
NUMÉRO D’ORDRE 2013ISAL0067

Thèse
présentée devant

L’Institut National des Sciences Appliquées de Lyon

pour obtenir le grade de
Docteur

spécialité
Informatique

par
Thierno Mahamoudou DIALLO

DISCOVERING DATA QUALITY
RULES IN A MASTER DATA
MANAGEMENT CONTEXT

Fouille de Règles de Qualité de Données
dans un contexte de Gestion de Données de Référence

Soutenue publiquement le 17 juillet 2013 devant le jury :

Laure Berti-Equille, IRD, Université d’Aix-Marseille . Rapporteur

Bart Goethals, Professeur, Université d’Anvers . Rapporteur

Dominique Laurent, Professeur, Université de Cergy-Pontoise . Examinateur

Martial Doré, Directeur R&D, Orchestra Networks . Invité

Sylvie Servigne, Maitre de Conférences, INSA de Lyon Co-directrice de thèse

Jean-Marc Petit, Professeur, INSA de Lyon . Co-directeur de thèse

Orchestra Networks R&D. Paris.
Laboratoire d’InfoRmatique en Image et Systèmes d’information. Lyon.

École Doctorale Informatique et Mathématiques. Lyon.

ACKNOWLEDGEMENT

This PhD thesis is a joint work between Orchestra Networks company and LIRIS
laboratory in a so called CIFRE funding.

i

REMERCIEMENTS

Je souhaite dans un premier temps exprimer ma profonde gratitude envers
mon directeur de thèse Jean-Marc Petit et ma co-directrice de thèse Sylvie
Servigne pour leur encadrement, leur conseil, leur disponibilité pendant ces
trois années de thèse. Merci d’avoir partagé vos connaissances, orienté mes
interrogations et alimenté de longues heures de discussions. Je remercie Jean-
Marc pour la confiance qu’il m’a accordée depuis mon stage de fin d’études
d’ingénieur.

Je suis aussi très reconnaissant envers Laure Berti-Equille et Bart Goethals
pour le temps consacré à la relecture de mon manuscrit. Je remercie égale-
ment Dominique Laurent d’avoir accepté de siéger au jury.

Cette thèse est le fruit d’une collaboration entre l’équipe Base de Don-
nées (BD) duLaboratoire d’InfoRmatique en Image et Systèmes d’information
(LIRIS UMR 5205 CNRS, INSA de Lyon - Université Claude Bernard Lyon 1 -
Université Lumières Lyon 2 - Ecole Centrale de Lyon) et l’entreprise Orchestra
Networks. La thèse a été financée par Orchestra Networks et par le ministère
de l’enseignement supérieur et de la recherche par le biais d’une convention
CIFRE de l’ANRT. Merci à Orchestra Networks d’avoir initié ce projet. Merci
à Martial Doré et Jean-Baptiste Mestelan et à toute l’équipe R&D : Ghassen,
Manuel, Vincent, Ludovic, Laure, David, Yves, Camille. J’ai beaucoup appris
en vous côtoyant et je continue dans une ambiance de travail agréable. Merci
également à Pierre, Christophe et Eric.

Merci àNoëlNovelli duLaboratoire d’Informatique Fondamentale deMar-
seille (LIF UMR 7279 CNRS, Université de la Méditerranée - Université de
Provence) pour sa collaboration. Merci auxmembres de l’équipe BDduLIRIS.
Je remercie les doctorants et anciens doctorants avec qui j’ai partagé ces trois
années de recherche à Lyon: Yann, Brice, Usman, Benjamin, Deming, Simon,
Arnaud... Merci également aux membres du personnel LIRIS en particulier
Mabrouka et Caroline pour leur aide administrative lors de cette thèse.

Je remercie ma famille pour leur soutien, en particulier mes parents El-
hadj Mouhamadou Sarifou et Fatoumata Diouldé, mes frères et soeurs Al-
pha Oumar, Aissatou, Abdoulaye, Thierno Sadou, Mouhamadou Moukhtar
et Houssainatou. Merci à ma belle famille en Belgique. Je remercie également
mes amis, particulièrement Moussa et Gérard. Mes pensées vont à Vincent
Dominique Diedhiou qui a été présent à mes cotés au début de cette thèse et
qui nous a quitté. Merci à toutes celles et tous ceux qui m’ont soutenu tout au
long de cette aventure.

