) be the probability that one
edge that was ON (i.e., active) for a time τ (τ ≥ 1) is deleted (going from ON to OFF). The
probability that a contact will last for τ time steps can be computed as the probability that the
edge disappeared after τ multiplied by the probability that the edge did not disappear in the
preceding τ−1 time steps. It can be expressed as PON(τ) = P−(τ)×∏

τ−1
i=1 (1−P−(i)). One can

1Edge creation and deletion processes (E⊕(t) and E	(t)) remain mostly uncorrelated with all other properties
with correlation coefficients always below 0.2.
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then invert this relation and compute P−(τ) (resp. P+(τ)) recursively as:

P−(τ) =
PON(τ)

∏
τ−1
i=1 (1−P−(i))

, τ ≥ 2, P−(1) = PON(1)

P+(τ) =
POFF(t)

∏
τ−1
i=1 (1−P+(i))

, τ ≥ 2, P+(1) = POFF(1)

In this model, named A, the empirical contact and inter-contact duration distribution is only
imposed and the transition probability is therefore:

Ptr(e,Gt) =

{
P−((τ(e)) with τ(e) the time since e is active
P+((τ(e)) with τ(e) the time since e is inactive

It is easy to check that all resulting sequences of graphs Gt will share on average the prescribed
distribution of contact and inter-contact durations. As it was already shown in Fleury, Guillaume,
Robardet, and Scherrer 2007, merely forcing the contact and inter-contact duration distributions
is not sufficient to fully uncover the dynamics of an experimental data set. It is then worth
introducing other elements in the transition probability.

Model B: To explore the relevance of properties such as E(t), V (t), NC(t) and D(t), the
probability of transition is weighted by a probability of acceptance of the new state depending
of the experimental distribution for a property of interest. This is implemented by Rejection
Sampling (Robert and Casella 2004), based on a Metropolis-Hastings algorithm (Hastings
1970). The new proposed state, denoted G′t = {Gt with state of e changed}, is accepted with
probability PRS(Gt ,G′t) = min

(
1, F(x(G′t))

F(x(Gt))

)
if F is the target PDF for the graph. The rationale of

this procedure is to impose the averaged distributions on the simulated sequence of graphs.
From all the possible graph properties that can be simulated by our random dynamical

graph generator, one graph property is emphasized for the sake of the clarity: The number of
connected components. Because other properties were found highly correlated with one another,
the behavior of the simulation models is similar with respect to them. We denote by B the model
that imposes the distributions of contact / inter-contact durations and of the number of connected
components:

Ptr(e,Gt) = P−/+(τ(e)) ·PRS(Gt ,G′t).

Models Aω and Bω : The average proportion of edges creations that yield triangles is larger
than for random graphs as discovered in Section 2.1.3. Therefore, to take this into account in the
simulations, a weight is applied on the transition probability to reproduce the correct dynamical
transition process concerning triangles (and not merely the stationary distribution of the number
of triangles). Obviously, we do not want to change the mean probabilities of transition. Hence,
the weights are chosen such that the mean probability (over all the inactive edges) is still P+(τ).
Using the same notations as in Section 2.1.3, the transition probabilities are corrected with the
ratios P+/tri+/ f+/tri+ for activation of edges that add a triangle, and P+/tri=/ f+/tri= for those
that do not. This complies naturally with the fact that the averaged probabilities of creation
are not changed. Nevertheless, it will give a higher transition probability to triangle-affecting
transitions, like in IMOTE and MIT data sets.

We apply this weight on the two previous models and obtain two other simulation models:
• Aω , with the following transition probability:

Ptr(e,Gt) =


P+(τ(e))

P+/tri=
f+/tri=

for edge creation without new triangle,

P+(τ(e))
P+/tri+
f+/tri+

for edge creation with a new triangle.

P−(τ(e)) for edge deletion.
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• and Bω with the following transition probability:

Ptr(e,Gt) =


P+(τ(e))PRS(Gt ,G′t)

P+/tri=
f+/tri=

for edge creation without new triangle,

P+(τ(e))PRS(Gt ,G′t)
P+/tri+
f+/tri+

for edge creation with a new triangle.

P−(τ(e))PRS(Gt ,G′t) for edge deletion.

All models are stationary in that the parameters are fixed for the full simulation. The
simulations presented here are designed to reproduce the first day of conference in the IMOTE

data set (this period corresponds to 0.55 · 105s to 1.0 · 105s), a period where the data appears
conveniently stationary – even though the whole data set is not.

Simulation results
Models A and B: Figure 2.5 (left) shows the number of links for IMOTE data and the first
model A. Obviously, as we are considering stationary models, they cannot account for peaks
corresponding to lunches, breaks, etc. Simply the average number of links in both IMOTE

and the models is the same. Figure 2.5 (middle and right) shows the contact and inter-contact
duration distributions of both the original IMOTE data and these two models. The distributions
are almost perfectly adjusted in all cases, showing that even when targeting a distribution using
the rejection sampling step, the contact and inter-contact distributions are properly reproduced.
This constitutes a basic validation of our simulation procedure.
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Figure 2.5: Number of edges for IMOTE data and model A (left), contact (middle) and Inter-contact
(right) duration distributions (CCDF) for the models and IMOTE.

The distributions of E(t), V (t) and Nc(t) are plotted in Figure 2.6. A first remark is that the
sole contact and inter-contact duration distributions (model A) dramatically fail to reproduce
the properties. More precisely, the number of connected vertices is strongly over-estimated, the
number of connected components is under-estimated, and so is the number of triangles. The
non-stationarity in the IMOTE data introduces a much higher variance, yet it does not explain
all the differences. Imposing the distribution of connected components (model B) improves the
accuracy of the simulation.

When more global characteristics such as the joint distribution of number of edges and
vertices in connected components are estimated, the IMOTE data (shown on Figure 2.7 (left))
and the simulations of the models A and B (shown on Figure 2.7 (middle and right)) are
much different. The connected components in the two models are much less dense, for a
given number of vertices, the number of edges is often the minimal one (the dotted line on the
plots), and does not vary much above this minimum. Neither the contact/inter-contact duration
distributions nor the stationary distributions of standard graph properties manage to reproduce
dense connected components as observed in both IMOTE and MIT data sets. The density of
the connected components (the groups) is still underestimated in the previous models. Edges
are spread uniformly in the graph, and consequently fail to create large and dense connected
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Figure 2.6: IMOTE: Probability distribution function for original data and the models.

components. We believe this is of major importance for communication protocol design and
realistic models have to reproduce this property. The same remarks can be made for the joint
distribution of the number of connected vertices and edges in the graph.
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Figure 2.7: Joint distribution of the number of connected vertices and edges in connected components,
for IMOTE (left), model A (middle) and model B (right).

Models Aω and Bω : A first observation is that the introduction of the triangle creation prob-
ability does not have an impact on the contact and inter-contact duration distributions (not
reported here). As imposed in the models, the probabilities P+/tri+ and P+/tri= are much closer
to experimental data, see Table 2.4. The fact that P+/tri+ is slightly over-estimated is again due
to an asymmetry in the transition probability among edges.

Data set P+/tri+ P+/tri=
IMOTE 44 % 56 %

Models A and B (average) 5 % 95 %
Models Aω and Bω (average) 60 % 40 %

Table 2.4: Proportion of edges additions that creates a new triangle for the four models.

Figure 2.8 reports the joint probabilities of the number of connected vertices and edges in
the graph as well as inside the connected components. As opposed to the models A and B, the
density of connected components is comparable to that of IMOTE data. The model, thanks to
the introduction of dynamical characteristics, manages to generate more realistic simulations.
This opens the track to improved models that match the important characteristics of dynamics of
mobility networks.

To qualitatively assess our simulation model, we report on Figure 2.9 the trajectories of
individuals among identified communities for model Bω , using the same methodology as in
Section 2.1.3. For models A and B, it is impossible to identify any communities satisfying
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Figure 2.8: IMOTE: Joint distribution of the number of connected vertices and edges in connected
components, for models Aω (left) and Bω (right).

the density and temporal support constraints. Because the number of frequent connected sub-
graphs is larger on the simulated data than on the original ones, the parameters σ and τ are
increased from respectively 6 and 7 on the IMOTE data, to 9 and 10 on the simulated ones (see
Section 2.1.3), so as to keep a reasonable number of communities. Trajectories comparable to
the ones computed on IMOTE data are found here, once again emphasizing that models Aω and
Bω are more realistic than the other ones.

Figure 2.9: Trajectories of individuals among communities extracted from Bω .

In parallel to this theoretical study on publicly available data, we have worked on high-value
data: footprints of each rental of the Vélo’v bicycle sharing system. These data includes all
information on the Vélo’v rentals, that is to say, the full information of 2 % of all trips in the city
whatever the means of transport used. The following Section presents some results we obtained
from these data.

2.2 Vélo’v bicycle sharing system viewed as a complex network

As part of IXXI Institute, a group of researchers from various disciplines was formed in order to
study Lyon’s shared bicycle system called Vélo’v. This public transportation system provides
digital footprints of all the movements made using this system and makes possible its study
using a dynamic complex network point of view. The Vélo’v program is deployed in Lyon since
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May 2005. It consists now of 4000 bicycles (also called Vélo’v) that can be hired at any of the
340 stations, spread all over the city, and returned back later at any other station. In contrast
to old-fashioned rental systems, the rental operations are fully automated: The stations are in
the street and can be accessed at anytime, and the rentals are made through a digital terminal
at the station with a credit card to obtain a short-term registration card, or through a year-long
subscription system. Thanks to JCDecaux – Cyclocity and the Grand Lyon, we have access to
the anonymized version of the trips made with Vélo’v over more than two years (from May 2005
to the end of 2007). During this period, there were more than 13 millions bicycle trips. The
dataset consists of a log of all the rentals, with the station and the time of departure, and the
destination station and the time of arrival.

Borgnat, Robardet, Abry, Flandrin, Rouquier, and Tremblay 2013 presents a joint analysis
in space and time of Vélo’v system, in order to discover the main patterns of use along these
two dimensions and obtain some insight on the dynamics of people’s moves. This analysis is
based on previous results that are recalled in Section 2.2.1. Section 2.2.2 details how Vélo’v
bicycle trips can be accumulated to form a relational dynamic graph. Finally, network stations
are aggregated on the basis of (1) the number of bicycles they exchange during the week-days or
the week-ends (Section 2.2.3), or (2) the similarity of their usage pattern (Section 2.2.4).

2.2.1 Global features of Vélo’v system

A basic feature of transportation system studies is to discover its time pattern of use: When
is it really used? What are the peak hours? Is it a means of transportation for the ordinary
week-days or the week-ends? Using periodic averaging over the week combined to detrending
of the nonstationary behavior, we are able to estimate the mean pattern of total rentals along
the week, as shown in Figure 2.10 (Borgnat, Abry, Flandrin, Robardet, Rouquier, and Fleury
2011; Borgnat, Abry, Flandrin, and Rouquier 2009). It reveals that Vélo’v is used first for
ordinary transport on working days. Its activity peaks are during the morning, the lunch time
and the evening and this is characteristic of a system used to go to work and then to come back,
with the lunch break in the middle. All the week-days are similar in that aspect, as shown on
Figure 2.10 (b). However, a second type of use exists during the week-ends, as seen on this
second plot: The peaks are less sharp and more spread out around noon and during the afternoon.
This is compatible with leisure activities. Finally, one can see just after midnight each day a
small bump that can be related to the closure of the public transports right after midnight (this
even causes local maxima on Friday and Saturday nights). This type of pattern is reminiscent to
uses of ordinary public transports. An exception is the nocturnal activity when public transports
are closed.

The prediction of the number of rentals at a given day and time was addressed in Borgnat,
Abry, Flandrin, Robardet, Rouquier, and Fleury 2011; Borgnat, Abry, Flandrin, and Rouquier
2009 using statistical time-series analysis. The global number of rentals, summed over the city,
can be predicted on an hourly basis if one takes into account several important factors: The
weather (temperature and rain), the holiday periods, and the existence of a correlation over
one hour. The first two features (temperature and rain) account for most of the nonstationary
evolution over the year of the average rentals. When zooming in at finer time scales, the one-hour
correlation reflects that one decides to use a bicycle depending on the conditions seen during the
previous minutes, and a rain condition affects the decision on this hourly scale – as it could be
expected.

Finally, several empirical studies of Vélo’v data revealed various features of this system,
such as the most frequent paths taken by these bicycles, the advantages of using a bicycle as
compared to a car (Jensen, Rouquier, Ovtracht, and Robardet 2010), the distribution of durations
and lengths of the trips (Borgnat, Abry, Flandrin, Robardet, Rouquier, and Fleury 2011), or the
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Figure 2.10: Number of rentals made per hour and per day of week, summed over all the Vélo’v stations:
(a) pattern for the whole week; (b) superposition of individual day patterns in the week. The average over
the 5 ordinary week-days from Monday to Friday is the thick black curve with circles. The five curves in
thin lines that look alike are each for one week-day: Monday in blue; Tuesday in dark green; Wednesday
in red; Thursday in cyan; Friday in purple. Saturday (thick blue curve with circles) and Sunday (thick
cyan curve with circles) reveal a different structure, especially for the peak hours. The average over all
days is the thick red curves and is dominated by the week-days.

usual speed of the bikers depending on the time of the day (Borgnat, Abry, Flandrin, Robardet,
Rouquier, and Fleury 2011; Jensen, Rouquier, Ovtracht, and Robardet 2010). Note that these
properties are generally heterogeneous because their distributions are usually with long tails. For
instance, though the median duration of a trip with Vélo’v is 11 minutes and the average is little
bit less than 30 minutes, there are rentals lasting more than 2 hours, and the distribution has a
tail that is roughly a power-law (Borgnat, Abry, Flandrin, Robardet, Rouquier, and Fleury 2011).

All these studies give a good empirical description of the global features of Vélo’v system
along time or space. In the following, we present joint analysis over these two dimensions.

2.2.2 Vélo’v as a complex network
Complex networks are usually employed when studying real-world dataset including some
relational properties. In the context of shared bicycle systems, a network arises when looking
at stations as vertices of a complex network. Let us define N the set of stations. Each vertex
n ∈N is at a specific geographical place in the city. Going from one station to any other is
theoretically possible and around half of all theoretically possible trips have been done at least
once. However some preferred trips appear in the data, and they are not necessarily local in
space. This justifies the representation of the Vélo’v system as a weighted network.

The relation among the vertices of the Vélo’v network – the stations – is created by the
trips made from one station to another: The greater the number of trips made, the more linked
the stations are. Let us define D = {(n,m,τ)} as the set of individual trips going from station
n ∈N to station m ∈N at time τ . The Vélo’v network is defined as G = (N ,E ,T ) where
the set of possible edges is E ⊆N ×N and T is a function defining a weighted adjacency
matrix varying in time. Let us define T as a set containing the times t of interest, and S a set of
timescales ∆ for aggregation. The function T : E ×T ×S → N is obtained by

T [n,m](t,∆) = |{(n,m,τ) ∈D such that t ≤ τ < t +∆}| (1)

The result T [n,m](t,∆) can be seen as the adjacency matrix of a weighted directed graph, that
represents a snapshot of the Vélo’v network. On each edge, the weight represents the number
of bicycles going from station n to station m between times t and t +∆. More generally, the
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network G is a dynamical network and issues arise when we need to deal both with its spatial
nature (the vertices and the edges) and with its temporal evolution as obtained when varying t or
the timescale ∆.

Timescales and aggregation in time of Vélo’v networks.

We take into account the cyclic nature of the network: The same pattern repeats itself each week
and we estimate T using periodical averaging. For that, let us decide on a timescale ∆ and then
define a period P = p∆, p ∈ N. Let us set TP = {k∆ mod P;k ∈ {0, . . . , p−1}} so that when
applying equation (1), the first interval in which the trips are counted is: [0 ∆] mod P. The
periodical estimation of the Vélo’v network is obtained by dividing T by the number of periods
P in the data. As the main period in the data is the week (Borgnat, Abry, Flandrin, and Rouquier
2009), we let P be equal to 1 week and ∆=2h for all the results displayed hereafter.

It is possible to reduce the dimension in time of this evolving network by using a Principle
Component Analysis in time, as in Borgnat, Abry, Flandrin, Robardet, Rouquier, and Fleury 2011
and Borgnat, Fleury, Robardet, and Scherrer 2009. It turns out that the principal components
display peaks in their time evolution that correspond exactly to the different peaks already
commented for the global number of rentals, as shown in Figure 2.10. In the following, we will
keep in the dynamical adjacency matrix T [n,m](t,∆), only the 19 peaks of activity in time, as
given by the global behavior as well as the principle components: Every ordinary days around
8am, 12am and 5pm, and each of the two week-end days around 12am and 4pm. We note T ∗

P
this set of peak. The Vélo’v network is thus represented by T [n,m](t,∆) with t ∈T ∗

P .

To make possible the comparison of the different snapshots, we propose to build an aggregate
of the entire network. Classical aggregation in time is to sum over time the different snapshots
and thus focuses on the strong exchanges between stations. In a sense, it can be viewed as going
from one timescale to a larger one (hence giving a crude version of multiresolution analysis).
Using the 19 peak activity times T ∗

P , an aggregated view over the whole week is obtained by
< T [n,m]>T ∗

P
= ∑t∈T ∗

P
T [n,m](t,∆).

