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ABSTRACT

Standard fractal image compression, proposed by Jacquin[1],
is based on IFS (Iterated Function Systems) defined inR2.
This modelization implies restrictions in the set of images
being able to be compressed. These images have to be self
similar in R2. We propose a new model, the projected IFS,
to approximate and code grey level images. This model has
the ability to define affine IFS in a high dimension space,
and to project it through control points, resulting in a non
strictly self similar object inR2. We proposed a method
for approximating curves with such a model [2, 3]. In this
paper, we extend the model capabilities to surfaces and im-
ages. This includes the combination of projected IFS in a
quadtree structure and a complete coding scheme. First re-
sults show that our method gives better results than standard
fractal image compression. Furthermore, in the very low bi-
trate context, the distortion/rate performances are equivalent
to those obtained with EZW algorithm.

1. INTRODUCTION

Performing even better compression on images has always
been an important research area. From the old standard
JPEG to JPEG 2000, many improvements have been sup-
plied. In 1992, Jacquin proposes a fractal compression al-
gorithm that uses the spatial redondancy of natural images
using Iterated Function Systems (IFS) [1]. In this study we
introduce a new model for fractal compression of images
using combination of projected IFS in a quadtree structure.
We first explain the projected IFS model and then give ex-
tensions with quadtrees and the compression method. We
finally expose our first compression results and compare it
with other compression methods (JPEG, JPEG 2000 and
Jacquin compression method).

2. PROJECTED IFS APPROXIMATION

2.1. IFS

Introduced by BARNSLEY[4] in 1988, the IFS (Iterated Func-
tion Systems) model generates a geometrical shape or an
image [1] with an iterative process. AnIFS T (Iterative

Function System)is a finite subset of contractions in a met-
ric space(X , d): T = {T0, ..., TN−1}.

We noteH(X ) the set of non-empty compacts ofX .
The associated HUTCHINSON operator is:

K ∈ H(X ) 7→ TK = T0K ∪ ... ∪ TN−1K

This operator is contractive in the new complete metric spa-
ceH(X ) and admits a fixed point, calledattractor [4]:

A(T) = lim
n→∞

TnK with K ∈ H(X )

By introducing an index set [4], and adding joining condi-
tions [5, 6, 7], the attractor defines parametric surfaces. For
surfaces or images, it is convenient to use a double indexing
Σ = {0, . . . , N − 1} × {0, . . . , N − 1} [8]:

Φ(s, t) = φ(ρ) with ρ = (σ1, τ1) . . . (σn, τn) . . . ∈ Σω

whereσ = σ1 . . . σn . . . andτ = τ1 . . . τn . . . are respec-
tively the development ofs andt in baseN .

2.2. Projected attractors

The main idea of our model is drawn from the formula of
free form surfaces used in CAGD (Computer Aided Geo-
metric Design):

F (s, t) =
∑
j∈J

Φj(s, t)pj

wherepj constitutes a grid of control points, andΦj are
blending functions. These blending functions have the fol-
lowing property:

∀(s, t) ∈ [0, 1]2
∑
j∈J

Φj(s, t) = 1

In classical fractal interpolation [4, 9] or fractal compres-
sion [1], the complete metric spaceX used isR2 or R3, and
the iteration semigroup is constituted of contractive affine
operators. Our work consists in enlarging iteration spaces
[5, 6]. This model uses a barycentric spaceX = BJ :

BJ = {(λj)j∈J |
∑
j∈J

λj = 1}



For surfaces or images, we useJ = {0, . . . ,m}×{0, . . . ,m}.
Then, the contractions are matrices with barycentric columns:

SJ = {T |
∑
j∈J

Tij = 1, ∀i ∈ J}

This choice leads to the generalization of IFS attractors na-
medprojected IFS attractors(PIFS):

PA(T) = {Pλ |λ ∈ A(T)}

whereP is a grid of control pointsP = (pj)j∈J andPλ =∑
j∈J λjpj . In this way, we can construct a fractal function

[5, 6, 7] using the projection:

F (s, t) = PΦ(s, t) =
∑
j∈J

Φj(s, t)pj

whereΦ(s, t) is a vector of functionsΦ(s, t) = (Φj(s, t))j∈J

andJ is the double index setJ = {0, . . . ,m}×{0, . . . ,m}.
Fig. 1 shows the difference between action on the con-

trol grid P which is global deformation and action onT
which involves local regularity of the surface. Note that a
surface representation has been used for better understand-
ing.
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Fig. 1. Global deformation using the control gridP and
local aspect transformation usingT

2.3. Approximation with projected IFS (PIFS)

Considering the coefficients of the subdivision matrices and
the coordinates of the control points are put all together in a

parameter vectora, it is possible to construct a fractal curve
(or surface) family:

Fa(s, t) = PaΦa(s, t)

From now on, the approximation problem is equivalent to
the following minimization problem:

aopt(Q) = argmin
a

E(Fa,Q)

whereQ is the original data to approximate andE is a func-
tion that gives the numerical spacing between two surfaces
or images.
For image approximation, we use scalar control pointspj ∈
R, and a simpleL2 distance as spacing function. Further-
more, computation is more efficient with such simplifica-
tions because it is possible to describe the model with a sim-
plified subdivision scheme [10]. Numerical optimisation is
performed by a standard Levenberg-Marquardt algorithm.
For detailed results, see [10].
Results show that this single model approximation is good
but rather limited to small image data. For natural size im-
ages (say for example512×512), it would require extremely
complex model involving a great number of parameters that
could not be retrieved by a minimization algorithm. More-
over, it would be illusory to modelize a whole image with
a unique model. A better method should be to divide the
problem into smaller ones we are able to solve. This is the
goal of our new model that combines PIFS in a quadtree
structure in order to better fit to local characteristics.

3. COMBINATION OF PIFS

In this section we introduce a quadtree structure for com-
bining models and providing heterogeneous modelization
capabilities.

3.1. Quadtree structure

Let us denoteΓ the cut of a quadtree andγ ∈ Γ a leaf of
this cut. γ is a finite word of{0, 1, 2, 3}. Fig. 2a gives a
quadtree cut example, defined by:

Γ = {0, 1, 2, 30, 31, 32, 33}
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(a) Quadtree cut example
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(b) Projected IFS quadtree
example

Fig. 2. Quadtree examples

Now imagine that we associate to each leafγ a complete
PIFS model:(P γ , Tγ). We obtain a quadtree of PIFS illus-
trated in Fig. 2b.
If we want to obtain a continuous surface or image, we have
to add joining conditions between each leaf model. Because
these constraints involve complex relations, it is really dif-
ficult to take them into account. That’s the reason why we
have chosen to leave each leaf model completely indepen-
dant. In an image context, it implies an arbitrary choice of
which leaf a border pixel comes from.

3.2. Refinement

This new hierarchical model implies more adaptability to
the data entries. Imagine a leafγ which is approximating a
part of an image. If this approximation is not sharp enough,
we have the ability torefine it (subdivision). That means
replacing it with four subdivided leavesγ0, γ1, γ2 andγ3.
Fig. 3 shows the initial model with a single leaf (a) and the
refined model with four leaves (b).

(P γ , Tγ)

(a) Initial model

(P γ0, Tγ0)

(P γ1, Tγ1)

(P γ2, Tγ2)

(P γ3, Tγ3)

(b) Refined model

Fig. 3. Refinement principle

3.3. Exhaustive exploration

Given an image to approximate, the method developed for
constructing a PIFS quadtree has four steps: exhaustive ex-

ploration of the approximation quadtree, adaptive quantifi-
cation of the different models, coding and optimization.

The first step uses a recursive algorithm that first takes
the whole image and approximates it with a single PIFS.
Then, image is subdivided in four parts, and approximation
is performed on each part. And so on, recursively, with im-
ages becoming even smaller. At a particular depth, we stop
the algorithm to avoid approximation of a to small image.
Intermediate approximation results are stored in an adapted
structure: a quadtree. For a better adaptation, different kinds
of PIFS models for each image are considered. Four models
are used ranging from3× 3 control points with36 parame-
ters to9× 9 control points with192 parameters.