Enfin un grand merci à ma superwoman Hadiatou. Sans elle je ne serais
pas arrivé au bout. Merci "boborou" de m’avoir encouragé et supporté.

ii

ABSTRACT

Dirty data continues to be an important issue for companies. The dataware-
house institute [Eckerson, 2002], [Rockwell, 2012] stated poor data costs US
businesses $611 billion dollars annually and erroneously priced data in retail
databases costs US customers $2.5 billion each year. Data quality becomes
more and more critical. The database community pays a particular atten-
tion to this subject where a variety of integrity constraints like Conditional
Functional Dependencies (CFD) have been studied for data cleaning. Repair
techniques based on these constraints are precise to catch inconsistencies but
are limited on how to exactly correct data.

Master data brings a new alternative for data cleaning with respect to it
quality property. Thanks to the growing importance of Master Data Manage-
ment (MDM), a new class of data quality rule known as Editing Rules (ER)
tells how to fix errors, pointing which attributes are wrong and what values
they should take. The intuition is to correct dirty data using high quality data
from the master. However, finding data quality rules is an expensive process
that involves intensivemanual efforts. It remains unrealistic to rely on human
designers.

In this thesis, we develop pattern mining techniques for discovering ER
from existing source relations with respect to master relations. In this set-
ting, we propose a new semantics of ER taking advantage of both source and
master data. Thanks to the semantics proposed in term of satisfaction, the dis-
covery problem of ER turns out to be strongly related to the discovery of both
CFD and one-to-one correspondences between sources and target attributes.

We first attack the problem of discovering CFD. We concentrate our at-
tention to the particular class of constant CFD known as very expressive to
detect inconsistencies. We extend some well known concepts introduced for
traditional Functional Dependencies to solve the discovery problem of CFD.
Secondly, we propose a method based on INclusion Dependencies to extract
one-to-one correspondences from source tomaster attributes before automat-
ically building ER. Finally we propose some heuristics of applying ER to clean
data. We have implemented and evaluated our techniques on both real life
and synthetic databases. Experiments show both the feasibility, the scalabil-
ity and the robustness of our proposal.

iii

CONTENTS

Contents 1

1 Introduction 3
1.1 Context . 4
1.2 Contributions . 6
1.3 Document Organization . 8

2 Master Data Management 9
2.1 Definitions and Issues . 10
2.2 Implementation Styles . 14
2.3 MDM and Data Quality . 17
2.4 Summary . 18

3 Preliminaries 19
3.1 Relational Model . 20
3.2 Conditional Functional Dependencies 23
3.3 Editing Rules . 29

4 Discovering Conditional Functional Dependencies 31
4.1 Related Works . 32
4.2 New notations for CFD . 34
4.3 Discovering constant CFD using conditional agree sets 37
4.4 Frequent constant CFD discovery 43
4.5 Experimentation . 49
4.6 Summary . 53

5 Discovering Editing Rules 55
5.1 New Semantic of Editing Rules . 57
5.2 Discovering Editing Rules . 59
5.3 Related Works . 68
5.4 Experimentation . 69
5.5 Summary . 74

6 Editing Rules for Data Cleaning 76
6.1 Data Repairing based on CFD . 77
6.2 Data Repairing based on ER . 78
6.3 Related Works . 80
6.4 Experimentation . 81

1

CONTENTS 2

6.5 Summary . 83

7 Conclusion 85
7.1 Summary of Contributions . 86
7.2 Discussion and Future works . 87

List of Figures 90

Bibliography 92

CHAPTER 1
INTRODUCTION

Chapter Outline
1.1 Context . 4

1.1.1 Master Data Management . 4
1.1.2 Conditional Functional Dependencies 5
1.1.3 Editing Rules . 5

1.2 Contributions . 6
1.2.1 Discovering Conditional Functional Dependencies 6
1.2.2 Discovering Editing Rules . 7
1.2.3 Data repair techniques based on Editing Rules 7

1.3 Document Organization . 8

This first Chapter presents the industrial context of our work. Issues of Master
Data Management are described. The global challenges of data quality rules in term
of data mining and data cleaning are introduced. We present our contributions before
giving an overview of the document organization.

