
An Embedded Domain Speci�c Language for

Pattern Mining: a First Attempt

Romuald Thion

Université Claude Bernard Lyon 1
CNRS, LIRIS, UMR 5205, France
romuald.thion@liris.cnrs.fr

Abstract. Logical query languages for pattern mining and their deno-
tational semantics formally de�ne what are interesting patterns in rela-
tional databases. The functional programming language Haskell provides
an elegant framework to write compilers and interpreters for recursively-
de�ned languages with denotational semantics. In particular, it is espe-
cially good at embedding domain speci�c languages.
This paper reports the experience feedback on a �rst attempt to build an
embedded DSL for a logical pattern mining language. Our objective is
to study whether or not an embedded DSL is a good candidate for rapid
prototyping of new pattern mining tasks. Interestingly, we obtained a
quite clean and concise proof-of-concept program. Using the DSL, an
end-user programmer may easily de�ne new patterns an run experiments
on sample datasets before further deeper studies. Several questions on
the usability and the e�ciency of the approach arise from this attempt.

1 Introduction

A Domain Speci�c Language (DSL) is usually a concise language designed for
computational tasks dedicated to a speci�c application domain. The general pur-
pose functional programming language Haskell [Has99] is notably used for the
implementation of DSLs [LM99]. Haskell can be used to write compilers or (in-
teractive) interpreters for DSLs, or alternatively, it can be used to embed the
DSL, meaning that Haskell acts as an host language: the DSL uses the syntax
of Haskell together with code from a small library of functions that de�nes the
constructs and operators [Jon08]. The embedding of a DSL with denotational
semantics into Haskell can be divided into three steps. The �rst one is to turn
the inductive de�nition of the language, usually given as a context-free grammar
in Backus�Naur form, into an inductive Haskell datatype. The second step is to
de�ne a datatype for the semantic domain in which expressions are evaluated.
The key �trick� of this step is to think about Haskell's function as real math-

ematical functions. This approximation is admissible because of the so called
referential transparency property of Haskell: there are no states, so a function
will always return the same value for a given input. The third step is to turn
the inductive de�nition of the �semantic brackets� J·K into a function that maps
an expression to its interpretation. This de�nition will typically pattern matches

the syntactic constructs and build the interpretation inductively.

romuald.thion@liris.cnrs.fr

2 A DSL for the RL Logical Language

The logical query language called RL has been de�ned to express di�erent kinds
of patterns to be found in a relation [AFP+11]. Intuitively, RL expressions cap-
ture the semantics of predicates in the sense of Mannila and Toivonen [Man97].
One may have selected another language, for instance [CLNP06]. We discuss this
point in the Section 3. The syntax of the RL language is the following: an ex-
pression is either an atomic comparison, a logical combination of expressions or a
quanti�ed expression. The RL language includes two di�erent kinds of variables
with their respective universal quanti�ers: tuple variables (�TV ar�) that are to
be instantiated to real tuples from a relation and attribute variables (�AV ar�)
to its attributes. A universally quanti�ed formula is true if it is true for every
possible choice of tuple or variable respectively. The inductive de�nition of the
RL language is written in Haskell and rendered using the lhs2TeX software:

To write a valid RL expression amounts to de�ne a valid Haskell expression
of type RLa. As RL is embedded into Haskell, it is possible to use the full
power of the host language to build complex RL expressions. For example, the
following de�nition is for Functional Dependencies (FD) written in RL:

The de�nition of FDs corresponds to �f ′1� is quite close to the more usual
∀t1.∀t2.(∀A ∈ X.t1[A] = t2[A] ⇒ ∀B ∈ Y.t1[B] = t2[B]). This formula cap-
ture the semantics of the FD X → Y . Clearly, some syntactic sugar and some
helpers could be integrated to ease the writing of such expressions. Typically,
the expression �∀A ∈ X.φ� is already a shorthand for �∀A.X(A)⇒ φ�.