3.4. Quantification and coding

For more efficiency, we have chosen to perform an adapta-
tive quantification. This implies we have to modelize statis-
tic distribution of the model parameters, which is in fact
essential for coding too. Two kinds of parameters must be
considered for statistic modelization: parameters represent-
ing control points and the subdivision coefficients.

For the first category, the distribution is completely cor-
related with the grey levels distribution of the image we an-
alyze. Distribution of the control points is modelized by the
sum of four generalized gaussians as shown in Fig. 4.

Concerning the distribution of the subdivision coeffi-
cients, it is less dependant of the image we are dealing with.
Fig. 5 shows the approximation of the distribution with a
single generalized gaussian.
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Fig. 4. Approximation of the control points distribution
with four generalized gaussians
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Fig. 5. Approximation of the subdivision coefficients distri-
bution with a generalised gaussian

Quantification is performed with different number of
quantification intervals, ranging from22 to 29. After each
quantification, arithmetic coding of the two kinds of param-
eters is performed with the modelized distributions.

3.5. Distortion/rate optimization

We now have a large number of possible descriptions for the
image. Each description involves a choice of a quadtree cut,
a model for each leaf, and two quantifications per model:
one for the control points, one for the subdivision coeffi-
cients. Each of these descriptions implies a rate (computed
by adding the code lengths) and a distortion with respect to
the original image. Due to the data structure, it is possible
to get rid of the large multiplicity of descriptions by using
a lagrangian multiplier paradigm. Indeed, the minimisation
of the lagrangian cost can be performed using a recursive
run through the quadtree. We can now use standard optimi-
sations methods for finding the lagrange multiplier that sat-
isfies a constraint. The algorithm used is drawn from [11].

3.6. Results

In this section, we present the very first results obtained with
PIFS.

Fig. 7 shows the original image, a portion of the well-
knownpepperspicture. Fig. 6 gives Rate/Distortion curves
for this image with four compression methods: Jpeg, frac-
tal compression, EZW and PIFS. The proposed method is
interesting for very low bit rates (less than0.1 bpp). For
these rates, the distortion results are equivalent to those of
EZW. Note that our method outperforms the classical frac-
tal compression. Moreover, PIFS is better than JPEG for
bitrates lower than0.2 bpp. This result has been observed
with all the other images tested (lena, airplane, baboon,
gold, boats. . . ). Fig. 8 and 9 show this image compressed
at0.044 bpp with two methods: EZW and our method. For
this high compression ratio (180), the visual quality of the
method PIFS clearly appears. At this rate, EZW generates

artefacts along contours. PIFS provides well-defined con-
tours with less visual ringing effects. Note that a simple
post-processing step,3×3 gaussian blur filter, improves the
visual and numerical result (see Fig. 10).

Our method allows to reconstruct perfectly the original
image by going deeper in the quadtree exploration but it’s
not competitive compared to other methods.

Average computing time for256×256 images is15 min-
utes, and about one hour for a512× 512 image (Athlon1.2
GHz hardware). These computing times include compres-
sion for a large number of bitrates.
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Fig. 6. Rate/Distortion curves

Fig. 7. Original image, portion ofpeppers



Fig. 8. Image compressed at0.044 bpp with EZW,
PSNR= 23.1dB

Fig. 9. Image compressed at0.044 bpp with PIFS,
PSNR= 24.7dB

Fig. 10. Image from Fig. 9 processed with a3× 3 gaussian
filter, PSNR= 25.1dB

4. CONCLUSION

A new fractal compression scheme is introduced using a
completely different model from the formerfractal image

compression. Instead of using IFS’s with transformation in
R2, we define them in a higher dimension space and then
project them: “projected IFS model”. Combining a set of
PIFS in a quadtree structure, it is possible to model com-
plex images with spatially varying properties. With a com-
plete optimal coding scheme, we have tested our model for
compression purpose. It is more efficient than fractal image
compression and is equivalent to EZW in very low bitrates.
The visual quality obtained with PIFS is slightly better.
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