2.2.3 Aggregation in space for the Vélo’v network

The series of snapshots of graphs convey detailed information, yet this is too much information
for modeling. However, aggregating over all the vertices as done in Section 2.2.1 does not give
enough details. We would like to aggregate on intermediate spatial scales for the vertices in the
network. There are two classical approaches: Find clusters of vertices that are strongly linked
together, also called communities (Fortunato 2010), or use multiscale harmonic decomposition
over a graph (Hammond, Vandergheynst, and Gribonval 2011). Here, we explore the spatial
aggregation that is obtained by looking at communities of stations. So as to compare with the
urban organization of the city, a map of the city is in Figure 2.11 that shows the main lines
of transportations and provides the places and names of the most important hubs for public
transportation. By referring to this map, the reader will follow with greater ease the comments
about the spatial aggregation proposed by community aggregation in this section.

Aggregation of network by communities.

At a given timescale and instant, we propose to aggregate the network in space over its com-
munities of vertices. A community is often defined as a subset of vertices that are strongly
linked together inside the network. We adopt the modularity as a metric to find communities.
Modularity was first proposed in Newman and Girvan 2004 and extended in Leicht and Newman
2008 to the case of directed networks. Assume that t and ∆ are set to specific values and use the
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Figure 2.11: Map of the cities of Lyon and Villeurbanne with the Vélo’v stations and their Voronoi
diagram (Preparata and Shamos 1985). Each dot is a Vélo’v station surrounded by its own Voronoi cell.
One sees that the city is well covered, with a higher density of stations in the center. Major roads are in
white; main public transport lines are in red (subways) and grey (tramways). Parks are in green and the
two rivers are in blue (the Saône on the west side, the Rhône on the east side). Names of the different
parts of the city are given, as well as names of main hubs of transportations: Part-Dieu, Perrache for the
main train stations; Vaise and Jean Macé for secondary train stations; Bellecour, Hôtel de Ville, Brotteaux
(including Charpennes), Saxe-Gambetta for other important hubs of the public transport system. Gerland,
Croix-Rousse and Villeurbanne are other parts of the city that will be discussed afterwards. Finally, the
locations of the downtown university campuses are shown.

adjacency matrix T [n,m](t,∆) obtained that way. Modularity is defined as:

Q =
1

2W ∑
{n,m}∈N ×N

[
T [n,m]−

∑ j 6=n T [ j,n] ·∑k 6=m T [m,k]
2W

]
δcn,cm

where W = ∑n,m T [n,m] is the total weight of the network and cn is the partition index of the
group in which n is. The modularity is equal to the weighted sum of edges inside clusters
(as opposed to crossing between clusters), minus the expected weighted sum of such edges
if the graph was random conditioned on its degree distribution. Its values range between −1
and +1. If there is a community structure in the graph and the index cn reflects this structure
(by taking a different value for each community), Q should be large, typically larger than 0.4.
Conversely, if one finds a partition index cn for which Q is large enough, it tells that there are
communities of vertices. As a consequence, finding communities is possible by maximizing
Q over the set of {cn,n ∈N } of possible partitions of vertices. However, this task is hard:
The complete maximization is NP-complete (Brandes et al. 2008) and many approximations
such as the one in Clauset, Newman, and Moore 2004, have a tendency to propose too big
communities. In this work, we use the fast, hierarchical and greedy algorithm proposed in
Blondel, Guillaume, Lambiotte, and Lefebvre 2008 (called the Louvain algorithm), as a simple
way to find relevant communities. It is reviewed in Fortunato 2010 that modularity is a good
metric to find communities and that this algorithm works correctly as compared to other methods.
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Aggregation in space and time of the Vélo’v network

The method is first applied to the time-aggregated network < T [n,m]>T ∗
P

. Figure 2.12 shows the
community structure obtained by approximate maximization of the modularity Q by the Louvain
algorithm. Four communities appear in this network and they are displayed on the Figure. The
main feature is that the obtained communities, when shown on a map using the GPS coordinates
of each Vélo’v station, are easily grouped on a geographical basis. This can be surprising as the
partitioning in communities is blind to any geographical consideration. Anyway, one recognizes
in the proposed communities a partition of Lyon city that reflects its general organization. The
center of the city is spread out between the Presqu’île (between the two rivers, the Saône on
the west, the Rhône on the east) and Part-Dieu (transport hub comprising the main railway
station and a subway station) (blue community); the north-east part contains the 6th district
and Villeurbanne which are well connected together with a major science university campus
in the north (red community); the south and south-east parts are organized along two major
roads (one from Gerland to Saxe-Gambetta and then Part-Dieu, a second along the limit between
the 3rd and the 8th district to Saxe-Gambetta) (black community on the map). Finally, the
north (Croix-Rousse) and north-west (Vaise, 9th district) are separate from other parts because
Croix-Rousse is on the top of a high hill, and Vaise accessible only along the Saône river between
Croix-Rousse hill and Fourvière hill (5th district); this creates a fourth separate community.

Figure 2.12: Communities of the sum network < T [n,m]>T ∗P
: each community has its own color and

the size of each vertex is proportional to the number of trips made to and from this station; the width of
each edge is proportional to the number of trips made between two stations. For the sake of clarity, the
undirected version of the graph is shown and stations with a degree smaller than 2 and edges with less
than one trip per week are not shown.

Communities in Vélo’v networks during the week-days.

Communities can also be looked at for individual snapshots T [n,m](t,∆), with t ∈ T ∗
P , of the

Vélo’v network. Figure 2.13 displays the community structure obtained for two snapshots taken
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during ordinary job days (here, on Mondays). The community structure at a given time in the
week still matches a geographical partitioning of the city. Because the timescale is finer, with
less aggregation in time, more details are apparent and some specific Vélo’v stations are not
in the same community as their surrounding stations. For instance, the northern community
(Villeurbanne) which includes a major university campus, includes also a station on the banks of
the Rhône where there is also a university. Also, there are more communities (6 here) than in the
average network. One new community groups together the Croix-Rousse hill with the Hôtel de
Ville and the 6th district which contain the closest downhill subway stations. The comparison of
the maps in the morning (on the left) and at the end of the afternoon (on the right) is interesting:
It shows that most of the communities are left unchanged. This indicates that Vélo’v, like other
ordinary transportation means, is used for commuting (from home to work in the morning, and
back in the late afternoon). However, the community grouping the Croix-Rousse hill and the 6th
district is not present anymore: It is not hard to figure out that people living on the Croix-Rousse
will not use Vélo’v bicycles (which are heavy bicycles) to go up the hill back to their home.
Apart from that, more than 90% of the remaining vertices did not change of community. Note
that the same results are obtained for other ordinary week-days.

Figure 2.13: Aggregation in space of snapshots of the Vélo’v network: Monday 7am-9am (left) and
Monday 4pm-6pm (right). Each community has an arbitrary color. The size of each vertex is proportional
to its incoming flow added to its outgoing flow. Note that the number of trips is usually larger during the
afternoon (as was already seen on Figure 2.10, the peak for two hours in the afternoon is 1.5 times higher
than the one in the morning).

Communities in Vélo’v networks during the week-ends.
When turning to the analysis of the week-end uses of Vélo’v, the features change a little bit as
shown in Figure 2.14. A first point is that the most active stations during the week-ends are
not always the same than during the ordinary days. Major transportation hubs are unchanged
(Part-Dieu, down-hill of Fourvière, Hôtel de Ville,...) yet new active stations appear near places
for shopping (in the Presqu’île) and all around the large and green city park of la Tête d’Or in
the north.

On Sunday (on the right), the communities could be reminiscent of the time-averaged ones
excepted on two points. First, Vaise (9th district) is grouped with the Presqu’île community,
possibly because the paths along the river are a pleasant leisure trip. Second, the community
ranging from Part-Dieu to the 3rd and 8th districts contains a station which is the most active
during the week-ends: The station at the entrance of the city park of la Tête d’Or. Also some
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Figure 2.14: Aggregation in space of snapshots of the Vélo’v network Saturday 3pm-5pm (left) and
Sunday 3pm-5pm (right). Each community has an arbitrary color.

stations along the Rhône river are grouped in the same community. Here again, this is not a
great surprise as the park of la Tête d’Or is a main destination for Sunday’s outdoor activities.
This community connects this park to other places that are either hubs of transportation (like
Part-Dieu and Saxe-Gambetta) or other subway stations.

For Saturdays (on the left), the situation is more complex and does not reflect easily a simple
geographical partition of the city. A community organized around the park of la Tête d’Or and
grouping many stations around the park and on the river banks (having an easy access to the
park thanks to bicycle paths on the river banks) is clearly visible. A surprising feature is that
the periphery (Vaise, Croix-Rousse but also the most eastern parts of the city) is grouped in the
community of the city center (in blue). This is a clue showing that some people uses Vélo’v for
longer distance trips on Saturdays than on ordinary days.

This last aspect is one example of the fine scale analysis that are made possible by aggregating
the network in a meaningful manner. It helps finding some unexpected structure that could be
probed with more details in the complete dataset.

2.2.4 Typology of dynamics of the Vélo’v network
Another method for aggregation of vertices is possible: We now want to group two vertices if they
have the same usage pattern, whereas in the previous section we grouped vertices exchanging
many bicycles. Such an aggregated view is different from summing up the individual snapshots.
With the objective of proposing a streamlined methodology for aggregating networks in space
and/or time, we will show how the notion of communities can be tailored to group vertices with
similar behaviors. For that, the idea is to first build a new similarity network from the dynamical
network, before finding communities of similar vertices.

Similarity graph for the dynamics.
The principle is to quantify the resemblance over time of the different flows between stations.
For that, one considers each snapshot to be one observation of the network, and then builds a
similarity matrix between stations based on these observations. Given a station n ∈N , two
feature vectors characterize its activity: The incoming flows F in[n](t) = ∑

i∈N
T [i,n](t,∆) and

the outgoing flows Fout [n](t) = ∑
j∈N

T [n, j](t,∆) where t ∈ TP and ∆ is constant. For a given
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pair of stations [n,m], quantities can be computed to quantify if these activity patterns look
alike or not. A general approach relies on the choice of a distance d between features (see
for instance Basseville 1989 for many possible distances, or Fortunato 2010 for application on
graphs), leading to distances between activities of stations n and m:

Din[n,m] = d(F in[n],F in[m]) and Dout [n,m] = d(Fout [n],Fout [m]).

For dealing with observations at different times t ∈TP, it is natural to use a correlation distance
over the various observations. The empirical estimator of correlations reads as

Din
TP
[n,m] =

1
|TP| ∑

t∈TP

F̃ in[n](t)F̃ in[m](t)

where F̃ in[n] is the centered and normalized version for each n of F in[n] (respectively for F̃out [n]).
When looking at individual snapshots of the Vélo’v network, we have commented that the

behaviors during the week-days are roughly unchanged from one day to another. It makes sense
to take as the set of relevant times TP the 15 peaks of activity of the week-days that were already
used previously: 8am, 12am and 5pm, with ∆ = 2h. We obtain two correlation matrices of size
|N |× |N |, that we note Din

week and Dout
week. For the week-ends, the behavior of the stations is

different and we compute separately a correlation for the features during the week-ends. Using
for TP the times 12am and 4pm of Saturday and Sunday and a timescale ∆ = 2h, two other
correlation matrices are obtained: Din

w.−end and Dout
w.−end.

Remind that the goal is to compare the behaviors of stations, hence the choice of looking at
in-in or out-out correlations. An alternative would be to study in-out correlations between pairs
of stations; this metric would describe whether two stations are well connected in the meaning
that bicycles leaving one station have a good chance to arrive at another station. However, this
metric appear to be less interesting: First, the mere study of the flows connecting two stations,
as studied in Section 2.2.3, gives already a picture of how well two stations are connected in
this acceptance and this new study would be somewhat redundant; second, the flows leaving a
given station are usually really spread between many other stations: The statistical confidence on
estimated in-out correlations is low.
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Figure 2.15: Distribution of the empirical correlations Dout
week values.

For the Vélo’v network, the situation is that of many vertices (|N |= 338) but only a few
observations on one dataset because |TP| is 15 for week-days, and 4 for week-ends. Recent
theoretical studies about Correlation Screening (Hero and Rajaratnam 2011) have shown that,
even under the null hypothesis of no correlations between the vertex features, one should
expect large estimated values if using the empirical correlation for large |N | and small |TP|.
The number of false discovery of non-zero correlations can then be really large. In Hero and
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Rajaratnam 2011, expressions are given to estimate the threshold under which false discovery
becomes dominant. As a consequence, if one wants to build a network of similarity between
vertices based on correlation for a small number of observations (as it is often the case), it is
expected that a thresholding operation is needed on the correlation to reduce the number of false
discoveries. Using Hero and Rajaratnam 2011, and the specific values for the Vélo’v network, a
threshold in correlation of 0.8 is reasonable to obtain some statistical confidence of discovering
real correlations. Figure 2.15 shows the histogram of the values of the correlation matrix Dout

week
outside the diagonal. A maximum in the probability of finding large correlations occurs around
0.85 that is not predicted by a null hypothesis of uncorrelated vertex features. This is a sign of
existing similarities in the vertices’ activities in the network.

We build a similarity graph for the vertices by thresholding the 4 correlation matrices and
summing up the thresholded correlations. The weight S[n,m] on each edge of the similarity
graph is then

S[n,m] = ∑
dir.={in,out}

time={week,w.−end}

δ(Ddir.
time[n,m]>η)Ḋ

dir.
time[n,m]

where η is the threshold. Based on the analysis before, we set η = 0.8 (though the results are not
sensitive to small changes of η). An important remark is that the threshold is applied directly on
D, not on its absolute value: For the Vélo’v network, negative correlations are discarded because
stations with opposite activities would not be in a group of similar behavior.

As a consequence, the similarity weights S[n,m] are between 0 and 4. If two vertices are
never similar, neither during the week nor during the week-ends, both for incoming and leaving
flows, the weight is 0 and the vertices (i.e., Vélo’v stations) are not connected in the similarity
graph. If the vertices have similar behavior along time for some of the features, the weight will
increase by being higher than η , 2η , 3η or 4η if they are similar for one, two, three or all of the
feature correlation matrices. Using thresholding before summing the correlations allows us to
escape the poor estimation in correlation screening.

Communities of dynamical activities.

Given the similarity graph, quantifying if the activities of two stations look alike along time
or not, it is possible to build a typology of the stations by grouping them according to these
correlations. This is simply framed as a problem of detecting communities in the similarity graph
of weights S. The same method of community detection is used on the weighted similarity graph.
It provides communities of stations that share their pattern of activity in time. Each community
is a type of dynamical activity in the Vélo’v network. The set of communities can be seen as
a typology of the different dynamics at work in the network. Figure 2.16 shows the obtained
typology on the Lyon map.

As compared to the previous communities obtained for space aggregation, the similarity
communities can not be matched on a simple geographical partitioning of the city. However, it
can be interpreted as a kind of segmentation of the city in various zones of activity. For instance,
the community in black groups most of the vertices from the university campus (Villeurbanne
and near the park in the north, Gerland in the south, the medicine university in the east and the
university on the banks of the Rhône) and parts of the city with many companies – places to which
people commute. The community of Part-Dieu (in red) includes many places of major subway
or tramway hubs. Another (in dark blue) is spread out in the city center and has extensions along
the stations of the subway lines crossing the center at Bellecour. Finally, the two remaining
communities (in light colors) group parts of the cities that are in the east (mostly residential area)
or near the Saône river banks in the center (where there are many shops, especially active during
the week-ends).
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Figure 2.16: Communities in the similarity graph S[n,m] of the Vélo’v network. Each community (in
an arbitrary color) reflects a specific pattern of usage of the station during the week. Edges are non-zero
weights of similarity S[n,m] and vertices have a size proportional to the number of trips made to and from
this station.

2.3 Discussion

Statistical time-series analysis and structural techniques can be used to reveal the main global
properties of relational dynamic graphs. From the sensor mobility networks studied, it appears
that all graph properties are highly correlated, except for the links creation and deletion processes
which are independent of other graph properties. The dynamics of structures, such as the
triangles or the connected components, are key features of the evolution of relational graphs:
The dynamics of triangle creation is higher than what would be expected in non-structured
random graphs and the connected components are less stable than what was expected. Based on
these analysis, simple yet very accurate models can be designed that generate random relational
dynamic graphs. The qualitative summaries of the trajectories of vertices among few identified
structures of the graph are very similar, whatever they are computed on the original data or on
data generated by the models.

Community detection mining tools can also be used to extract clusters of vertices based
on an intra versus inter community interaction measure (modularity). In the analysis of the
Vélo’v dataset, it extracts either communities of stations that exchange regularly a large number
of bicycles, or communities of stations that are similar in the time patterns of bicycle flows.
Such analysis enabled us to gain a significant understanding on the social usage of the Vélo’v
program in Lyon: Communities remain geographically concentrated (hence indicating a preferred
short-range use of the bicycles) while time patterns of flows between stations display similarities
so that they are grouped in clusters separating trips related to professional activities (week days
and major communication hubs) from those used during leisure time (week end and parks).