3

1. INTRODUCTION 4

1.1 Context

Poor data quality continues to have a serious impact on companies. Data er-
ror rates in industry reached 30 % [Redman, 1998] and are more and more
critical. For example poor data costs US businesses $611 billion dollars annu-
ally and erroneously priced data in retail databases costs US customers $2.5
billion each year stated the datawarehouse institute [Rockwell, 2012], [Berti-
Equille, 2006] , [Eckerson, 2002]. PricewaterhouseCoopers concluded in their
study [Webster, 2001] that 1/3 of system development projects were forced
to delay or cancel due to poor data quality. Worst, 30 to 80% of the develop-
ment time and budget for data storing and warehousing are for data cleaning
according to a study for Merill Lynch [Shilakes and Tylman, 1998]. There-
fore, finding efficient techniques to correct dirty data is an important issue.
Database community pays a particular attention to this subject and a variety
of integrity constraints such as Conditional Functional Dependencies [Bohan-
non et al., 2007] have been recently introduced in this setting.

In addition, the emergence of Master Data Management (MDM) brings
new opportunities for improving the quality of data. According to [Loshin,
2009] master data is a single repository of high-quality data that provides
various applications with a synchronized, consistent view of its core busi-
ness entities. Therefore data quality is seen by companies as a key feature
of MDM solutions. Orchestra Networks [Orchestra-Networks, 2012] is one
of the leading MDM software vendor [Gartner, 2010] with the multidomain
MDM solution called EBX. This thesis address new data mining, data quality
and data integration challenges in this particular MDM industrial context.

1.1.1 Master Data Management

The amount of data shared across information systems seems to have ex-
ploded and the sources are more and more heterogeneous [Loshin, 2009].
It is necessary to build efficient techniques in place that can integrate data
into a consistent view available across the information system. Master data
can be considered as the core high quality data that help fulfill that need.
MDM is particularly driven by industries [Deloitte and Oracle, 2005], [Rus-
som, 2008], [Loshin, 2009], [Power, 2010] with quite different views. This
highlights the need in this thesis to have a closer look on how precisely mas-
ter data can be defined and also what are the main issues and principles of
MDM. Gartner [Eschinger, 2008] expected a significant grow of MDM mar-
ket segment from $1 billion in 2007 to $2.8 billion in 2012, despite the cur-
rent economic gloom. Some companies such as Orchestra Networks [Power,
2010] address multidomain master data to cover all type of data, other com-
panies like [Deloitte and Oracle, 2005] are focused on the particular customer
or product data.

1. INTRODUCTION 5

In this thesis we describe howMDM is related to common database issues
such as data integration and data quality. In particular MDM offers efficient
solutions, such as Editing Rules [Fan et al., 2010] as a relevant alternative to
Conditional Functional Dependencies in a data cleaning setting.

1.1.2 Conditional Functional Dependencies

Initial work on dependency-based data quality methods focused on tradi-
tional dependencies, such as Functional Dependencies (FD) [Armstrong and
Delobel, 1980] [Beeri et al., 1984a] [Kivinen and Mannila, 1995], that were
mainly developed for database design 40 years ago. Their expressiveness of-
ten limits the capture of inconsistencies or the specification of dependency
rules.

Even if [Kivinen and Mannila, 1995] defined some error measures for FD,
none of them can easily capture the frequency (or support) measure popu-
larized by Association Rules (AR) mining [Agrawal et al., 1993]. These limi-
tations highlighted the need for extending either FD to take into account at-
tribute/values or inversely, extending AR to take into account attributes.

In this setting, Conditional Functional Dependencies (CFD) have been re-
cently introduced by [Bohannon et al., 2007] as a compromise to bridge the
gap between these two notions. Therefore they can be seen as an unification
of FD and AR since they allow to mix attributes and attribute/values in de-
pendencies. The intuition behind CFD is that the constraint holds only on a
subset of a relation instead on the entire relation. From a data mining point
of view, CFD offer new opportunities to reveal data inconsistencies or new
knowledge nuggets from existing tabular datasets.

Data cleaning is one of the main application of CFD. The first step of this
data cleaning application is detecting CFD violation. The second and last step
is data repair based on CFD, where they allow attribute/value modifications
as a repair operation. Clearly, for this process to be effective, it might be useful
to automatically discover CFD from a particular database instance. This is
our first data mining challenge.