The informal semantics of RL states that expressions are to be interpreted
to true or to false according to an interpretation structured made of a concrete
relation, a mapping from �TV ar�s to concrete tuples from the relation and a map-
ping from �AV ar�s to concrete attributes. This structure is captured by following
Haskell datatype: type RLInter a = (RLStructa, TV ar → a,AV ar → a).

The type RLStruct is actually a direct and naive implementation of a relation
into Haskell: according to the untyped and named perspective of the relational
model, a tuple is a map from a �nite set of attributes to a domain and an instance
is a �nite set of tuples. This naive choice is enough to provide a minimal yet
usable environment to execute the interpreter, however it rises the question on
how to e�ciently combine the RL interpreter with a real data source. This point
is to be discussed in the Section 3.

The semantic brackets function �JφKst� tells if the RL formula φ is evaluated
to true under the given interpretation st. The interpretation of atomic values is
not provided for brevity and the logical connectives are straightforward.

The most interesting case is �J∀a.xKst� that captures the essence of the RL
language. First of all, a list �fs� is built: it contains all the possible extensions
of σ2, that is, a member of �fs� is a mapping that assigns the value y to the
attribute variable a and σ2(z) to the others. This de�nition uses a lambda ab-

straction �λx → f � for �x 7→ f(x)� and a set builder notation � [f x |x ← xs]�
that has to be read as �{f(x) | x ∈ xs}�. Secondly, the list of states �ss� is
built from the �fs� list: each member of �ss� is a structure based upon �st� with
its last component replaced by a new one picked from �fs�. Then, the evalua-
tion function on the formula x is run on all states to produce a list of boolean
values. Finally, if all these evaluations return true, then the formula �∀a.x� is
evaluated to true using the �foldr� function. The case for tuple variables is quite
similar and is omitted. All told, the de�nition of the semantic brackets is basi-
cally a rewriting of the de�nitions given in [AFP+11] in a concrete functional
programming language.

Assume that one would like to add a new feature to the language, for instance
a speculative bounded quanti�er � |t| ≥ n.x� that would tell if the formula x holds
true for at least n di�erent extensions of σ1. What the designer has in mind is
a �rst try toward the integration of support into the RL language. To do so,
the programmer has to add the corresponding new constructor to the RLa type
and the corresponding �J|t| ≥ n.xKst� case using an ad hoc function that would
replaces the foldr used in the the �J∀a.xKst� case.

The objective of the RL language is to allow developers to rapidly prototype
new innovative patterns. The last step toward a full embedding of RL is to
write the query evaluation engine that takes a relation, a formula φ and returns
the set of assignments of �AV ar�s such that formula holds true. For the sake
of clarity, we restrict ourselves to RL formulas that uses exactly two attributes
variables, say X and Y . The answer to a query φ with exactly two variables
is the set {(σ2(X), σ2(Y)) | JφK((R,r,Σ),(σ,σ2)) for all σ}. For the RL expression
�f1′� capturing FD given earlier, the result of this evaluation is the set of FDs

X → Y that hold in the relation. This function has been implemented as well
but it is not provided here for the sake of brevity.

3 Discussion

Embedding a recursively de�ned language with formal denotational semantics
into Haskell, or another language with similar features, is made easy for the
following reasons: the syntax and the building blocks of Haskell are designed to
be close to the mathematical notation and the referential transparency property
allows to mathematically reason on programs. However this approach rises (at
least) two questions: �is it possible to do the same with other non-denotational