The analysis of Vélo’v data is still an on going work that is conducted within Vél’innov
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ANR project 2. Two directions of research are currently under study: (1) we are considering
the extraction of relationships between Vélo’v station attribute changes (the characteristics of
the population living or working near by, the place of interest in their neighborhood) and the
topological modifications of the graph, that is to say the flow between stations; (2) we are
considering the use of signal processing methods to the study of these data by transforming
the graph into signals, and analyzing them using signal processing methods (Hamon, Borgnat,
Flandrin, and Robardet 2013a; Hamon, Borgnat, Flandrin, and Robardet 2013b).

2Projet ANR Sociétés Innovantes, innovation, économie, modes de vie – INOV 2012
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3 — Mining attributed dynamic graphs

Whereas in the previous chapter we considered modeling and description methods, that aim at
understanding the generative processes of the data, we focus here on local pattern discovery in
attributed dynamic relational graphs. Such techniques rely on the fast counting of the exhaustive
collections of patterns that provide a fairly complete picture of the information content of the
graph. Each pattern describes a part of the relational graph that is significant as evaluated by a
measure of interest. One of the challenges is to design patterns that describe both the similarity
of the vertices relative to the structure encoded by the graph relationship and the similarity of
the vertices with respect to their attribute values. As the size of the search space is very large,
to be efficient, the extraction must wisely exploit the constraints. In this chapter, we present
our work related to constraint-based pattern mining in relational graphs that are either attributed
or dynamic, or both. In Section 3.1, we extract local patterns in static attributed graphs that
combine information about the connectivity of the vertices and their attribute values (Prado,
Plantevit, Robardet, and Boulicaut 2013; Salotti, Plantevit, Robardet, and Boulicaut 2012). The
connectivity of each vertex is described by topological properties that quantify its topological
status in the graph (connectivity, centrality, etc.). Co-variations among these properties and the
numerical attributes associated to each vertex are extracted: Sets of attributes, that share the
same tendency among a large number of vertex pairs, describe important local aspect of the
relational graph. In Section 3.2, we study dynamic relational graphs by extracting patterns that
identify the dynamics of highly connected sub-graphs (Robardet 2009). This approach relies
on the local-to-global framework: It first extracts isolated pseudo-cliques and second model
the dynamics of the graph as the evolution in time of these patterns. Finally, in Section 3.3,
attributed dynamic graphs are considered. The constraint-based pattern mining framework is
used to identify dynamic sub-graphs whose vertices follow the same trend over time for a subset
of attributes with numerical values (Desmier, Plantevit, Robardet, and Boulicaut 2013). This
pattern domain relies on the graph structure and the temporal evolution of the attribute values.
Several interestingness measures are proposed to focus on the most relevant patterns with regard
to the graph structure, the vertex attributes, and the time.

3.1 Mining attributed relational graphs
Existing methods that support the discovery of local patterns in graphs mainly focus on the
topological structure of the patterns, by extracting specific sub-graphs while ignoring the vertex
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properties (e.g. cliques (Makino and Uno 2004) or quasi-cliques (Liu and Wong 2008; Uno
2010)), or compute frequent relationships between vertex attribute values (frequent sub-graphs
in a collection of graphs (Jiang and Pei 2009) or in a single graph (Bringmann and Nijssen
2008)), while ignoring the topological status of the vertices within the whole graph, e.g., the
vertex connectivity or centrality. The same limitation holds for the methods proposed in (Khan,
Yan, and K. Wu 2010; Mougel, Rigotti, and Gandrillon 2012; Silva, Meira, and Zaki 2010;
Silva, Meira, and Zaki 2012), which identify sets of vertices that share local attributes and that
are close neighbors. Such approaches only focus on a local neighborhood of the vertices and
do not consider the connectivity of the vertex in the whole graph. To describe static attributed
graphs, we propose in Prado, Plantevit, Robardet, and Boulicaut 2013 a broader setting that
makes possible to find similarities among vertex descriptors, that is to say vertex attributes all
together with topological vertex properties. These descriptors are mostly of numerical or ordinal
types, and we propose to capture their similarity by quantifying their co-variation to indicate
how vertex descriptors of a set tend to monotonically increase or decrease all together.

Let us illustrate our proposal on a co-authorship graph depicted in Figure 3.1, where vertices
(from A to P) denote authors, edges encode co-authorship relations, and three attributes describe
author: h corresponds to the author h-index, which attempts to measure both the productivity
and the impact of the published work of each author (Hirsch 2005); i denotes the average
number of hours per week spent by each author on instructional duties; and t designates the
number of publications the author had in the IEEE TKDE journal. As topological property, we
consider the betweenness centrality measure, that is the number of times a vertex appears on a
shortest path of the graph (see Section 3.1.1). This value is shown in a circle associated to each
vertex. For instance, vertex D has attribute values h = 25, i = 1.5 and t = 18 and a betweenness
centrality value equal to 73. One of the topological patterns extracted from this attributed graph
is P = {h+, i−,BETW+}, whose meaning is the higher the value of attribute h, the lower the
value of attribute i and the higher the betweenness centrality of a vertex. In other words, authors
that tend to have a high h-index, tend to have a low instructional duty and publish articles with
co-authors that are also central in the graph, inducing a rather small distance to other vertices.
This topological pattern combines a topological property (BETW) with two vertex attributes (h
and i) and is supported by 89 pairs of vertices among the

(16
2

)
possible pairs over the graph. Its

top 3 representative vertices are E, I and D (shadowed on Figure 3.1). These vertices have the
highest values on h and BETW, and the lowest values on attribute i compared to other vertices.
Therefore, these dominant vertices have a significant impact on the support of this pattern.

3.1.1 Topological pattern domain

The input of our mining task is a non-directed attributed graph G = (V,E,L), where V is a set
of n vertices, E a set of m edges, and L = {l1, · · · , lp} a set of p attributes associated with each
vertex of V , which may be numerical or ordinal. Important properties of the vertices are also
encoded by the edges of the graph, which describe inter-relations between vertices. From this
relation, we can compute some topological properties that synthesize the role played by each
vertex in the graph. The topological properties we are interested in range from a microscopic
level – those that describe a vertex based on its direct neighborhood – to a macroscopic level –
those that characterize a vertex by considering its relationship to all other vertices in the graph.
Statistical distributions of these properties are generally used to depict large graphs (see, e.g.,
(Albert and Barabási 2000; Kang, Tsourakakis, Appel, Faloutsos, and Leskovec 2011)).

Microscopic properties

We propose to use four topological properties to describe the direct neighborhood of a vertex v:
• The degree of v is the number of edges incident to v ( deg(v) = |{u ∈ V, {u,v} ∈ E}|).
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Figure 3.1: A co-authorship attributed graph toy example.

When normalized, it is called the degree centrality coefficient: DEGREE(v) = deg(v)
n−1 (e.g.,

DEGREE(B) = 3
15 ).

• The clustering coefficient evaluates the connectivity of the neighbors of v and thus its local
density:

CLUST(v) =
2|{{u,w} ∈ E, {u,v} ∈ E ∧{v,w} ∈ E}|

deg(v)(deg(v)−1)

(e.g., CLUST(B) = 2|{{A,D}{C,D}}|
3×2 = 2

3 )
• To better understand the structure of the neighborhood of v, we also consider the quasi-

cliques (Liu and Wong 2008) that involve v. v belongs to a γ-quasi clique Q iff the graph
GQ induced by the set of vertices Q is connected and satisfies

∀u ∈ Q, degGQ(u)≥ dγ(|Q|−1)e

where degGQ(u) is the degree of u in GQ (e.g., {A,B,C,D} is a 2/3-quasi clique since
degGQ(A) = degGQ(c) = 2≥d2

3(4−1)e and degGQ(B) = degGQ(D) = 3≥ 2). We consider
two properties based on the quasi-cliques involving v: the size of the largest quasi-clique
(SZQC(v)) and the number of quasi-cliques (NBQC(v)).

Macroscopic properties
We consider five macroscopic topological properties to characterize a vertex while taking into
account its connectivity to all other vertices of the graph.
• Vertex communities can be computed by looking for a partition of V that maximizes the

Newman’s modularity measure (Newman 2004). This criterion is based on the proportion
of edges that fall within the community minus the expected such proportion if edges were
distributed at random:

Q = 1
4m ∑

u,v

(
1E({u,v})−

deg(u)deg(v)
2m

)
δcu,cv

where cv is the community assigned to v, δcu,cv is the Kronecker delta (δcu,cv = 1 if cu = cv

and δcu,cv = 0 otherwise), 1E({u,v}) is the indicator function of the set E (1E({u,v}) = 1
if {u,v} ∈ E, 0 otherwise). For example, according to such a definition, the 4 communities
on Figure 3.1 are {A,B,C,D}, {E,N,O,P}, {F,G,H}, {I,J,K,L,M}. As topological
property, we consider the size of the community of v (SZCOM(v)).
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• The relative importance of vertices in a graph can be obtained through centrality mea-
sures (Freeman 1977). Closeness centrality CLOSE(v) is defined as the inverse of the
average distance between v and all other vertices that are reachable from it. The distance
between two vertices is defined as the number of edges of the shortest path between them:
CLOSE(v) = n

∑u∈V |shortest_path(u,v)| (e.g., CLOSE(B) = 0.021 and CLOSE(E) = 0.037).
• The betweenness centrality BETW(v) of v is equal to the number of times a vertex appears

on a shortest path in the graph. It is evaluated by first computing all the shortest paths
between every pair of vertices, and then counting the number of times a vertex appears on
these paths: BETW(v) = ∑u,w1shortest_path(u,w)(v) (e.g., BETW(B) = 1 and BETW(E) =
166).
• The eigenvector centrality measure ( EGVECT) favours vertices that are connected to

vertices with high eigenvector centrality. This recursive definition can be expressed by the
following eigenvector equation Ax = λx which is solved by the eigenvector x associated to
the largest eigenvalue λ of the adjacency matrix A of the graph (e.g., EGVECT(B) = 0.093
and EGVECT(E) = 0.114).
• The PAGERANK index (Brin and Page 1998) is based on a random walk on the vertices of

the graph, where the probability to go from one vertex to another is modelled as a Markov
chain in which the states are vertices and the transition probabilities are computed based on
the edges of the graph. This index reflects the probability that the random walk ends at the
vertex itself: PAGERANK(v) = α ∑ j1E({u,v}) PAGERANK(u)

deg(u) + 1−α

n , where the parameter
α is the probability that a random jump to vertex v occurs (e.g., PAGERANK(B) = 1.11
and PAGERANK(E) = 1.50).

These 9 topological properties characterizes the graph relationship encoded by E. These
properties, along with the set of vertex attributes L, constitutes the set of numerical attributes M .
The numerical dataset D to be mined associates to each vertex v ∈V a numerical value on each
attribute of m ∈M : m(v) = w means that w is the value of attribute m for vertex v .

Topological patterns

Topological patterns are sets of numerical attributes that behave similarly over a large part of
the vertices of the graph. The co-variation of an attribute with respect to others is denoted by a
sign {+,−}: + if the attribute co-varies the same way as the other attributes, − if it co-varies
the opposite way. Thus, considering signed attributes M ×{+,−}, the language of patterns
is defined as L = 2M×{+,−}. For convenience, the signed attribute (m,s) ∈M ×{+,−} is
denoted ms. Following the example of Figure 3.1, the trend “the more papers in IEEE TKDE (t)
the lower the average number of hours per week spent on instructional duties (i)” is represented
by the pattern {t+, i−}.

Definition of constraints

Several signed vertex descriptors co-vary if the orders induced by each of them on the set of
vertices are consistent. This consistency is evaluated by the vertex pairs ordered the same way
by all descriptors. The number of such pairs constitutes the so-called support of the pattern. This
measure can be seen as a generalization of the Kendall’s τ measure (Kendall 1948). When we
consider all possible vertex pairs, this interestingness measure is defined as follows:

Definition 3.1 — Suppall . The support of a topological pattern P∈L over all possible pairs
of vertices is:

Suppall(P) =
|{(u,v) ∈V 2 | ∀ms ∈ P : m(u)Bs m(v)}|(n

2

)
where Bs denotes < when s is equal to +, and Bs denotes > when s is equal to −.
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This measure gives the number of vertex pairs (u,v) such that u is strictly lower than v on
all descriptors with sign +, and u is strictly higher than v on descriptors with sign −. For
instance, the pattern P ={t+, i−} is supported by 85 pairs among the 120 possibles ones, hence
Suppall(P) = 0.71.

Emerging pattern constraints: To identify most interesting topological patterns, we propose
to give to the end-user the possibility of guiding its data mining process by querying the
patterns with respect to their correlation with the relationship encoded by the graph or with a
selected descriptor. Therefore, we revisit the notion of emerging patterns (Dong and Li 1999) by
identifying the patterns whose support is significantly greater (i.e., according to a growth-rate
threshold) in a specific subset of vertex pairs than in the remaining ones. This subset can be
either defined as the vertex pairs that are ordered with respect to a selected descriptor called the
class descriptor, or it can be E, the set of edges of the graph. Whereas the former highlights the
correlation of a pattern with the class descriptor, the latter enables to characterize the importance
of the graph structure within the support of the topological pattern. For instance, considering
the toy example of Figure 3.1, h+t+ and h+t− are both frequent with minimum support of 20%.
Note that although these patterns are contradicting, they are both output by our approach when
only the frequency constraint is considered. The extraction of emerging patterns with respect to t
outputs the pattern h+t+ as the frequency of h+ is significantly greater in t+ than in t− (with a
factor of 2.13). h+t+ is more emerging with respect to E than h+t−, their growth rates being
respectively equal to 1.23 and 0.59.

Let us consider a selected attribute A ∈M and a sign r ∈ {+,−}. The set of pairs of vertices
that are ordered by Ar is PAr = {(u,v) ∈V 2 | A(u)Br A(v)}. The support measure based on the
vertex pairs of PAr is defined below.

Definition 3.2 — SuppAr . The support of a topological pattern P over Ar is:

SuppAr(P) =
|{(u,v) ∈PAr | ∀ms ∈ P : m(u)Bs m(v)}|

|PAr |

Analogously, the support of P over the pairs of vertices that do not belong to PAr is denoted
SuppAr(P). To evaluate the impact of Ar on the support of P, we consider the growth rate of the
support of P over the partition of vertex pairs {PAr ,PAr}: Gr(P,Ar) = SuppAr (P)

SuppAr (P)

If Gr(P,Ar) is greater than a minimum growth-rate threshold, then P is referred to as emerging
with respect to Ar. If Gr(P,Ar) ≈ 1, P is as frequent in PAr as in PAr . If gr(P,Ar)� 1, P is
much more frequent in PAr than in PAr . For example, Gr({h+, i−,BETW+}, t+) = 2.31. The
intuition behind this definition is to identify the topological patterns that are mostly supported by
pairs of vertices that are also ordered by the selected descriptor.

Emerging patterns w.r.t. the graph structure: It is interesting to measure if the graph structure
plays an important role in the support of a topological pattern P. To this end, we define a similar
support measure based on pairs that belongs to E, the set of edges of the graph:

PE = {(u,v) ∈V 2 | {u,v} ∈ E}

Based on this set of pairs, we define the support of P as:

Definition 3.3 — SuppE . The support of a topological pattern P over the pairs of vertices
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that are linked in G is:

SuppE(P) =
2|{(u,v) ∈PE | ∀ms ∈ P : m(u)Bs m(v)}|

|PE |

The maximum value of the numerator is |PE |
2 since: (1) if (u,v) ∈PE then (v,u) ∈PE , and (2)

it is not possible that ∀ms ∈ P, m(u)Bs m(v) and m(v)Bs m(u) at the same time. For instance,
the pattern {h+, i−} is supported by all the twenty possible pairs that are edges, its support is
thus equal to 1. The support of P over the pairs of vertices that do not belong to PE is denoted
SuppE(P).

As before, to evaluate the impact of E on the support of P, we consider the growth rate of
the support of P over the partition of vertex pairs {PE ,PE}:

Gr(P,E) =
SuppE(P)
SuppE(P)

Gr(P,E) enables to assess the impact of the graph structure on the pattern. Therefore, if
Gr(P,E)� 1, P is said to be structurally correlated. If Gr(P,E)� 1, the graph structure tends
to inhibit the support of P. For example, on Figure 3.1, the most structurally correlated pattern is
P = {h+, t+,BETW+} with Gr(P,E) = 1.628.

Top k representative vertices: The user may be interested in identifying the vertices that are
the most representative of a given topological pattern, thus enabling the projection of the patterns
back into the graph. For example, the representative vertices of the pattern {t+, BETW−} would be
researchers with a relatively large number of IEEE TKDE papers and a low betweenness centrality
measure.

We denote by S(P) the set of vertex pairs (u,v) that constitutes the support of a topological
pattern P: S(P) = {(u,v) ∈ V 2 | ∀ms ∈ P : m(u)Bs m(v)} It forms with V a directed graph
GP = (V,S(P)). This graph satisfies the following property.

Property 3.1 The graph GP = (V,S(P)) is transitive and acyclic.