In practice, CFD are constraints that help to determine whether errors are
present in the data but they fall short of telling us which attributes are exactly
concerned by the error. Moreover they are limited onhow to efficiently correct
errors. Worst, heuristic methods based on CFD may introduce new errors
when trying to repair the data [Fan et al., 2010]. These limitations motivate
the recent introduction of Editing Rules.

1.1.3 Editing Rules

Editing Rules (ER) are a new class of data quality rules that tells how to ef-
ficiently fix errors, i.e. which attributes exactly are wrong and what values
they should take [Fan et al., 2010]. ER are boosted by the recent development

1. INTRODUCTION 6

of MDM and then are defined in term of master data. The global intuition is
to help fix and enrich dirty data using the corresponding values from master
data.

However, for ER to be effective in practice, it is necessary to have tech-
niques in place that can automatically discover such rules from both source
data and their correspondingmaster data. Indeed it is often unrealistic to rely
on human experts to design them by hand via an expensive and long manual
process. This practical concern highlights the need for studying the discovery
problem of ER. This is our second data mining challenge. No contribution
has been made for the discovery problem of ER to the best of our knowledge.

Mining data quality rules is challenging, but designing data repair tech-
niques to efficiently apply ER is also important. The latter step has being stud-
ied when dealing with CFD [Bohannon et al., 2007], [Cong et al., 2007], [Yak-
out et al., 2011] and other old class of integrity constraints like FDor INclusion
Dependencies [Bohannon et al., 2005]. In this thesis, we tackle this issue using
ER.

1.2 Contributions

In this thesis, we address data quality challenges inMDM.We tackle the prob-
lem of mining data quality rules and we propose efficient techniques to ad-
dress these issues. We first attack the discovery problem of CFD in a single
relation and then the discovery problem of ER in databases. We also propose
heuristics to apply ER. We have implemented the proposed techniques (join
work with Noël Novelli). Experiments show both their feasibility and their
robustness.

1.2.1 Discovering Conditional Functional Dependencies

In this thesis, we present our proposal on CFD inference which can be seen as
a clarification of some simple and basic notions underlying CFD. We address
the specific class of constant CFD. The constant class enforces conditions to
be only composed by constants. We focus on two types of techniques:

• the first one extends the notion of agree sets initially used for the defi-
nition of Armstrong relations [Beeri et al., 1984a] for FD. Our technique
based on agree sets helps to easily capture the violation of the CFD in
order to solve the discovery problem.

• the second one extends well known techniques used for AR mining
[Agrawal and Srikant, 1994] andFDmining [Novelli andCicchetti, 2001a].
We point out how these data mining techniques can be reused for con-
stant CFD mining.

1. INTRODUCTION 7

• finally the techniques have been implemented and experiments on real
life data and synthetic data have been carried out. The results showboth
the feasibility and the scalability of our proposal.

This work has been published to the 10th International French Conference
on Knowledge Mining and Management (Extraction et Gestion des Connais-
sances, EGC Tunis 2010) [Diallo andNovelli, 2010] and has also been published
to the special issue "Interesting Knowledge Mining" of the 2012 International
Journal of DataMining,Modelling andManagement (IJDMMM) [Diallo et al.,
2012].

1.2.2 Discovering Editing Rules

We also define and provide solutions for discovering ER in databases pro-
videdwith source data andmaster data. The problem turns out to be strongly
related to the discovery of both CFD and correspondences from source to
master attributes.

In particular we introduce a new semantic of ER allowing to precisely de-
fine the discovery problem as a pattern mining one. The early classical se-
mantic of ER in term of edition is extended to a semantic of satisfaction thanks
to the introduction of a mapping function. The latter defines the correspon-
dence between source attributes and master attributes as a schema matching
problem [Rahm and Bernstein, 2001]. The definition of the mapping function
is challenging, specially when dealing with INclusion Dependencies [Lopes
et al., 2002].

Thanks to this new semantic, we present an algorithm for discovering ER.
As far as we know, no contributions have been made for the discovery prob-
lem of ER since their recent introduction. We finally present an experimental
evaluation of our techniques demonstrating their usefulness for discovering
ER.