semantics? � (e.g., operational semantics) and �how to deal with standard imper-

ative style algorithmic? �. A direct answer to the �rst question would be �yes�:
Haskell is as expressive as any other language and some frameworks for opera-
tional semantics exist. However, the implementation of an operational semantics
would come at a price: the link between the formal de�nition and the concrete
code would not be so straightforward and Haskell's features would not be so
handy anymore. The second question is subtler. Our proof-of-concept uses naive
implementations for both the interpretation function and the query evaluation1.
Whereas the code sticks quite closely to the formal de�nitions it is far from being
e�cient: clever evaluation strategies for query evaluation and conceptual opti-
mizations are not integrated. For instance, some restrictions of the RL language
enjoying good algorithmic properties and amenable to level-wise research strat-
egy have been identi�ed but are not implemented yet. Algorithmic traditionally
uses a mix of mathematical operations and imperative operations (while loop,
assignments, references, mutable array). Whereas Haskell provides an artillery
for the �rst, it almost completely lacks the second. So a preliminary answer to
the second question would be �no�. Firstly, we argue that this di�culty can be
mitigated: at the price of a lack of purity, some languages like OCaml can mix
imperative and functional statements. Alternatively, it is possible to use foreign
code, for instance an imperative implementation of an algorithm, but mostly on
a black-box manner. Secondly, we argue that the e�ciency is not a problem at
the early stages of the development process, where the objective is more likely
to demonstrate feasibility and interest. The core of the proof-of-concept for the
RL language is about 100 lines of code long, this prototype basically �turns the
formal de�nitions into executable code�. A domain expert can already use the
interpreter to run experiments on small instances to validate his intuition or
try some new ideas. As a conclusion, we think that the DSL approach might
be interesting to bridge the gap between the formal analysis of a declarative
language for pattern mining and its e�cient software implementation: once a
developer has released a proof-of-concept library for the embedded DSL, the
next step is include domain experts in the process to play with the new toy
and to check whether if it is worth to go further into deeper studies and more
expensive software development.

1 http://liris.cnrs.fr/romuald.thion/files/PKDD_LML_13/

http://liris.cnrs.fr/romuald.thion/files/PKDD_LML_13/

References

AFP+11. M. Agier, C. Froidevaux, J-M. Petit, Y. Renaud, and J. Wijsen. On
Armstrong-compliant logical query languages. In 4th International Work-
shop on Logic in Databases (LID 2011), 2011.

CLNP06. T. Calders, L. Lakshmanan, R. Ng, and J. Paredaens. Expressive power of
an algebra for data mining. ACM TODS, 31:1169�1214, 2006.

Ell04. C. Elliott. Programming graphics processors functionally. In Proceedings of
the 2004 ACM SIGPLAN workshop on Haskell, pages 45�56, 2004.

Has99. The Haskell 98 report, 1999. http://www.haskell.org/onlinereport/.

HPvD09. F. Hermans, M. Pinzger, and A. van Deursen. Domain-speci�c languages
in practice: A user study on the success factors. In ACM/IEEE MODELS
2009, volume 5795 of LNCS, pages 423�437, 2009.

Jon08. M. Jones. Experience report: playing the DSL card. SIGPLAN Notices,
43(9):87�90, 2008.

KG02. C. Koen and P. Gordon. An embedded language approach to teaching hard-
ware compilation. SIGPLAN Notices, 37(12):35�46, 2002.

LM99. D. Leijen and E. Meijer. Domain speci�c embedded compilers. In 2nd
conference on DSL (PLAN 1999), pages 109�122. ACM, 1999.

Man97. Heikki Mannila. Methods and problems in data mining. In ICDT, pages
41�55, 1997.

A Domain Speci�c Languages

Actually, DSLs are quite common: OpenGL for 3D graphics, PostScript for
printed documents, lex and yacc for parser as well as LATEX for structured doc-
uments can be seen as DSLs for their respective domains. The formal de�nition
of a DSL leads to a carefully crafted abstraction of a subset of the application
domain, with the following bene�ts: it is easy to understand and to use by do-
main expert and it formalizes routines and common practices. Once the subset
of the application domain has been identi�ed and formalized, the expert writes
his tasks as DSL programs. This leads to smaller programs, because a carefully
crafted DSL eliminates most of the boilerplate that one would have to write
in a generic programming language before any interesting task. As such DSL
programs are smaller, they can be written more quickly and they are easier to
maintain. This is particularly true when the DSL is itself a functional language.
Last but not least, DSL programs are amenable to formal analysis and proofs.
For instance, a program can be transformed into an equivalent but more e�cient
one using program equivalence relation at optimization time.