Proof. Let us consider (u,v)∈V 2 and (v,w)∈V 2 such that, ∀ms ∈ P : m(u)Bs m(v) and m(v)Bs

m(w). Thus, m(u)Bs m(w) and (u,w) ∈ S(P). Therefore, GP is transitive.
As Bs ∈ {<,>}, it stands for a strict inequality. Thus, if (u,v) ∈ S(P), (v,u) 6∈ S(P).

Furthermore, as GP is transitive, if there exists a path between u and v, there is also an arc
(u,v) ∈ S(P). Therefore, (v,u) 6∈ S(P) and we can conclude that GP is acyclic. �

As GP is acyclic, it admits a topological ordering of its vertices, which is, in the general
case, not unique. The top k representative vertices of a topological pattern P are identified on the
basis of such a topological ordering of V and are the k last vertices with respect to this ordering.
Considering that an arc (u,v) ∈ S(P) is such that v dominates u on P, this vertex set contains the
most dominant vertices on P. The top k representative vertices of P can be easily identified by
ordering the vertices by their incoming degree as shown in Section 3.1.2.

Constraint properties
An anti-monotone constraint: As mentioned in (Calders, Goethals, and Jaroszewicz 2006),
CSuppall ≡ Suppall ≥ minsup, where minsup is a user-defined minimum support threshold, is an
anti-monotone constraint for positively signed descriptors. This is still true when considering
negatively signed ones: adding m− to a pattern P leads to a support lower than or equal to that of
P since, to contribute to the support, a pair (u,v) that supports P must also satisfy m(u)> m(v).
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Besides, when adding descriptors with negative sign, the support of some patterns can be deduced
from others, the latter referred to as symmetrical patterns.

Property 3.2 — Support of symmetrical patterns. Let P be a topological pattern and P
be its symmetrical, that is, ∀ms ∈ P, ms ∈ P, with s = {+,−}\ {s}. If a pair (u,v) of V 2

contributes to the support of P, then the pair (v,u) contributes to the support of P. Thus, we
have Suppall(P) = Suppall(P).

Topological patterns and their symmetrical patterns are semantically equivalent. Therefore, we
avoid the irrelevant computation of duplicate topological patterns by exploiting this property.

An upper Bound on the Support Measure: While it is generally sufficient to use an anti-
monotone constraint to make possible the extraction patterns, in this context we face a particular
challenge: the support counting is quadratic in the number of vertices. Thus, it is important to
avoid, in linear time, some useless support computation. To this end, we derive an upper bound
on the support used to safely prune non-promising topological patterns.

To define an upper bound on the support of P which benefits from the presence of ties in
the descriptors, a rank value ρ(m(u)) is associated with each numerical descriptor value m(u)
(Calders, Goethals, and Jaroszewicz 2006). ρ(m(u)) is the index of u in V when V is sorted in
ascending order with respect to m, such that 1≤ ρ(m(u))≤ |V |, ties being handled arbitrarily.
Actually, due to the presence of ties, there are many possible rankings, but in all of them, the
ranks of a given value range in an interval defined by [ρ(m(u)),ρ(m(u))] with:

ρ(m(u)) = min{ρ(m(v)) | v ∈V and m(v) = m(u)}
ρ(m(u)) = max{ρ(m(v)) | v ∈V and m(v) = m(u)}

For instance, on graph of Figure 3.1, ρ(BETW(B)) = 8 and ρ(BETW(B)) = 9. Given two de-
scriptors A and B and their respective signs sa and sb, the ranking intervals over these descriptors
can be used to establish a lower bound on the number of vertices that cannot form a supporting
pair with u. If va is a vertex such that (A(va)Dsa A(u)), then the pair (u,va) cannot support
AsaBsb . On the other hand, if a vertex vb does not satisfy (B(vb)Bsb B(u)), then the pair (vb,u)
cannot support AsaBsb either. We denote Isa and Jsb the sets of vertices va and vb, respectively.
Then, DiffAsa Bsb is the set of vertices that cannot form a supporting pair with u:

DiffAsa Bsb = {v ∈V | v ∈ Isa ∧ v 6∈ Jsb}

Depending on the values of sa and sb, the cardinality of Isa and Jsb can easily be computed from
the end points of the ranking intervals:

|I+|= |{v ∈V |A(v)≤ A(u)and v 6= u}| = ρ(A(u))−1
|J+|= |{v ∈V |B(v)< B(u)and v 6= u}| = ρ(B(u))−1

|I−|= |{v ∈V |A(v)≥ A(u)and v 6= u}| = |V |−ρ(A(u))

|J−|= |{v ∈V |B(v)> B(u)and v 6= u}| = |V |−ρ(B(u))

Figure 3.2 illustrates these sets. In every case, the line represents the vertices sorted by the
descriptor depicted on the right, in ascending order. In each line, we distinguish a given vertex u
and the end points of the interval containing the vertices with the same value as u (ρ(m(u)) and
ρ(m(u))). Besides, the hatched gray rectangle gives the set Isa or Jsb .

Since we cannot derive the exact cardinality of DiffAsa Bsb , given that we do not know how the
sets Isa and Jsb intersect, we compute a lower bound on it. If |Isa | ≥ |Jsb |, then the cardinality of
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Figure 3.2: Illustration of the computation of DiffAsa Bsb .

DiffAsa Bsb is minimal when Jsb ⊆ Isa . Analogously, if |Isa |< |Jsb |, then DiffAsa Bsb can be empty,
and thus its cardinality is 0. Thus,

|DiffA+B+ | ≥ max{0,
(

ρ(A(u))−ρ(B(u))
)
}

|DiffA−B− | ≥ max{0,
(

ρ(B(u))−ρ(A(u))
)
}

|DiffA+B− | ≥ max{0,(ρ(A(u))−1− (|V |−ρ(B(u))))}

|DiffA−B+ | ≥ max{0,(|V |−ρ(A(u)))−
(

ρ(B(u))−1
)
)}

To establish an upper bound on the support of a pattern P, we take, for each vertex u, the pair of
signed descriptors AsaBsb of P that maximizes DiffAsa Bsb : maxDiffP(u)=maxAsa Bsb∈P2 |DiffAsa Bsb |.
For instance, maxDiff{i−BETW+}(B) = max{|Diffi−BETW+ |, |DiffBETW+,i− |} = max{16− 7− 8+ 1,9−
1−16+7}= 2. This leads to the following upper bound:

Theorem 3.1 — Upper bound on Supp. Let P be a topological pattern,

Suppall(P)≤ 1− ∑u∈V maxDiffP(u)
n(n−1)

(1)

Proof. For each vertex u, let us consider two descriptors Asa and Bsb from P such as maxDiffP(u)=
|DiffAsa Bsb (u)|. This is a lower bound on the number of vertices v such that (A(v)Dsa A(u)) and
¬(B(v)Bsb B(u)). For each such vertex v, neither (u,v) nor (v,u) contributes to Suppall(P). If
we sum these numbers over all vertices from V , we get a lower bound on the number of ordered
pairs that cannot support P. Since every ordered pair of vertices (u,v) is taken into account twice,
we need to divide it by 2 to get a lower bound on the pairs of vertices that do not contribute to
the support of P. Finally we divide the upper bound by

(n
2

)
. �

Besides, maxDiffP(u) is increasing with pattern enumeration, and thus the bound is anti-
montone: ∀P1 ⊆ P2, Suppall(P2)≤ 1− ∑u∈V maxDiffP2 (u)

n(n−1) ≤ 1− ∑u∈V maxDiffP1 (u)
n(n−1) . Therefore, if 1−

∑u∈V maxDiffP1 (u)
n(n−1) ≤ σ , all patterns P2 can be pruned. The constraint Suppall is boundable as define

in Definion 1.6.
Observe that this upper bound on Suppall is very convenient since its computation is in

O(|V |), whereas the computation of Suppall is in O(|V |2). On the one hand, it requires storing 2
additional values for every descriptor and every vertex (the end points of the ranking intervals).
On the other hand, since we are enumerating descriptors and not descriptor values (as in itemset
mining) this is not costly in terms of memory usage.
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3.1.2 TopGraphMiner algorithm
TopGraphMiner computes frequent topological patterns and their top k representative vertices
from an attributed graph (see Algorithms 4 and 5). It takes in input the graph G = (V,E,L)
and two parameters: minsup and k. In Line 1 of Algorithm 4, it performs the computation of
topological vertex properties. The computation of topological patterns is done in an ECLAT-
based way (Zaki 2000). More precisely, all the subsets of a pattern P are always evaluated before
P itself. In this way, by storing all frequent patterns in the hash-tree H , the anti-monotonic
frequency constraint is fully-checked on the fly (Line 4, in Algorithm 5). We start by enumerating
the singleton positive descriptors to avoid the generation of duplicate patterns. Larger patterns
are recursively generated by the function EXTEND_PATTERN (see Line 13, in Algorithm 4). We
compute the upper bound on the support to prune non-promising topological patterns (function
COMP_UB in Line 8 of Algorithm 4). This function is the strict application of Theorem 3.1
(see supplementary material for the pseudo-code). When this upper bound is greater than the
minimum threshold, the exact support is computed (function COMP_SUPP in Algorithms 4 and
5).

Another optimization is based on the deduction of the support from already evaluated
patterns (function COMP_DEDUC in Line 5 of Algorithm 5). A pair of vertices that supports a
pattern P can support pattern PA+ or pattern PA−, or none of them. Thus, another upper bound
on Suppall(PA−) is Suppall(P)− Suppall(PA+). Note that these patterns have already been
considered before the evaluation of PA−. So, to be stringent, we bound the support by taking
the minimum between this value and the upper bound defined in Theorem 3.1 (see Line 5 in
Algorithm 5). When computing the support of the pattern, the top k representative vertices are
also identified.

Algorithm 4 TopGraphMiner
Require: G = (V,E,L), minsup, k
Ensure: H : the frequent topological patterns and their top k representative vertices.

1: Compute T , the set of topological properties of G that associate a numerical value to vertices
of V based on the relation E.

2: M ← T ∪L
3: H ← /0
4: for all m ∈M , in descending order do
5: for all v ∈V do
6: Compute ρ(m(v)) and ρ(m(v)).
7: end for
8: UB← COMP_UB({m+},ρ,ρ)
9: if (UB≥ minsup) then

10: (supp, topk)← COMP_SUPP({m+},k)
11: if (supp≥ minsup) then
12: H ←H ∪ ({m+}, topk)
13: EXTEND_PATTERN ({m+})
14: end if
15: end if
16: end for

Computation of Suppall

The support of P is evaluated by function COMP_SUPP that counts the number of pairs of
vertices (u,v) such that ∀Asa ∈P, A(u)Bsa A(v). This computation requires to perform a quadratic
operation on the number of vertices. However, as proposed in (Calders, Goethals, and Jaroszewicz
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Algorithm 5 Extend_Pattern
Require: P a topological pattern, minsup, k, ρ , ρ

Ensure: Compute all frequent extensions of P and add them to the global variable H with their
top k representative vertices

1: for all B ∈M , B greater than the last descriptor in P do
2: for all s ∈ {+,−} do
3: Q← P∪{Bs}
4: if (∀R⊂ Q, R ∈H ) then
5: UB←min{COMP_UB(Q,ρ,ρ), COMP_DEDUC(Q,H )}
6: if (UB≥ minsup) then
7: (supp, topk)← COMP_SUPP(Q,k)
8: if (supp≥ minsup) then
9: H ←H ∪ (Q, topk)

10: EXTEND_PATTERN (Q)
11: end if
12: end if
13: end if
14: end for
15: end for

2006), a more directed search for all vertices that have smaller or greater values on all descriptors
in P is implemented by using range trees and it enable good performances when |P| is not too
large. For a singleton pattern {m+}, the range tree is simply a binary search tree where each
node contains a value x of m along with two values: y+, that is, the number of vertices that are
lower than or equal to x, and y−, that is, the number of vertices having a value greater or equal to
x. Then, to compute the support of {m+}, we simply loop over the vertices of the graph, find
their corresponding nodes in the range tree and sum the y+ values of their left subtrees. When
extending a pattern P, every node in the range tree is expanded to contain a nested range tree that
corresponds to the added descriptor. To compute the support, we loop over the graph vertices,
find their corresponding nodes in the inner range trees and sum up the y+ (resp. y−) values for
positive (resp. negative) descriptors of their left (resp. right) subtrees.

Computation of the top k representatives

As explained in Section 3.1.1, the vertex pairs S(P) that support a topological pattern P define
a transitive acyclic directed graph GP = (V,S(P)) (see Property 3.1) that admits at least one
topological ordering of its vertices. The top k representative vertices are the k last vertices with
respect to one of these orderings.

Property 3.3 Let G = (V,A) be a transitive directed graph and let Deg−(v) be the incoming
degree of the vertex v ∈V (deg−(v) = |{∀u ∈V such that (u,v) ∈ A}|). For any arc (u,v) ∈ A,
deg−(u)≤ deg−(v)+1.

Proof. Given an arc (u,v) ∈ A, ∀t ∈V such that (t,u) ∈ A, by transitivity of G there exists an
arc (t,v) ∈ A. Therefore, deg−(u)≤ deg−(v)+1. �

As a result, ordering V with respect to deg− constitutes a topological sorting of GP. The
range trees used for computing the support of P is exploited to retrieve the top k representative
vertices of P: during the loop over the vertices of the graph, their incoming degree is considered
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and the set of k vertices having the largest incoming degree is maintained in a heap, using
operations in O(logk).

Computation of SuppAr , SuppE and Gr
Emerging topological patterns can easily be computed by adapting Algorithm 2: the selected
descriptor Ar is the last one in the pattern being enumerated (in the ECLAT enumeration fashion,
the last descriptor in the pattern is the first to be enumerated), and when enumerated, its support
provides SuppAr(P). When subtracting this value from the support of its direct ancestor, it
provides SuppAr(P). We therefore retrieve only those patterns with a growth-rate higher than a
threshold. The computation of SuppE(P) can be done in a time complexity proportional to the
number of edges in the graph. Finally, Gr(P,E) can be deduced from SuppE(P) and Suppall(P).

3.1.3 Experiments
We apply TopGraphMiner on two real-world attributed graphs:

1. DBLP: This co-authorship graph is built from the DBLP digital library. Each vertex
represents an author who published at least one paper in one of the major conferences
and journals of the Data Mining and Database communities1 between January 1990 and
February 2011. Each edge links two authors who co-authored at least one paper (no matter
the conference or journal). The vertex properties are the number of publications in each of
the 29 selected conferences or journals.

2. MOVIES: Each vertex of this graph represents a movie and an edge exists between two
movies if they have an actor in common2. The vertex attributes are based on movie ratings
from Netflix customers: the number of ratings, their average and standard deviation values,
the release year of the movie and its number of actors.

The main characteristics of these graphs are reported in Table 3.1. All these properties have
a minimum value of 0. Many of these properties have a standard-deviation greater than their
average, suggesting that they follow power law distributions. The computation of the topological
descriptor values in these networks take few hours. For instance, the computation of centrality
measures in DBLP, which is the most expensive, takes around 4 hours.
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Figure 3.3: Comparison w.r.t. a baseline technique: execution time ratio (A), execution time w.r.t. the
number of descriptors (MOVIES, minsup=20%) (B), execution time w.r.t. a replication factor (MOVIES,
minsup=20%) (C).

Comparison with a baseline approach
Since there is no other algorithm that simultaneously computes up and down co-variations using
the same support measure as in our approach, we first study the performance of TopGraphMiner

1Conferences: KDD, ICDM, ECML/PKDD, PAKDD, SIAM DM, AAAI, ICML, IJCAI, IDA, DASFAA, VLDB,
CIKM, SIGMOD, PODS, ICDE, EDBT, ICDT, SAC – Journals: IEEE TKDE, DAMI, IEEE Int. Sys., SIGKDD Exp.,
Comm. ACM, IDA J., KAIS, SADM, PVLDB, VLDB J., ACM TKDD.

2http://www.imdb.com/

http://www.imdb.com/
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Attributed graph DBLP MOVIES

#Vertices 42,252 5,972
#Edges 210,320 64,338
#Vertex attributes 29 5
Density 2×10−4 3.6×10−3

#Connected Comp. 577 33
#Communities 1016 56

Topo. prop. Max Mean Std. Dev. Max Mean Std. Dev.
Raw degree 304 9.73 14.22 118 21.16 19.13
DEGREE 7.3×10−3 2.4×10−4 3.4×10−4 2.2×10−2 4×10−3 3.5×10−3

CLUST 1 0.31 0.29 1.57 0.34 0.26
NBQC 4.6×105 2.2×102 7.8×103 503 2.96 19.93
SZQC 35 2.75 4.83 52 13.87 11.35
SZCOM 9,342 40.67 5×102 1,563 11.5×102 5.6×102

CLOSE 1 0.024 0.137 1 0.010 0.099
BETW 2.6×106 1.4×105 5.7×105 1.6×105 1.1×104 1.6×104

EGVECT 0.003 2.36×10−5 9.91×10−5 8.4×10−3 1.6×10−4 7.5×10−4

PAGERANK 21.53 0.98 0.98 0.59 0.88 0.59

Table 3.1: Main characteristics of the graphs DBLP and MOVIES

by comparing it with a baseline approach. It consists in using the algorithm of (Calders, Goethals,
and Jaroszewicz 2006), which only computes up co-variations, after having duplicate and reverse
each descriptor. For instance, the vertex ranked first with respect to the descriptor m+ is ranked
last with respect to m−. Notice that non-sensible patterns, such as {m+,m−}, will be discarded
in linear time since their support is 0. Besides, it is necessary to post-process the output patterns
to remove the symmetrical patterns. This additional step is quadratic in the size of the output and
can be computationnaly expensive. However, for these experiments we do not take into account
the execution time of this post-processing step.