Thiswork has beenpublished to the 10th InternationalWorkshoponQual-
ity inDatabases (QDB) in conjunctionwithVery LargeDatabases (VLDB) con-
ference in Istanbul 2012 [Diallo et al., 2012a] and has also been published to
the 28th french Advanced Database Days (journées Bases de Données Avancées,
Clermont Ferrand, 2012) [Diallo et al., 2012b].

1.2.3 Data repair techniques based on Editing Rules

We finally propose an algorithm to apply ER in a data cleaning setting. Dif-
ferent heuristics are provided to improve the efficiency of the algorithm. One
strategy of improvement is to repeat the process of applying ER in order to
maximize the correction of dirty data. One other strategy is to find an effi-
cient order in which ER have to be applied. We show benefit when ER are
sorted with respect to their support before applied. We finally evaluate our

1. INTRODUCTION 8

heuristics on real life data and show that the proposed optimization improve
performance in repair quality without a heavy cost.

1.3 Document Organization

After this current Introduction Chapter, we present a global overview ofMas-
ter Data Management in Chapter 2. A synthesis of master data definitions is
addressed before presenting the key features, the issues and the possible ar-
chitectures of MDM systems. We also present the interaction between MDM
and data quality which is relevant for our work.

Preliminary definitions are given in Chapter 3. This includes structure
and integrity constrains of relational model. We detail important preliminary
definitions about CFD and ER.

In Chapter 4, the discovery problem of CFD is presented. Related works
are discussed. A newnotation of CFD is introduced before tackling the search
space and the main properties of the latter. Two methods of discovering con-
stant CFD are proposed. Finally, the experimentation is addressed on both
synthetic and real life datasets.

InChapter 5, the discovery problemof ER is presented. Anew semantic of
ER is defined. Thematching issue from source schema tomaster schema is de-
fined. The use of INclusion Dependencies to tackle the issue is detailed. The
algorithm formining ER is described before discussing relatedworks. Finally
the experimentation on both synthetic and real life datasets is addressed.

In Chapter 6, data repair techniques based on ER are proposed before
discussing related works. Finally the experimentation and the optimization
techniques are detailed.

A summary of the thesis contribution is presented and discussed inChap-
ter 7. We finally conclude by addressing perspectives about this work.

CHAPTER 2
MASTER DATA MANAGEMENT

Chapter Outline
2.1 Definitions and Issues . 10
2.2 Implementation Styles . 14
2.3 MDM and Data Quality . 17
2.4 Summary . 18

In this Chapter we investigate the definition and issues of Master Data Manage-
ment. We present the most common implementation styles of a MDM system. We
finally address the interaction ofMDMandDataQualitymanagementwhich remains
relevant for our work, specially for data cleaning.

9

2. MASTER DATA MANAGEMENT 10

2.1 Definitions and Issues

“What is master data?” is the first question we asked at the begining of this
thesis. Naturally, we searched for a definition and we found. . .many. In fact
there exists no standard definition of a master data [Bonnet, 2010]. Never-
theless, it is interesting to collect different views about definitions of master
data and thus master data management. According to [Bonnet, 2010], a data
belongs to the class of master if one of these situation occurs:

• the data is valued by transactions.

• the data is duplicated across many systems.

• the data is exchangedwith third parties outside the information system.

For [Deloitte and Oracle, 2005], master data is a set of core data elements
such as customer, product, legal entity, chart of accounts, employee, vendor,
market channel, geographic location, etc., that span the enterprise IT systems
and drive the business.

Additionally, [Morris and Vesset, 2005] consider master data as data that
are shared across systems (such as lists or hierarchies of customers, suppliers,
accounts, or organizational units) and are used to classify and define trans-
actional data. For example, a company may record the transaction of selling
Product A to Customer X on 1/1/06 for $100. Taken as awhole, this is a single
piece of transaction data. However, embedded in the transaction are various
elements of master data i.e. Product A and Customer X that help define the
transaction. This example joins the transaction situation of [Bonnet, 2009].

In the context of business data processing, master data denotes a company
essential basic data which remain unchanged over a specific period of time.
It is the basis for business processes [Loser et al., 2004].