The interested reader may read for instance a user study on the success fac-
tors on DSLs in practice [HPvD09]. Examples of DSLs embedded into Haskell
includes a functional language for graphics processors [Ell04] and a DSL for hard-
ware compilation [KG02]. Many more examples can be found at http://www.
haskell.org/haskellwiki/Research_papers/Domain_specific_languages.

http://www.haskell.org/onlinereport/
http://www.haskell.org/haskellwiki/Research_papers/Domain_specific_languages
http://www.haskell.org/haskellwiki/Research_papers/Domain_specific_languages

B Reviews from LML 2013

The paper has been submitted to http://dtai.cs.kuleuven.be/lml/. It has
been rejected.

�������� REVIEW 1 �������
PAPER: 4
TITLE: An Embedded Domain Speci�c Language for Pattern Mining: a First
Attempt [Extended Abstract]
AUTHORS: Romuald Thion
OVERALL EVALUATION: -1 (weak reject)
REVIEWER'S CONFIDENCE: 3 (medium)

���� REVIEW ����
The paper explains how a Domain Speci�c Language (DSL) for the logical query
language called RL can be embedded intro the Haskell programming language.

The paper is 5 pages long (and not presented as an extended abstract). Apart
from the abstract, there is no mention of any concrete machine learning and data
mining problems in the paper which makes it disconnected from the aim of the
workshop. The additional space could have been used to make this link to the
workshop a lot more explicit.

The author is probably an expert in Haskell and RL but the few pages used
to explain the translation from one to the other are technical and not enough de-
tailed and illustrated for a non expert user to assess the elegance of the language
and its possible use for data mining/machine learning.

�������� REVIEW 2 �������
PAPER: 4
TITLE: An Embedded Domain Speci�c Language for Pattern Mining: a First
Attempt [Extended Abstract]
AUTHORS: Romuald Thion
OVERALL EVALUATION: 1 (weak accept)
REVIEWER'S CONFIDENCE: 4 (high)

���� REVIEW ����
The topic of domain speci�c languages for data mining is a nice one. Assuming
the RL language is a pattern mining language, the paper is on topic. I believe
that it is of interest, even though the work seems very preliminary.

At present the paper just shows that RL can be turned into a DSL embedded
in Haskell. The paper should clearly show the pattern mining functionality of RL.
It then needs to clearly demonstrate the utility of the DSL approach. Illustrative
examples are needed in both cases.

http://dtai.cs.kuleuven.be/lml/

�������� REVIEW 3 �������
PAPER: 4
TITLE: An Embedded Domain Speci�c Language for Pattern Mining: a First
Attempt [Extended Abstract]
AUTHORS: Romuald Thion
OVERALL EVALUATION: -1 (weak reject)
REVIEWER'S CONFIDENCE: 3 (medium)

���� REVIEW ����
The author reports on his experience in building a domain speci�c language for
pattern mining using Haskell. Though interesting, the paper looks like a short
essay, presenting almost no relationships to existing formalisms, like description
logics, and their realizations. In particular, examples in page 3 look like realiza-
tion of (a fragment?) of the �rst-order predicate logic. What are advantages of
Haskell for doing that?

Detailed comments:
p.1 Abstract an -> and
an host -> a host
so called -> so-called
p.2 Delete "the" in "the Section 3"
This formula captureS
by following -> by the following
The explanation of the interpretation (below the list of formulas) is not clear

enough!
line -9: replaces -> replace

	An Embedded Domain Specific Language for Pattern Mining: a First Attempt