Figure 3.3(A) gives the ratio of the execution time of the baseline approach to the execution
time of our approach. We can see that for the graph MOVIES, our approach is at least twice
as faster as the baseline. Besides, the lower the support, the higher this ratio is. This behavior
shows that our approach is more efficient than the baseline one and that this efficiency does not
only rely on the fact that the number of descriptors of the graphs is twice as smaller than the
one used by the baseline approach, but also on the pruning capability. With the DBLP graph,
however, the ratio decreases for lower supports. This can be explained by the fact that there
are many non-frequent topological patterns with negative signs that are early pruned by the
baseline approach. Figure 3.3(B) shows the execution time spent by both algorithms with respect
to different numbers of randomly chosen original descriptors from the MOVIES graph, with
minimum support of 20%. We can observe that our approach outperforms the baseline one and
the gain is more important when the number of descriptors increases. Figure 3.3(C) gives the
execution time spent by both algorithms with respect to the number of vertices in the attributed
graph MOVIES, with minimum support of 20% (the x-axis gives the replication factor). We can
notice that TopGraphMiner is faster than the baseline approach and this especially as the number
of vertices increases. Although the computation of the support of the patterns is quadratic in the
number of vertices, the execution times do not increase accordingly due to the use of the range
trees. We can therefore conclude that the results shown in Figure 3.3(A) are more influenced by
the number of descriptors than that of vertices.
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Tell us where you publish, we tell you how important you are.

We examine the results obtained by TopGraphMiner on the DBLP attributed graph regarding the
following questions:
• Are there any interesting patterns among publications?
• Are there interesting trends between some authors’ publications and topological properties?
• What about IEEE TKDE authors?
Before extracting topological patterns with TopGraphMiner, we compute correlations be-

tween descriptors. The resulting correlation matrix is reported in Figure 3.4(A). The vertex
attributes that have a correlation higher than 0.7 are VLDB, ICDE and SIGMOD. The most corre-
lated topological properties are, on the one hand, BETW, DEGREE and PAGERANK and, on the
other hand, SZQC and NBQC. The vertex attributes and the topological properties that are not
correlated with any other (with a correlation always lower than 0.2) are: SAC, Comm. of ACM,
IEEE Int. Sys., CLOSE and CLUST. These correlation measures will help us in the interpretation of
the following results.
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Figure 3.4: Correlation matrix between vertex attributes (1 to 29) and topological properties (30 to 38) in
DBLP (A). Silhouette plot of the K-means clustering on some topological patterns (B).

Topological patterns on conferences and journals: Let us first consider topological patterns
among publications venues. Mining all frequent topological patterns with a support threshold of
1% takes 68 seconds. The output contains 263 topological patterns, from which 58 (22%) involve
negatively signed attributes. To better understand the type of information retrieved by these
263 patterns, we performed a clustering analysis of the topological patterns. We use K-means
algorithm on the 263×57 Boolean matrix where the rows correspond to the patterns and the
columns to the signed vertex attributes (2×29−1). We use the cosine distance and employ the
silhouette plot to determine the number of clusters. It suggests 10 clusters (see Figure 3.4(B)).
The most frequent vertex attributes of each cluster are shown in Table 3.2, that is the vertex
attributes that appear in at least in 2/3 of the cluster patterns. We can observe that the majority of
the clusters are homogeneous, referring either to Data mining or to Database publications. For
instance, Clusters 1, 2, 6, and 9 refer to Data mining publications, while Clusters 3, 8, and 10
clearly refer to Database publications. Other clusters are related to a specific conference/journal.

Interestingly, 20 of these patterns contain the attribute SAC− together with positively signed
attributes. Examples of such patterns are {SAC−, KDD+}, {SAC−, ECML/PKDD+}, {SAC−,
VLDB+}, and {SAC−, SIGMOD+}. This type of pattern can be explained by the fact that SAC
scope is larger than that of the other selected conferences, which are more focused either on
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Cluster # patterns Most frequent
vertex attributes

Cluster # patterns Most frequent
vertex attributes

1 32 SAC−, IJCAI+ 6 17 KAIS+, SDM+,
PAKDD+,
KDD+

2 34 CIKM+,
PAKDD+

7 18 IEEE TKDE+

3 28 SIGMOD+ 8 24 VLDB+,
VLDBJ+,
PVLDB+

4 15 AAAI+ 9 34 ICDM+,
PKDD+,
KDD+

5 15 CommACM+ 10 46 ICDE+,
SIGMOD+,
TKDE+,
VLDB+

Table 3.2: Most frequent vertex attributes in clusters of patterns found in the DBLP attributed graph.

Database or Data Mining topics. Since the topics covered by SAC are much more general (e.g.,
Programming Languages, Geometric Constraints and Reasoning, and Applied Biometrics), it is
not surprising that many authors that have several publications in SAC conference series have
none or few publications in the Data Mining or Database areas.

Are there interesting trends between author publications and topological properties?
Table 3.3 reports the most frequent pattern (Pall), the most emerging pattern (PPAGERANK+) with
respect to PAGERANK+ and the most structurally correlated topological pattern (PE). Pall is
formed by descriptors SAC+ and SZCOM−. Its meaning is that SAC authors tend to belong to
small communities, that is, these authors are rather isolated in the graph as illustrated in Figure
3.5(A), where the top-10 representative vertices and their direct neighborhoods are displayed.
These vertices have a low degree. As mentioned before, the scope of the SAC conference is much
wider than Database and Data mining topics. This makes this pattern sensible and justifies that
(1) this pattern is not much correlated to the graph structure (Gr(P,E) = 0.21), and (2) its top-5
supporting vertices are mostly researchers from Software engineering and Network areas.

P Descriptors Measures Top-5 Representative ver-
tices

Pall SAC+, SZ-
COM−

Suppall = 0.19
Gr(P,E) = 0.21

#1 F. N. Sibai, #2 M. M.
Huntbach, #3 C. Leopold,
#4 A. J. Duben, #5 P.
Rittgen,

PPAGERANK+ ICDE+,
DEGREE+,
BETW+,
CLUST−,
NBQC+,
SZQC+

Gr(P,PAGERANK+)=
253,933
Gr(P,E) = 4.8
Suppall = 0.12

#1 H. Garcia-Molina, #2
M. Stonebraker, #3 G.
Weikum #4 R. Agrawal,
#5 M. J. Franklin,

PE PVLDB+,
DEGREE+,
BETW+

Gr(P,E) =
6.9682

#1 G. Weikum, #2 J. Han,
#3 D. Maier #4 P. S. Yu,
#5 H. Garcia-Molina,

Table 3.3: Top topological patterns in the DBLP attributed graph.

The computation of emerging patterns with respect to PAGERANK, with a support threshold
of 1% and a growth-rate threshold of 3, takes around 6 hours and produces 4,313 patterns. The
most emerging pattern PPAGERANK+ (see Table 3.3) contains many topological properties with a
positive sign, except CLUST, which has a negative sign. As we have seen before, PAGERANK is
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highly correlated with DEGREE and BETW. Therefore, it is not surprising that both appear in the
pattern. On the other hand, the presence of the property CLUST− suggests that the higher the
PAGERANK of the authors (and consequently their DEGREE and BETW), the lower the connectivity
of their co-authors. In other words, authors with high PAGERANK have many co-authors that do
not publish together. This can be observed on Figure 3.5(B) where the connectivity between
co-authors of the top-10 representative vertices is low. Those that advise many PhD students can
be seen as typical examples of these authors.

The most structurally correlated topological pattern PE gathers the descriptors PVLDB+,
DEGREE+ and BETW+. PVLDB is at the same time a well-established conference and journal
in the Data mining and Database communities. This pattern is strongly structurally correlated
(Gr(P,E)> 5), i.e., it tends to be more supported by pairs that are edges than arbitrary pairs of
vertices. Figure 3.5(C) displays its top-10 representative vertices.

(A) (B) (C)

Figure 3.5: Top 10 vertices supporting Pall (A), PPAGERANK (B) and PE (C) and their connected vertices in
DBLP.

We can also use emerging topological patterns, made only of topological properties, to com-
pare the relative importance of conferences and journals. Let us consider PTopo1 = {PAGERANK+

DEGREE+} and PTopo2 = {PAGERANK+,BETW+}, two such emerging patterns whose respective
growth-rates are Gr(PTopo1 ,PAGERANK+) = 124.69 and Gr(PTopo2 ,PAGERANK+) = 584.46. These
emerging patterns reveal which conferences or journals are more related to the topological proper-
ties BETW+ and DEGREE+. To that end, for each publication venue C and both emerging patterns
PTopo1 and PTopo2 , we compute the ratio Gr(PTopoiC,PAGERANK+)

Gr(PTopoi ,PAGERANK+)
. Table 3.4(A) gives the top-5 publi-

cations with respect to this ratio. Surprisingly, we observe that Data Mining conferences have a
higher impact on the pattern {PAGERANK+,DEGREE+}, while Database conferences positively
influence the growth-rate of the pattern {PAGERANK+,BETW+}. Since Data Mining intersects
many other research areas, these results may be explained by the fact that Data Mining authors
may also publish with many others from different areas, such as Database and Machine Learning
ones. On the other hand, as Database is an older well-established research field, Database authors
tend to appear at the center of the graph. For the most impacting publications, we identify the
top-5 representative authors. They are shown in Table 3.4(B).

What about the IEEE TKDE authors? We also look for the emerging patterns with respect
to the attribute IEEE TKDE, with support threshold of 1% and growth-rate threshold of 3 (their
computation takes around 5 hours). We obtain 745 emerging patterns with respect to the class
IEEE TKDE+. The most emerging pattern is PTKDE = ICDE+,VLDB+,BETW+,PAGERANK+,
with Gr(PTKDE,TKDE+) = 11.75. This pattern indicates that authors publishing in IEEE TKDE
journal tend also to publish papers in the conferences ICDE and VLDB. BETW+ suggests that these
authors are located at the center of the co-authorship graph, while PAGERANK+ means that they co-
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Rank PTopo1 PTopo2

Publication Factor Publication Factor
1 ECML/PKDD+ 2.5 PVLDB+ 5.67
2 IEEE TKDE+ 2.28 EDBT+ 5.11
3 PAKDD+ 2.21 VLDB J.+ 4.35
4 DASFAA+ 2.09 SIGMOD+ 4.25
5 ICDM+ 1.95 ICDE+ 3.42

PAGERANK+ DEGREE+

ECML/PKDD+
PAGERANK+ BETW+

PVLDB+

Christos Faloutsos Gerhard Weikum
Jiawei Han Jiawei Han
Philip S. Yu David Maier
Bing Liu Philip S. Yu
C. Lee Giles Hector Garcia-Molina

(A) (B)

Table 3.4: Top-5 “impacting” publications in the emergence of DEGREE+ and BETW+ w.r.t. PAGERANK+

(A) along with their top-5 authors (B).

authored papers with other researchers that also appear at the center of the graph. It is important
to observe that this pattern is also highly structurally correlated (Gr(PTKDE,E) = 6.5758).
Furthermore, this pattern is sensible since it is supported by well-established researchers in the
Database community: Christos Faloutsos, Jiawei Han, Philip S. Yu, Beng Chin Ooi, and Hector
Garcia-Molina are its top-5 representative authors.

Do we only appreciate blockbusters?

Let us now consider the real-world attributed graph MOVIES. Table 3.5 shows the 4 most frequent
topological patterns (with at least 2 descriptors) with their top-5 representative movies. Pattern

P Descriptors Measures Top-5 movies
P1 AVG_RATING+

NB_RATINGS+
Suppall = 0.7
Gr(P,E) = 1.05

#1 The Green Mile, #2 Forrest Gump, #3 The Sixth Sense, #4 Indiana Jones
and the Last Crusade, #5 Gladiator

P2 NB_RATINGS+

CLOSE+
Suppall = 0.6
Gr(P,E) = 0.87

#1 The Rock, #2 Fahrenheit 9/11, #3 The Godfather, #4 Enemy of the State,
#5 Men of Honor

P3 STD_RATING+

PAGERANK−
Suppall = 0.58
Gr(P,E) = 0.89

#1 There’s no Business Like Show Business, #2 Michael Moore Hates
America, #3 Digimon: The Movie, #4 Blown Away, #5 Benjamin Smoke

P4 YEAR+

AVG_RATING−
Suppall = 0.57
Gr(P,E) = 0.94

#1 Day of the Dead 2: Contagium, #2 raging sharks, #3 My Big Phat Hip
Hop Family, #4 The Fallen Ones, #5 Last Days

Table 3.5: Patterns found in MOVIES and their top-5 movies.

P1 suggests that Netflix users tend to rate movies they like. Its top-10 representative movies
are connected (see Figure 3.6(A)), which indicates they have at least one actor in common.
The second pattern P2 reveals that many users tend to rate movies located at the center of the
graph, that is, movies with “major” actors (e.g., R. de Niro, S. Connery, T. Hanks, B. Willis, H.
Ford, etc.). Therefore, the supporting vertices of this pattern is made of major blockbusters (see
Figure 3.6(B)). Pattern P3 indicates that controversial movies (those with a high rating standard
deviation) tend to be isolated within the graph (lower PAGERANK): they are more independent
films without well-known actors. Note that all the supporting movies of this pattern have a
degree of 0. Finally, pattern P4 suggests that older movies are better rated. This can be due to the
fact that the ratings were given between 1998 and 2005. Therefore, Netflix users tend to rate
only non-contemporary movies they like and to forget those they did not like over time.

Table 3.6 shows the most emerging topological pattern with respect to the PAGERANK and the
most structurally correlated pattern. Pattern PPAGERANK gathers descriptors NB_ACTORS+ and all
the centrality measures, plus STD_RATING− and NB_RATINGS+. As the edges of MOVIES encode
the fact that two movies share at least one actor, it is not surprising that this pattern associates
NB_ACTORS+ with all centrality measures. Furthermore, the attribute STD_RATING− indicates
that the representative movies of this pattern are consensual.

The most structurally correlated topological pattern PE reveals that recent movies (YEAR+)
tend to play a central role within the graph (BETW+, EGVECT+, PAGERANK+) and their neighbors
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P Descriptors Measures Top-5 movies
PPAGERANK+ NB_ACTORS+ STD_RATING−

NB_RATINGS+ DEGREE+ CLOSE+ BETW+

EGVECT+ NBQC+ SZQC+ SZCOM+

Suppall = 0.052
Gr(P,PAGERANK+) = 11,789
Gr(P,E) = 0.32

#1 The Godfather, #2 Crimson Tide, #3
The Untouchables, #4 The Hunt for Red
October, #5 Apollo 13,

PE YEAR+, BETW+, EGVECT+, PAGERANK+,
CLUST−

Suppall = 0.05
Gr(P,E) = 2.78

#1 Catch me if you can, #2 True Crime, #3
Batman Begins, #4 The Quiet American,
#5 Scenes of the Crime,

Table 3.6: Top topological patterns in MOVIES.

tend to be not connected (CLUST−), since it is not common that several movies share the same
casting. The projection of its top-10 representative vertices on the graph is given in Figure 3.6(C).

(A) (B) (C)

Figure 3.6: Top 10 vertices supporting P1 (A), P2 (B), and PE (C) and their connected vertices in MOVIES.

The previous results show the capability of TopGraphMiner to discover sensible patterns.

3.2 Evolution patterns in dynamic graphs

As real-life graphs tend to change dynamically, several proposals consider the extraction of
patterns in dynamic graphs. Borgwardt, Kriegel, and Wackersreuther 2006 introduces the
problem of mining frequent sub-graphs in dynamic graphs, that is to say isomorphic graphs that
appears in consecutive time steps. Lahiri and Berger-Wolf 2008 also extracts frequent sub-graphs
but with a periodic appearance. Böttcher, Höppner, and Spiliopoulou 2008 proposes a knowledge
discovery framework to detect and analyze when and how changes occur from a non-stationary
population. Giannotti, Nanni, Pinelli, and Pedreschi 2007 aims to mine spatio-temporal data by
computing concise descriptions of frequent behaviors.

In Robardet 2009, I propose to capture the evolution of dynamic graphs by extracting evolving
patterns as pseudo-cliques which appears in consecutive timestamps with slight modifications.
We designed a local to global approach (Raedt and Zimmermann 2007) that proceeds in two
steps: It first computes local patterns that capture locally strong associations between vertices at
each time step, and second, models the dynamics of the graph as the evolution in time of these
patterns. Local patterns, defined by a set of inductive constraints, are extracted by means of an
exploratory analysis of the search-space where the validity of each local pattern is evaluated
independently from the other ones. To identify the graph areas of interest, we compute specific
sub-graphs, defined as isolated pseudo-cliques. Pattern sets of isolated pseudo-cliques, that
satisfy some global constraints, capture the dynamics of the graph. The constraints do no longer
rely on a single candidate pattern but depend on the sets of isolated pseudo-cliques extracted at
two consecutive time steps. Five types of temporal patterns are considered that makes possible
the identification of isolated pseudo-cliques that grow, diminish, disappear, emerge or be stable.
These evolving patterns allow us to describe the processes by which communities come together,
attract new members, and develop over time.
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3.2.1 Constraint-based sub-graphs in static graphs

Let G = (V,E) be a static undirected graph, where V is the set of vertices and E, E ⊆ V ×V ,
the set of edges. The degree deg(u) of a vertex u is the number of vertices v adjacent to u, i.e.,
deg(u) = |{v ∈V | {u,v} ∈ E}|. The sub-graph induced by a subset of vertices S (S⊆V ) is the
graph GS = (S,ES) where ES = {{u,v} | {u,v} ∈ E and u,v ∈ S}.

Sub-Graphs of interest are usually those made of vertices that have a high density of edges.
The density of a sub-graph is defined as the number of edges between vertices of the sub-graph,
divided by the maximal number of possible edges. A clique is a sub-graph whose density equals
1. To relax this strong property, we consider pseudo-cliques defined as having a density at least
equal to a user-defined threshold σ .

Definition 3.4 — Pseudo-clique constraint. Given a user-defined threshold σ ∈ [0,1] and
a set of vertices S⊆V of size n, the sub-graph GS = (S,ES) induced by S is a pseudo-clique
iff it is connected and 2|ES|

n(n−1) ≥ σ . Let us denote degS(u) = |{v | {u,v} ∈ ES}|. The constraint
can then be rewritten as

Cpc(S,σ)≡ ∑u∈S degS(u)
n(n−1)

≥ σ (2)

The pseudo-clique constraint is not anti-monotone with respect to the enumeration of sub-graphs
based on the set inclusion of their vertex sets: Expanding a set S of n vertices could make the
density

(
2|ES|

n(n−1)

)
increases or decreases. However, this constraint is loose anti-monotonic, that is

to say, pseudo-cliques can always be grown from a smaller pseudo-clique with one vertex less
(Zhu, Yan, Han, and Yu 2007).

Property 3.4 — Loose anti-monotone pseudo-clique constraint. Pseudo-clique con-
straint is loose anti-monotone, i.e., Cpc(S,σ)⇒∃v ∈ S such that Cpc(S\{v},σ).

Proof. Suppose the sub-graph S satisfies Cpc(S,σ). Let v? be a vertex of S having the smallest
degree on S, i.e. degS(v

?) = minu∈S degS(u). Let n be the size of S and S? = S\{v?}. Then, we
have

∑
u∈S

degS(u) = ∑
u∈S?

degS(u)+degS(v
?)

= ∑
u∈S?

degS?(u)+2degS(v
?)≥ σn(n−1)

• If degS(v
?)≤ σ(n−1), then ∑u∈S? degS?(u)≥ σn(n−1)−2σ(n−1)≥ σ(n−1)(n−2)

and Cpc(S?,σ) is satisfied.
• Otherwise, ∀u ∈ S, degS(u) > σ(n− 1), and we have ∑u∈S? degS?(u) = ∑u∈S degS(u)−

2degS(v
?)≥ (n−2)degS(v

?)≥ (n−2)σ(n−1) and Cpc(S?,σ) is also satisfied.
�

To be efficient, the enumeration process must take advantage of the pruning power from the
loose anti-monotone property of pseudo-cliques. It is clear, from the proof of Property 3.4, that
adding to a pseudo-clique S the vertex v ∈V \S that satisfies

degS∪{v}(v) = min
u∈S∪{v}

degS∪{v}(u) (3)
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leads to a pseudo-clique, unless none of the supersets of S is a pseudo-clique. Thus, an efficient
algorithm enumerates vertices recursively by finding at each iteration the vertex3 v that satisfies
Equation (3) and stop the enumeration if Cpc(S∪ {v},σ) is not satisfied. This leads to a
polynomial delay time algorithm, that is to say the time needed to generate each single pseudo-
clique is bounded by a polynomial in the size of the input graph.

Uno 2007 proposes a method to solve Equations (2) (on S∪{v}) and (3) efficiently. As
∑u∈S∪{v} degS∪{v}(u) = ∑u∈S degS(u) + 2degS(v), Cpc(S ∪ {v},σ) is satisfied if and only if

degS(v) ≥
σ |S|(|S|+1)−∑u∈S degS(u)

2 . Equation (2) is thus checked in constant time if ∑u∈S degS(v)
is stored and updated during the enumeration process. Equation (3) can trivially be checked in
(O(|V |), and less naively in time O(degS(v)) (Uno 2007).

Pseudo-cliques capture strong – but not necessarily perfect – associations in a graph. How-
ever, not all the pseudo-cliques of a graph are of importance: Some of them have many links to
external vertices. To identify the most useful pseudo-cliques, we consider another constraint that
coerces the patterns to be isolated. The isolation constraint imposes a maximum to the average
number of external links per vertex.

Definition 3.5 — Isolated constraint. Given a user defined threshold γ ∈ R, a sub-graph
S is isolated iff

Ci(S,γ)≡
∑u∈S (deg(u)−degS(u))

|S|
≤ γ.

Property 3.5 Ci(S,γ) is loose anti-monotone.

Proof. Suppose the sub-graph S satisfies Ci(S,γ). Let v be a vertex of S such that

v = argmax
u∈S

(deg(u)−degS(u))

Then,
• If deg(v)−degS(v)< γ , then ∀u ∈ S, deg(u)−degS(u)≤ deg(v)−degS(v) and

∑u∈S\{v} (deg(u)−degS(u))< (n−1)γ , i.e., Ci(S\{v},γ) is satisfied.
• Otherwise, ∑u∈S (deg(u)−degS(u))− (deg(v)−degS(v))≤ nγ− γ = (n−1)γ and

Ci(S\{v},γ) is also satisfied.
�

However, the combination of two loose anti-monotone constraints (Definitions 3.4 and
3.5) is not necessarily loose anti-monotone. To enumerate isolated pseudo-cliques in a sin-
gle process, the algorithm must find the vertex v that satisfies both Equation (3) and v =

argmaxu∈S∪{v}

(
deg(u)−degS∪{v}(u)

)
. The conjunction of these equations characterizes the

vertex leading to an isolated pseudo-clique. Such a vertex does not necessarily exist and thus
Cpc ∧Ci is not loose anti-monotone. Hence, we propose to use Ci in post-treatment of the
computed pseudo-cliques.

3.2.2 Mining evolving sub-graphs
The previous step provides unstructured and numerous patterns. These results are hence difficult
(if not impossible) to interpret (Raedt and Zimmermann 2007). We propose to complement this
first step, during which valid pseudo-cliques in static graphs are mined, with a second step that
constructs a global model of the dynamics. Let G = (G1, . . . ,GT ) be a time-series of graphs,

3Note that if several vertices satisfy Equation (3), the one of smallest index is taken.
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where Gt = (V,Et) is the graph at time step t, Et ⊆ V ×V . The typical questions we want to
consider are:
• Do the strong interactions observed at time t grow, diminish or remain stable over time?
• When do the changes occur?

The objective here is to identify the temporal relationships that may occur between valid pseudo-
cliques. We denote by Pt the set of sub-graphs of Gt that satisfy Cpc∧Ci. We consider the five
following global constraints:
Stability: S is said to be stable at time t if it is a valid pseudo-clique at both times t and t−1:

Cstable(S,Pt ,Pt−1)≡ S ∈Pt and S ∈Pt−1

Growth: A sub-graph S grows at time t if S is a valid pseudo-clique at time t and if a subpart of
S was a valid pseudo-clique at time t−1:

Cgrowth(S,Pt ,Pt−1)≡ S ∈Pt and ∃R ∈Pt−1, such that R⊂ S

Diminution: A sub-graph S diminishes at time t if S is a valid pseudo-clique at time t and if it is
a subpart of a larger valid pseudo-clique of time t−1:

Cdiminution(S,Pt ,Pt−1)≡ S ∈Pt and ∃R ∈Pt−1, such that S⊂ R

Extinction: A sub-graph S disappears at time t if it was a valid pseudo-clique at time t−1 and
if it is not involved in any previously defined temporal relationship at time t:

Cextinction(S,Pt ,Pt−1)≡ S ∈Pt−1 and ∀R, R⊆ S, R 6∈Pt and ∀R, S⊆ R, R 6∈Pt

Emergence: A sub-graph S emerges at time t if it is a valid pseudo-clique in Gt and if none of
its subsets or supersets are valid pseudo-cliques in Gt−1:

Cemergence(S,Pt ,Pt−1)≡ S ∈Pt and ∀R, R⊆ S, R 6∈Pt−1 and ∀R, S⊆ R, R 6∈Pt−1

Those temporal relationships correspond to global constraints used to identify the dynamics
of strong associations in graphs. We now present an incremental algorithm that processes each
static graph sequentially. Inspired by the Trie-based Apriori implementation (Bodon 2005), we
propose to use a trie data structure (prefix tree) to store valid pseudo-cliques. Indeed, finding
evolving patterns requires the evaluation of subset queries over valid sub-graphs of Gt−1 and Gt .
Such queries are computationally consuming and require special attention. Trie is appropriate
for storing and retrieving any finite set. Here it is used to retrieve the vertex sets that define valid
sub-graphs.

Suppose that pseudo-cliques of Pt−1 are stored in a trie T . Each node of T consists of
the set S of vertices of the pseudo-clique, a list of temporal states, a list of pointers to other trie
nodes and a list of time steps. When a new valid pseudo-clique of Gt is computed, its vertex set
S is inserted in T recursively. Starting from the root node, we first go to the child corresponding
to the first vertex of S and process the remainder of S recursively for that child. The recursion
stops on a node whose vertex set is either S, or a prefix of S:
• In the first case, the temporal label “Stability” is pushed back in the temporal label list of

the node and its time step is set to t.
• In the latter case, the node gets a new son with vertex set S, time step t and temporal

label “Emergent”. Then we look whether S is involved in a growing evolving pattern. To
do so, we have to retrieve all the subsets of S from T by means of the following doubly
recursive procedure: We first go to the child corresponding to the first vertex of S and
process the remainder of S recursively for that child and second discard the first vertex
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of S and process it recursively for the node itself. If there exists subsets of S that belongs
to T with time step label t− 1, then the temporal state associated to S is changed into

“Growth” and pointers to the corresponding subsets are stored in the list associated to the
node. Those nodes are also tagged to avoid to be considered in the following step.

Now that “Stability” and “Growth” patterns have been dealt with, we need to check whether
the remaining nodes (those associated to pseudo-cliques of Pt−1) have shrunk (“Diminution”)
or completely disappeared (“Extinction”). As tries are more effective to find subsets than to find
supersets, a second traversal of the trie is performed when all pseudo cliques of Pt have been
processed. For all the nodes with time step t−1 that are not involved in a “Stability” or “Growth”
pattern, the function that searches subsets is triggered. If there exists a subset that belongs to Pt ,
the state of the first node is set to “Diminution” and pointers to the corresponding subsets are
stored in the node list, otherwise the state is set to “Extinction”, the pattern is output and the
node is removed from the trie.

3.2.3 Experimental results
We evaluate this approach on three real-world dynamic networks: two dynamic sensor networks,
IMOTE and MIT (see Section 2.1.1 for their presentation) and a dynamic mobility network Vélo’v,
the shared bicycle system of Lyon (see Section 2.2). The main characteristics of these datasets
are presented on Table 3.7.

Dataset ] Edges ] Timesteps Avg. density
IMOTE 11785 282 0.025

MIT 107770 11763 0.001
Vélo’v 279208 930 0.003

Table 3.7: Dataset characteristics
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Figure 3.7: Number of edges, displayed as a function of time (IMOTE on the left and MIT on the right).

We study the IMOTE dataset over a typical day and the MIT data over a typical week. The
number of edges of those graphs are reported in Figure 3.7. Both IMOTE and MIT graphs are
sparse and the number of edges exhibits large variations over time.

To densify the graphs and cope with the flickering edge problem that may occur with
experimental data, we aggregate the graphs over a period of 15 minutes for IMOTE and 1 hour
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for MIT: In both dynamic graphs, an edge exists if it appears at least once during the considered
period. The resulting dynamic graphs have a maximum degrees of 25 for IMOTE and of 22 for
MIT.

We extract evolving sub-graphs with several density values σ , the isolated parameter γ being
set to 4.5 and the minimal size of the extracted valid pseudo-cliques being set to 4 for IMOTE and
to 3 for MIT. The total runtimes and number of computed patterns are shown on Figure 3.8 (left).
These figures show that the method is tractable in terms of execution time since it succeeds to
extract the patterns in less than 20 minutes for different σ values varying between 1 and 0.6. The
computational time is proportional to the number of output patterns as it was expected according
to the theoretical study of the time complexity of the pseudo-clique mining algorithm discussed
in Section 3.2.1. The time required to compute evolving patterns generally decreases with σ as
well as the number of extracted patterns.
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Figure 3.8: Runtime and number of extracted patterns (logarithmic scales) (left) and number of patterns
of each type (right) for IMOTE (top) and MIT (bottom) dynamic graphs for different density threshold σ .

The numbers of evolving patterns of each type are shown on Figure 3.8 (right). As the
number of “Emergent” patterns scales differently from other pattern types, their quantity is
shown on the right ordinate axe, whereas the number of “Growth”, “Stability” and “Diminution”
patterns are plotted using the left ordinate axe. Even though the number of patterns decreases
with the density threshold, we can observe that the number of each type of patterns varies
differently from one another.

Figure 3.9 shows the output of our method: nodes represent valid pseudo-cliques and the
numbers they contain are vertices identifiers, solid arrows show evolving patterns and dashed
arrows are drawn between following sub-graphs that intersect. We can identify three main groups
of people. The first one is composed of individuals 9, 15, 31, 34 and 37. This group appears
at time step 71, splits around time step 73 into two groups that then merge and integrate an
additional vertex 5. The second group is made up of individuals 0, 4, 29 and 35. Individuals 1
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Figure 3.9: Display of the evolving patterns for IMOTE with σ = 0.8, γ = 3 and the minimum sub-graph
size equals 4 that occur in the morning.

and 33 are nearby. This group is stable since it remains unchanged during two consecutive time
steps. The third group contains individuals 2, 14, 19 and 25 and is also stable.

Shared bicycle system Vélo’v
Let us now analyze Lyon’s shared bicycle system Vélo’v. We first aggregate the number of
rentals for every days of the week and every hours over the two and a half years period of
observation. We thus obtain 168 time steps. Then, to leverage the most important links, we
remove the edges that had less than 50 rentals over this period.
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Figure 3.10: Runtime and number of extracted patterns for Vélo’v dynamic networks for different
density threshold σ (left), number of patterns of each type (right).

Figure 3.10 (left) shows the total number of extracted patterns and the runtime for several
σ values, γ being set to 5 and the minimum sub-graph size to 3. We obtain similar results than
those on Figure 3.8: Here again, we can observe that the number of extracted patterns increases
with σ . Figure 3.10 (right) shows the repartition of the patterns among the different types of
evolving patterns. The majority of the extracted patterns are emergent. The number of identical
patterns can increase or decrease with σ : When a stable pattern disappears, usually a growth or
diminution pattern appears.

Figure 3.11 displays the output of the method on the Vélo’v dynamic graph for time steps
between Monday 6 PM and Tuesday 7 AM. The analysis of this outcome carries interesting
pieces of information: For example, at time step 48 (Tuesday 0 AM to 1 AM) the identified
patterns give rise to the group of stations 58, 78, 115 that are located on the largest campus of
Lyon. This pattern grows between 1 AM and 2 AM with the addition of the neighboring station
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Figure 3.11: Display of the evolving patterns for Vélo’v with σ = 0.9, γ = 5 and the minimum sub-graph
size equals 3.

123. At the same time another sub-graph appears, that contains stations 187, 71 and 90, that
surround the main park of Lyon. Another important group is the one made of stations 55, 84,
92 and 99 that are all located in the 7th district of the city where the second largest campus is
located. Those stations are located on the map of Lyon on Figure 3.12. This phenomenon can
be related to the closure of the public transports right after midnight: Public transport users,
who travel at night like students, become Vélo’v users when public transports are closed. This
increases the nocturnal activity of the Vélo’v system.

Figure 3.12: Location of Vélo’v stations in Lyon. Patterns from Figure 3.11 are shadowed on the map.

3.3 Trend mining in attributed dynamic graphs

Having proposed data mining methods dedicated to the analysis of attributed graphs and of
dynamic graphs, we consider in Desmier, Plantevit, Robardet, and Boulicaut 2013 a technique for
extracting valuable information from dynamic attributed graphs. The simultaneous consideration
of the graph structure, the vertex attributes and their evolution through time makes possible
to tackle a wide variety of mining problems (R. G. Pensa, Cordero, Rouveirol, Kanawati,
Troyano, and Rosso 2010). For example, Boden, Günnemann, and Seidl 2012 proposes to extract
clusters in each static attributed graph and to associate time consecutive clusters that are similar.
Piatkowski, Lee, and Morik 2013 investigates the use of discrete probabilistic graphical models
for predicting vertex attributes in a spatio-temporal graphs. Our trend mining approach combines
aspects of the methods presented in the two previous Sections. As in the approach presented in
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Section 3.1, we consider the evolution of the numerical attributes. But instead of comparing the
numerical values of pairs of vertices, we compare here the numerical values of a single vertex
at two consecutive time steps. In a manner similar to the approach presented in Section 3.2,
we extract specific sub-graphs defined by means of constraints. But whereas in Section 3.2 we
compute highly connected sub-graphs, that is to say pseudo-cliques, we consider here sub-graphs
constrained by a maximum diameter value that limits the length of the longest shortest path
between any two vertices. Indeed, we observed (Desmier, Plantevit, Robardet, and Boulicaut
2012) that the pseudo-clique constraint is very stringent and tends to fragment some reliable
patterns. Additional interestingness measures are used to assess the interest of the trend dynamic
sub-graphs and guide their search by user-parameterized constraints. These constraints aim at
answering the following questions:
• How similar are the vertices outside the trend dynamic sub-graph to the ones inside it?
• Are trends specific to the vertices of the pattern?
• What about the dynamic of the pattern? Does it appear suddenly or continuously?

These constraints are monotone, anti-monotone or piecewise monotone that make possible to
use the generic algorithm presented in Section 1.4.

3.3.1 Trend Dynamic Sub-graphs
The input of our mining task is an attributed dynamic graph G = {Gt | t = 1 . . . tmax} over a
discrete time span T = J1, tmaxK. Each static graph is a non-directed attributed graph Gt =
(V,Et ,A) where V is a set of n vertices {v1, . . . ,vn} that is fixed throughout the time, {Et | t ∈ T}
is a sequence of sets of edges that connect vertices of V at time t (Et ⊆V ×V ), and A is a set
of p ordinal attributes {a1, . . . ,ap} whose values are defined for each vertex at each time step
(ai : V ×T → Di, where Di is the domain of ai).

The language of patterns L considered here is the one of sub-graphs induced from G by a
subset of vertices of V , a sub-sequence of time steps from T and a set of trend attributes. We
say that a vertex follows an increasing trend over attribute a at time t, denoted a+, if a(u, t)<
a(u, t + 1). In a similar way, a decreasing trend, a− is characterized by a(u, t) > a(u, t + 1).
Given a subset of vertices U ⊆ V and a sub-sequence S = 〈t1, · · · , ts〉 of time steps of T , the
dynamic sub-graph of G induced by (U,S) is G (U,S) = {Gt(U) | t ∈ S} and Gt(U) contains all
the edges in Et that have both ends in U . Therefore, the language of patterns is

L = {(G (U,S),Ω) |U ⊆V, S = 〈t1, · · · , ts〉 v T, Ω⊆ A×{+,−}}

A trend dynamic sub-graph is a pattern of L whose vertices follow the same trend over Ω.
That is to say, the vertex attribute value derivative at a time step t has the same sign over all
the vertices and the time steps of the dynamic sub-graph. Many trend dynamic sub-graph can
be observed over a dynamic attributed graph, but those that are particularly important occur in
vertices that are closely related through the induced sub-graph topology. To that end, we are
looking for trend dynamic sub-graphs whose static induce sub-graphs have a small diameter. To
summarize, a trend dynamic sub-graph is defined as follows:

Definition 3.6 — Trend dynamic sub-graph. A trend dynamic sub-graph is an element(
G (U,S),Ω

)
of L that satisfies the following properties :

1. At each time step t ∈ S, the diameter of the graph Gt(U) is less than or equal to k, where
k is a user-defined threshold. I.e., for any two vertices v,w ∈U , there exists a path
connecting them whose length is smaller than or equal to k. Formally, let dGt(U)(v,w)
be the shortest path length between the vertices v and w in Gt(U). The diameter of G
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is thus defined by
diamGt(U) ≡ max

v,w∈U
dGt(U)(v,w)

and the diameter constraint, that is diamGt(U)≤ k, ∀t ∈ S, is denoted Cdiameter
(
G (U,S),Ω

)
.

2. Each signed attribute (a,m) ∈Ω defined a trend that has to be satisfied by any vertex
u ∈U at any timestep t ∈ S:{

a+(u, t)≡ a(u, t)< a(u, t +1), i f m =+
a−(u, t)≡ a(u, t)> a(u, t +1), i f m =−

This constraint is denoted Ctrend
(
G (U,S),Ω

)
.

3. If
(
G (U,S),Ω

)
is maximal, then the sets U and Ω, as well as the sequence S cannot be

enlarged without invalidating one or more of the above properties. This constraint is
denoted Cmaximal

(
G (U,S),Ω

)
.

3.3.2 Constraints on Trend Dynamic Sub-graphs

To further guide the extraction of trend dynamic sub-graphs toward most relevant ones, we
propose several interstingness measures that offer the possibility to the end-users to express their
needs. An interestingness measure is a function which assigns a value to a pattern according
to its quality. Such a measure can easily be used as a constraint by specifying a user-defined
threshold that makes possible the selection of patterns having a high or a low value on these
measures.

Size measures: As most simple interestingness measures are often the most useful ones, we
first consider size measures that characterize a pattern by the number of elements it contains:
Csz_vertices

(
G (U,S),Ω

)
= |U |, Csz_times

(
G (U,S),Ω

)
= |S| and Csz_attributes

(
G (U,S),Ω

)
= |Ω|.

These measures are generally used to constrain patterns to a minimal size.

Volume measure: In some contexts, it can also be useful to combine the three size measures
in a single value: Cvolume

(
G (U,S),Ω

)
= |U |
|V | ×

|S|
|T | ×

|Ω|
|A| . This measure is also generally used to

constrain patterns to a minimal volume.

Measure of vertex specificity: The question that aims to answer this measure is: How similar
are the vertices outside the trend dynamic sub-graph to the ones inside it? We want to quantify
the average proportion of trends that are satisfied by outside pattern vertices:

Cvertex_speci f icity
(
G (U,S),Ω

)
=

∑w∈V\U ∑(a,m)∈Ω ∑t∈S δam(w,t)

|V \U |× |Ω|× |S|

where δcondition is the Kronecker function that is equal to 1 if condition is satisfied, or 0 otherwise.
The more the trend dynamic sub-graph is made of specific vertices with respect to attribute
trends, the lower this measure.

Measure of trend relevancy: The question that aims to answer this measure is: Does the
attributes that do not belong to Ω have an homogeneous trend on G (U,S)? To that end, we
evaluate the entropy of the attribute trends and consider the one that has the smallest entropy. Let

P1(bm,G (U,S)) =
∑u∈U ∑t∈S δbm(u,t)

∑u∈U ∑t∈S
(
δb−(u,t)+δb+(u,t)

)
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be the proportion of the trend m of attribute b on the vertices and time steps of G (U,S). Then
the trend relevancy interestingness measure is:

Ctrend_relevancy
(
G (U,S),Ω

)
= min

b∈A\Ω ∑
m∈{−,+}

−P1(bm,G (U,S)) logP1(bm,G (U,S))

The more a trend dynamic sub-graph is trend relevant, the higher this measure.

Time

Outer 
Density

0

1
Inner density = 1

Trend Pattern

Measure of temporal dynamic: The question that
aims to answer this measure is: How does a pattern
appear in the time? Does it burst? To that end, we eval-
uate the dynamic of the proportion of vertices and at-
tributes that satisfy the pattern before and after the time
steps of S: P2(t,(G (U,S),Ω)) =

∑u∈U ∑(a,m)∈Ω δam(u,t)
|U |.|Ω| . If

a trend dynamic sub-graph bursts, then the proportion
P2 is below a threshold at every time steps not in S:

Ctemporal_dynamic(G (U,S),Ω) = max
t∈T\S

P2(t,(G (U,S),Ω))

3.3.3 Constraint properties

We consider the following partial order between attributed induced dynamic sub-graphs.

Definition 3.7 — Partial order on attributed induced dynamic sub-graphs. Let Q1 =(
G (U1,S1),Ω1

)
and Q2 =

(
G (U2,S2),Ω2

)
be two attributed induced dynamic sub-graphs.

We say that Q1 is more specific than Q2, Q1 � Q2, iff U1 ⊆U2 and S1 ⊆ S2 and Ω1 ⊆Ω2.

Considering this partial order, we propose to compute attributed induced dynamic sub-graphs
using the generic algorithm presented in Section 1.4. Let us just recall the notations used in
this algorithm, before considering the constraints properties and the way they are handle in this
algorithm. R = {Qi | i = 1 . . .k} denotes a nonempty finite set of attributed induced dynamic
sub-graphs. R∨ =

(
G (
⋃

Ui,
⋃

Si),
⋃

Ωi
)

and R∧ =
(
G (
⋂

Ui,
⋂

Si),
⋂

Ωi
)

are respectively the
join and meet elements of R.

Trend constraint: This constraint is anti-monotone with respect to �. That is, if Q1 and Q2 are
two attributed induced dynamic sub-graphs such that Q1 � Q2, then Ctrend(Q2)⇒ Ctrend(Q1).
The anti-monotone property of the trend constraint implies that if Ctrend(R

∧) is not satisfied,
then R is empty. This constraint can also be propagated using the following procedure: if there
exists e in R∨ \R∧ such that Ctrend(R

∧∪ e) is not satisfied, then e is removed from R∨.

Diameter constraint: This constraint is neither monotone nor anti-monotone with respect to
�. However, noting that this constraint is monotone or anti-monotone in each of its parameters,
we can derive a propagation mechanism of this constraint. That is, for all vertex v and all
time step t in the trend sub-graph, we should have maxw∈U1 dGt(U2)(v,w)≤ k. This constraint is
anti-monotone on U1 and monotone on U2, that is (a) if the constraint is satisfied on U1, it is also
satisfied for any of its subsets; (b) if the constraint is satisfied on a graph Gt(U2), then, adding
some vertices and edges to Gt(U2) will not increase its value. Therefore, in MINTAG algorithm,
this constraint is propagated using the following mechanisms: (1) if there exists v ∈R∨ \R∧,
w ∈R∧ and t ∈R∧ such that dGt(R∨∪V )(v,w)> k then v is removed from R∨; (2) if there exists
t ∈R∨ \R∧, v ∈R∧ and w ∈R∧ such that dGt(R∨∪V )(v,w)> k then t is removed from R∨.
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Minimal size constraints: These constraints are monotone. Thus, if Csz_vertices(R∨ ∩V ) <
min_sz_vertices or Csz_attributes(R

∨∩A×{+,−})< min_sz_attributes or Csz_times(R∨∩T )<
min_sz_times, then R is empty.

Minimal volume constraint: Similarly, this constraint is monotone and if Cvolume(R
∨) <

min_volume, then R is empty.

Maximal vertex_specificity constraint: As the diameter constraint, this constraint is monotone
or anti-monotone on each of its parameters. Considering the equation ∑w∈V\U1 ∑(a,m)∈Ω1 ∑t∈S1

δam(w,t)

|V\U2|×|Ω2|×|S2| ≤
max_vertex_spec, we can observe that it is monotone on U1, S2 and Ω2 and anti-monotone on
U2, S1 and Ω1. Thus, R is empty if

∑w∈(R∨∩V ) ∑(a,m)∈(R∧∩(A×{+,−}) ∑t∈(R∧∩T ) δam(w,t)

|R∧∩V |× |R∨∩ (A×{+,−})|× |R∨∩T |
> max_vertex_spec

Minimal trend_relevancy constraint: Handling this constraint is a little more tricky. Let us first
consider the entropy function with two probability values: f (x) =−x log(x)− (1− x) log(1− x).
This function increases on [0, 1

2 ] and decreases on [1
2 ,1]. Using this notation, the minimal

trend_relevancy can be rewritten as minb∈A\Ω f (P1(b+,G (U,S))≥min_trend_rel.4 Second, we
can derive the following upper bound on P1(bm,G (U,S)):

P1(bm,G (U,S))≤
∑u∈(R∨∩U) ∑t∈(R∨∩S) δbm(u,t)

∑u∈(R∧∩U ∑t∈(R∧∩S)
(
δb−(u,t)+δb+(u,t)

) =UB(bm)

as P1 is monotone on its numerator parameters, and anti-monotone on its denominator ones.
Similarly, we can derive a lower bound5 LB(bm) ≤ P1(bm,G (U,S)). Thus, if UB(bm) ≤ 1

2 ,
then f is increasing and f (P1(bm,G (U,S)))≤ f (UB(bm)). Similarly, if LB(bm)≥ 1

2 , then f is
decreasing and f (P1(bm,G (U,S)))≤ f (LB(bm)).

Therefore, if there exists b ∈ A \R∨ and m ∈ {+,−} such that either (1) UB(bm) ≤ 1
2

and f (UB(bm)) < min_trend_rel, or (2) LB(bm) ≥ 1
2 and f (LB(bm)) < min_trend_rel then

f (P1(bm,G (U,S)))< min_trend_rel and we can conclude that R is empty.

Maximal temporal_dynamic constraint: This constraint is anti-monotone on its parameters
on the numerator and monotone on the ones on the denominator:

max
t∈T\S

∑u∈U ∑(a,m)∈Ω δam(u,t)

|U |.|Ω|
≤max_temp_dyn

Therefore, if there exists t ∈ T \R∨ such that ∑u∈R∧∩U ∑(a,m)∈R∧∩Ω
δam(u,t)

|R∨∩U |.|R∨∩Ω| > max_temp_dyn, then
we can conclude that R is empty.

3.3.4 Experimental Study

We considered three real-world dynamic attributed graphs whose characteristics are given in
Table 3.8.

4This is equivalent to minb∈A\Ω f (P1(b−,G (U,S))≥min_trend_rel as P1(b+,G (U,S)) = 1−P1(b−,G (U,S)).
5 LB(bm) =

∑u∈(R∧∩U) ∑t∈(R∧∩S) δbm(u,t)

∑u∈(R∨∩U ∑t∈(R∨∩S)

(
δb−(u,t)+δb+(u,t)

) ≤ P1(bm,G (U,S))
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Dynamic attributed graph |V | |T | |A| density
DBLP 2145 10 43 1.3×10−3

US Flights Last 20 years 361 20 8 3.2×10−2

September 2001 220 30 6 5.7×10−2

Two years around 9/11 234 25 8 5.7×10−2

Katrina 280 8 8 5×10−2

Brazil landslides 394885 2 11 5.7×10−4

Table 3.8: Main characteristics of the dynamic attributed graphs.

DBLP: This co-authorship graph is built from the DBLP digital library 6. Each vertex represents
an author who published at least ten papers in one of the major conferences and journals of the
Data Mining and Database communities between January 1990 and December 2012. This time
period is divided in 10 time steps. Each time step describes the co-authorship relations and the
publication records of the authors over 5 consecutive years. For sake of consistency in the data,
two consecutive periods have a 3 year overlap7. Each edge at a time step t links two authors
who co-authored at least one paper in this time interval. The vertex properties are the number of
publications in each of the 43 journals or conferences.

US Flights: RITA “On-Time Performance” database8 contains on-time arrival data for non-stop
US domestic flights by major air carriers. From this database, we generated 4 dynamic attributed
graphs that aggregate data over different period of time. Graph vertices stand for US airports and
are connected by an edge if there is at least a flight connecting them during the time period. We
consider 8 vertex attributes that are the number of departures/arrivals, the number of canceled
flights, the number of flights whose destination airport has been diverted, the mean delay of
departure/arrival and the ground waiting time departure/arrival. The four dynamic graphs are:

• Last 20 years: Data are aggregated over each year.
• September 2001: Data are aggregated over each day of September 2001.
• Two years around 9/11: Data are aggregated over each month between September 2000

and September 2002.
• Katrina: To study the consequences of hurricane Katrina on US airports, data are aggre-

gated over each week between 01/08/2005 and 25/09/2005.

Brazil landslides: This dynamic attributed graph is derived from two satellite images taken
before and after huge landslides in Brazil. It is composed of 394885 vertices that stand for
image shapes (segmented areas), two time steps and 11 attributes that are the spectral response
in infra-red, red, blue green and indices computed from these values. There is an edge between
two vertices if the corresponding shapes are contiguous.

The ensuing experimental study aims at answering the following questions: What is the
efficiency of the algorithm with regard to the graph characteristics that may affect its execution
time? How effective are the pruning properties? What about the trend dynamic sub-graph
relevancy?
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Figure 3.13: Number of patterns and runtime for DBLP (left) and US flights (right) with respect to
volume: max_vertex_spec = 0.5, min_trend_rel = 0.05 and max_temp_dyn = 0.8. The diameter is set
to 2 on (left) and to 1 on (right).

Quantitative Results
Figure 3.13 shows the number of extracted patterns and the execution times of the algorithm
on DBLP and US Flights with respect to the volume threshold. When the minimum volume
threshold decreases, more execution time is required since more trend dynamic sub-graph are
obtained. Yet, the algorithm is able to extract trend dynamic sub-graphs when the minimum
volume threshold is minimal, that is to say equals 1, since we report absolute volume values. It
does not exhibit a similar monotonic behavior when varying the diameter constraint: the time
computation is no more proportional to the number of extracted patterns. Actually, pushing this
constraint needs to compute shortest paths in the graph, that is costly.

Figure 3.14 reports the execution times and the number of patterns with respect to the
other constraints: Cvertex_speci f icity, Ctrend_relevancy and Ctemporal_dynamic. We can observe that for
the graphs DBLP and US Flights, the less stringent the constraints, the higher the execution
times and the number of patterns are. In most of the cases, the number of patterns increases
dramatically. This behavior shows that our approach push efficiently these constraints that are
neither monotone nor anti-monotone. It is noteworthy that in Figure 3.14, the execution time on
DBLP for min_trend_rel = 0 is not available because the process was killed after several hours.

Figure 3.15 reports on the scability of the algorithm. We used DBLP and replicated alter-
natively the number of vertices, time steps and attributes. As the number of extracted patterns
is not preserved by these replications (i.e., the vertex replication adds connected components
while the time replication introduces new variations involving the last time step) we report the
runtime per pattern. It appears that the algorithm is more robust to the increase of the number of
attributes and to the number of vertices than to the number of time steps. This is a good point
since, in practice, the number of vertices is often large while the numbers of attributes and the
number of time steps are rather small.

We study the effectiveness of each constraint on both DBLP and US Flights, when varying
the different thresholds (volume, vertex specificity, temporal dynamic and trend relevancy). To
this end, we count the number of pruned unpromising candidates by each constraint. The results
are shown in Figure 3.16 for DBLP (top) and US Flights (bottom). It is noteworthy that all
the constraints enable to prune unpromising candidates and they have different impact on both
graphs. We can observe that the trend relevancy constraint is effective on the two graphs and
prunes almost 50% of the unpromising candidates on DBLP in most of the cases. Even if this

6http://dblp.uni-trier.de/
7[1990-1994][1992-1996][1994-1998]...[2008-2012]
8http://www.transtats.bts.gov
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Figure 3.14: Runtime and number of patterns with respect to the specificity measures
(max_vertex_spec = 0.3, min_trend_rel = 0.1, max_temp_dyn = 0.5, min_volume = 5 and
max_diameter = 2 for DBLP (top) or 1 for US flights (bottom)).
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Figure 3.15: Runtime per pattern with respect to replication factors on vertices, attributes and
time steps (max_vertex_spec = 0.3, min_trend_rel = 0.1, max_temp_dyn = 0.5, min_volume = 5 and
max_diameter = 2.

constraint has no anti-monotone property, it is efficiently pushed. The volume constraint, more
effective on DBLP than US Flights, makes possible to prune large part of the search space. This
behavior is much more expected since this constraint is anti-monotone. The pruning impact of
the temporal_dynamic constraint is not negligible, since it prunes nearly 20% of the candidates
on DBLP and up to 60% on US flights. This important difference is mainly due to the temporal
regularity of US Flights. This can also explain the fact that the vertex specificity constraint plays
a prominent role on the US Flights while having a limited impact of the DBLP dynamic graph.

Qualitative Results

Results on DBLP: We perform an extraction on DBLP dynamic attributed graph with pa-
rameter max_diameter set to infinity (vertices belong to the same connected component) and
min_volume= 5. Other constraints threshold are set so as not to constrain the result. We obtained
112 trend dynamic sub-graphs in less than 4 seconds. The top 2 largest patterns depict the same
well-known phenomenon, explained below. The first pattern involves 171 authors having an
increasing number of publications in PVLDB between 2004 and 2012. The second one involves
164 authors that have a decreasing number of publications in VLDB during the same period.
These patterns reflect the new policy of the VLDB endowment. Indeed, PVLDB appeared in
2008 and, in 2010, the review process of the VLDB conference series was done in collaboration
with, and entirely through PVLDB in 2011. Then, we carry out a new extraction taking into
account all the constraints (max_diameter = 2, max_vertex_spec = 0.3, max_temp_dyn = 0.5)
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Figure 3.16: Constraint efficiency on DBLP (top) and US Flights (bottom) w.r.t. specificity mea-
sures. From top to bottom: volume (black), trend_relevancy (red), temporal_dynamic (green) and
vertex_specificity (blue). Same parameters as in Figures 3.13 and 3.14.

except min_trend_rel that was set to 0. We obtained 41 patterns in 8 seconds. We first consider
the pattern that has the longest duration and involves the most recent period, that is [2008-2012].
It implies the vertices related to Jimeng Sun and Christos Faloutsos, who have an increasing
number of publications in KDD and SDM, while having a decreasing number of publications
in VLDB. We consider another pattern which has the best temporal_dynamic value among the
patterns having their trend_relevancy greater than 0.1. It involves two authors, Rong Zhou and
Eric A. Hansen, and the time steps between 1998 and 2008. On this period, the authors have an
increasing number of publications in AAAI conference series. This pattern has good values on
vertex_speci f icity (0.12), temporal_dynamic (0) and trend_relevancy (0.81). This publication
trend is rare with regard to the whole graph.

Figure 3.17: Airports (left) involved in the top temporal_dynamic trend dynamic sub-graph (in red) and
in the top trend_relevancy (in yellow) and the Katrina’s track (right).

Results on Katrina: Hurricane Katrina was the deadliest and most destructive Atlantic hurri-
cane of the 2005 Atlantic hurricane season. It was the costliest natural disaster, as well as one
of the five deadliest hurricanes, in the history of the United States. Among recorded Atlantic
hurricanes, it was the sixth strongest overall. In this experiment, we aim to characterize the
impact of this hurricane on the US domestic flights. To this end, we set constraints as follows:
min_volume = 10, max_vertex_spec = 0.6, min_trend_rel = 0.1, max_temp_dyn = 0.2 and
max_diameter = ∞. We extract 37 patterns in 14 seconds. We look for two patterns: (i) the trend
dynamic sub-graph with largest temporal_dynamic value, and (ii) the pattern with the highest
trend_relevancy value. These patterns and Katrina’s track9 are shown in Figure 3.17. Pattern (i)
involves 71 airports (in red on Figure 3.17 (left)) whose arrival delays increase over 3 weeks.

9Map from c©2013 Google, INEGI, Inav/Geosistemas SRL, MapLink
http://commons.wikimedia.org/wiki/File:Katrina_2005_track.png

http://commons.wikimedia.org/wiki/File:Katrina_2005_track.png
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Pattern |V | Days A vertex_spec. temp._dyn. trend_rel.
P1 179 10, 11 #Cancel.+ 0.5 0.41 0.94
P2 111 13, 15 #Cancel.− 0.52 0.83 0.9
P3 102 13, 14, 15 #Cancel.− 0.6 0.84 0.81

Table 3.9: Trend dynamic sub-graphs extracted on September 2001 graph.

One week is not related to the hurricane but the two others are the two weeks after Katrina caused
severe destruction along the Gulf coast. This pattern has a temporal_dynamic = 0, which means
that arrival delays never increased in these airports during another week. The hurricane strongly
influenced the domestic flight organization. Pattern (ii) has a trend_relevancy value equal to 0.81
and includes 5 airports (in yellow on Figure 3.17 (left)) whose number of departures and arrivals
increased over the three weeks following Katrina hurricane. Three out of the 5 airports are in
the Katrina’s trajectory while the two other ones were impacted because of their connections to
airports from damaged areas. Substitutions flights were provided from these airports during this
period. The values on the other interestingness measures show that this behavior is rather rare in
the rest of the graph (vertex_speci f icity = 0.29, temporal_dynamic = 0.2).

Results on September 2001: To characterize the impact of September 11 attacks, we look for
patterns involving many airports (at least 100) whose trends are relevant (trend_relevancy = 0.8).
Given this setting, the algorithm returns 3 trend dynamic sub-graphs in 8 seconds. These patterns
are reported in Table 3.9. They depict a large number of airports, whose number of canceled
flights increased on September 11 and 12 compared to the previous days, and then decreased two
days after the terrorist attacks (between the 13th and 16th September). These patterns identify
the time required for a return to normal domestic traffic.

Results on Two years around 9/11: Considering longer periods before and after the September
attacks, with more restrictive threshold values (temporal_ dynamic = 1, vertex_speci f icity =
0.5 and trend_relevancy = 0.8), we obtain 87 patterns in 67 seconds. The top trend_relevancy
pattern involves 159 airports that have an increasing number of canceled flights in September
2001 and December 2000. Obviously, the number of canceled flights in September 2001 is
related to terrorist attack. It is noteworthy that December 2000 snow storm had a similar impact
on the cancellation of flights, because we do not quantify the strength of the trends. Actually, the
number of canceled flights in September 2001 is four times bigger than the one in December
2000.

Results on Brazil landslides: In this series of 2 satellite images, the goal is to identify regions
in which a landslide appears in the second image. Generally, the main consequence of a landslide
if the disappearance of the vegetation. Therefore, we focus on the patterns that involve NDV I−,
since NDV I is a computed index that quantifies the level of vegetation. The algorithm returns
4821 patterns in 2 hours that involve 34275 regions that are reported on Figure 3.18. These
results were evaluated by an expert who testified that 69% of the true landslide regions appear in
the computed patterns. These regions represent 46% of the extracted regions. The 54% remaining
regions belong to one of the 4 following categories:(1) regions nearby true landslides which have
not been interpreted as landslides by the expert (border effect), (2) deforested area not due to
landslides (e.g., human activity), (3) regions found due to misalignment of the segmentation
technique and (4) regions that represent cities and human activity footprints.
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Figure 3.18: Regions involved in the patterns: true landslides (red) and other phenomena (white).

3.4 Discussion
In this chapter, we showed several examples of constraint-based pattern mining frameworks for
attributed and/or dynamic relational graphs. One of the difficulties when analyzing attributed
relational graphs is to design patterns that characterize both the structure encoded by the graph
relationship and the attribute values of the vertices. Our first proposal was to analyze static
attributed graphs using a propositionalization of the graph structure based on topological mea-
sures evaluated at each vertex. Topological patterns, that mix topological measures and attribute
values, are extracted to find co-variations between some descriptors of vertex connectivity and
vertex attribute values. Our second contribution concerns the discovery of patterns in relational
dynamic graphs. We proposed a local to global approach that studies time-evolving patterns: It
first extracts highly connected sub-graphs, and then looks for relationships between patterns of
two consecutive time steps. Our third proposal aims to extract patterns in relational attributed and
dynamic graphs. We introduced a new approach that mines constrained dynamic sub-graphs: The
sub-graph diameter is constrained so that to limit the length of the longest shortest path between
any two vertices of the sub-graph (constraints such as pseudo-cliques are too stringent and tend
to fragment some reliable patterns) and the attributes associated to the dynamic sub-graph follow
the same trend over the time steps associated to the pattern.

The prospects of this work are many, as attributed dynamic graph data are numerous and
require the design of suitable pattern domains that depends on the application domains. To cite
just a few, attribute values may be embedded into a hierarchy structure that gives the possibility
to generalize or specialize the patterns; Or one can be interested in triggering attributes whose
changes impact the graph topology; Finally, the dynamics of the edges can be the center of the
study and we may extract temporal dependencies between edge activation.



Conclusion

In this Habilitation à Diriger des Recherches thesis, I present the main results I have contributed
to in the areas of local pattern extraction under constraints and in the analysis of dynamic graphs.
In the coming years, our research will be guided by two main projects that have just started or
been accepted. The first one, named Vél’innov 10, is a continuation of the work presented in
Section 2.2. From the records of all movements of the Vélo’v bicycle sharing system since its
creation, as well as information about subscribers obtained by quantitative and qualitative user
surveys, this research project aims to:
• Characterize the bicycle sharing system as an evolving socio-technical system in order to

be able to model and to simulate the impacts of local changes in the city or in the system;
• Analyze how the persons or classes of persons tame this socio-technical innovation, as

well as the impact on practices and representations of the system;
• Develop a set of statistical tools and methods based on the analysis of this particular

complex systems and on interdisciplinary collaboration among project partners.
In this context, we will continue our exploration of dynamic attributed graphs. A fist direction
will be to seek for relationships between attribute value changes and topological modifications
of the graph. We plan to discover temporal combinations of attribute changes that are strongly
correlated with significant topological modifications within the dynamic graph. A second
direction will be to use vertex attributes to select a part of the dynamic graph, transform it
into signals, and then analyze these signals using signal processing methods. We propose
to use classical multidimensional scaling (CMDS) to transform the network into time series.
This method generates signals which preserves the adjacency matrix of the graph viewed as
dissimilarities between the vertices (Hamon, Borgnat, Flandrin, and Robardet 2013a; Hamon,
Borgnat, Flandrin, and Robardet 2013b). Signals will then be characterized by either a frequency
analysis, or by the search of discriminating patterns.

The second project, named GRAISearch (Use of Graphics Rendering and Artificial Intel-
ligence for Improved Mobile Search Capabilities) 11, involves three partners: (1) Tapastreet
Ltd is an Irish company that focuses on the development and commercialization of a location
based social media search engine platform that, in its current form, returns geo-located video
and image media from major social networks for any location and any topic anywhere in the

10Projet ANR Sociétés Innovantes, innovation, économie, modes de vie – INOV 2012
11European Marie Curie Industry-Academia Partnerships and Pathways (IAPP) Call: FP7-PEOPLE-2013-IAPP
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world; (2) Trinity College Dublin (TCD) – represented by the group of Professor Rozenn Dahyot
from the Computer science and statistics department / Graphic Vision and Visualisation Cen-
tre (GV2) – focuses on the development of Video summarization techniques and 3D Scene
rendering; (3) INSA-Lyon – represented by the DM2L LIRIS team (Data Mining & Machine
Learning), that works on knowledge discovery in databases. In this project, we first plan to work
on the development of a trajectory mining algorithm to predict local demographic flows using
geo-tagged social media uploaded data. The growth of location based smart-phone applications
makes possible to collect significant quantities of user data that can be use to make local demo-
graphic flow predictions. The second contribution would be related to the proposition of a local
event detection algorithm to identify local breaking news events. Similar approaches have been
proposed to detect global events (earthquakes, pandemics) from social media data, but none as
yet have been designed for a vast quantity of useful local newsworthy events. A major benefit of
developing a new automatic event detection system from uploaded geo-located photos, videos,
social preferences (Likes, Shares etc) is the added social feedback component: We aim to assess
the impact an event had and how people reacted to it. This will be investigated by modelling the
problem of trust sources identification as an original problem of temporal dependency discovery
between topics from different social media that will be the support to intelligently detect breaking
news with respect to the context. It is very important to take benefit from the context such as
the geo-localization and the social characteristics of the individuals. A deep analysis of the
propagation of the information in social networks will enable to both suggest targets to crawl
and assess the results of the social media search engine. Indeed, identifying the domain leaders
is important to rank the results and to automatically compute a reputation score on new comers.
Finally, those techniques will be integrated into a geo-located social media recommender system.

These projects give us original application contexts for which we will design pattern domains
that support appropriate knowledge discovery and continue our theoretical studies on generic
mechanisms that sustains the constraint-based pattern mining framework.

Before completing this manuscript, I would like to explain the choice of photos that illustrate
each chapter: The product of a fruitful fishing represents the patterns obtained by a successful
data mining process; The bicycle shape candy expresses the fun I have to work with the team of
Vélo’ver researchers; And the colorful fireworks symbolize the attributed dynamic graphs and
the recreation that their study provides me; Without forgetting the little bee that is all that I have
to discover.
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in this habilitation à diriger des recherches, i present the main results i have 
contributed to in the areas of local pattern extraction under constraints and 
of dynamic graph analysis.

constraint-based pattern mining covers data mining algorithms that apply 
an exact search strategy to achieve the exhaustive extraction of the whole 
set of patterns satisfying some constraints over the data. these constraints 
are boolean expressions based on evaluation criteria that measure the 
relevance of patterns in a specific data set. Besides, the use of constraints 
increases the computational efficiency of the process, making possible 
to truncate the search space while preserving the completeness of the 
extraction. After studying the constraint properties that have been identified 
as useful in this framework, i discuss the special case of formal concept 
extraction under constraints. then i introduce the principles of a generic 
algorithm that ‘pushes’ constraints with various properties in the data mining 
system to optimize its efficiency.  

considering relational dynamic graphs, i present two case studies of mobility 
networks for which main global properties have been revealed thanks to 
statistical time-series analysis and clustering techniques.

in the last part, i discuss my main contributions on local pattern discovery 
in attributed and/or dynamic relational graphs. I first present an approach 
to characterize the relationship between vertex attributes and the graph 
topology in static attributed graphs. it consists in the extraction of co-variations 
between vertex attributes and measures describing the relationship of the 
vertex with the rest of the graph. then, i propose to analyze dynamic graphs 
by discovering the main temporal changes as locally strong associations 
between vertices and their evolution through time. finally, i introduce the 
mining of trends in attributed dynamic graphs to identify connected parts of 
the graph whose vertex attributes evolve in the same way.

Constraint-based 
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for the analysis  
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attributed dynamic 
graphs
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