The classification of [Bonnet, 2010] emphasizes that master data are not
transaction data but are involved in transaction and moreover are duplicated
and exchanged. These characteristics should highlight the need to have a sin-
gle view of master data in order to exchange data in an easy and efficient way.
The relevant facts we learn from these definitions suggest that master data are con-
sidered critical for businesses, shared across the information system and remain un-
changed over a specific time. Therefore it is important to spend time and money
to manage master data. It is easy to understand that an inconsistency in mas-
ter data may damage all applications that use and share it.

Understanding master data is a first step towards defining and under-
standing Master Data Management (MDM). For [Russom, 2008] MDM can
be seen as the practice of defining and maintaining consistent definitions of
business entities, then sharing them via integration techniques across mul-
tiple IT systems within an enterprise and sometimes beyond to partnering
companies or customers.

2. MASTER DATA MANAGEMENT 11

Figure 2.1: A word cloud of MDM survey definitions

Figure 2.1 represents a word cloud of the different definitions of MDM
referenced in this thesis [Loshin, 2009], [Russom, 2008], [Bonnet, 2010], [De-
loitte andOracle, 2005], [Business-Intelligent-Network, 2007], [IBM, 2007]. We
note some relevant words such as business, shared, consistent, . . . that appear
in many definitions. MDM is set for business (objects, users, systems, . . .). It
support the share of consistent, high quality data to get in fine a single view of
the truth. Some category of data such as customer or product are good candi-
dates for master data. Even if master data does not change continuously over
time, it is important that MDM allows to keep track of that evolution through
data version management for example.

For [Deloitte and Oracle, 2005] MDM is a process that spans all organiza-
tional business processes and application systems. It can provide companies
the ability to create, store, maintain, exchange, and synchronize a consistent,
accurate, and timely “system of record” for the core master data elements.
It also can provide companies with the ability to more efficiently make and
manage changes to their master data as the needs of the business change.

The [Business-Intelligent-Network, 2007] consider MDM as comprised of
the business applications, methods, and tools that implement the policies,

2. MASTER DATA MANAGEMENT 12

procedures and infrastructure to support the capture, integration, and subse-
quent shared use of accurate, timely, consistent, and complete master data.

Sales

Finance
CUST

First VARCHAR(15)

Middle VARCHAR(15)

Last VARCHAR(40)

Adress1 VARCHAR(45)

Adress2 VARCHAR(45)

City VARCHAR(30)

State CHAR(2)

Zip CHAR(5)

CUSTOMER

FirstName VARCHAR(14)

MiddleName VARCHAR(14)

LastName VARCHAR(30)

TelNum NUMERIC(10)

Figure 2.2: Different applications modeling the same customer differently
[Loshin, 2009]

MDMdescribes a set of disciplines, technologies and solutions used to cre-
ate and maintain consistent, complete, contextual and accurate business data
for all stakeholders (users, applications, data warehouses, processes, trading
partners) [IBM, 2007].

According to [Russom, 2008], MDM is difficult to define because its real
world applications are so diverse. Therefore MDM is driven by companies,
and each has it own view. Nevertheless the issues and the principles remain
the same.

In many information systems in place, different applications may repre-
sent similar business concepts in different ways [Loshin, 2009]. Every busi-
ness application may value some attributes over others. For example con-

2. MASTER DATA MANAGEMENT 13

sidering information related to a customer, the telemarketer may insist on
accuracy of the telephone number to avoid calling the same prospect twice;
the sales representative is concerned about duplication; the shipping depart-
ment craves high-quality location information. Figure 2.2 illustrates this crit-
ical aspect when multiple codes exist for the same object. It is just an exam-
ple among others of the data integration issue involved. Additionaly, sim-
ilar name is used to refer to object that are completely different. Moreover
organizations change quickly and continuously, companies may report data
monthly or per region . . .Therefore it is important for an organization to iden-
tify critical data, integrate them into a consistent view and share it across the
information system, this is one of the main goal of MDM. For [Loshin, 2009]
the MDM challenge is envisioning how to organize an enterprise view of the
organization’s key business information objects and to govern their quality,
use and synchronization to optimize the use of information to achieve the
organization’s operational and strategic business objectives.

One can consider MDM issues can be solved using Data Warehousing.
This is not the case. MDM issues go beyond data warehousing challenges.
Datawarehousing incorporates data stores and conceptual, logical, and phys-
ical models to support business goals and end-user information needs [The-
Data-Warehouse-Institute, 2012]. Indeed adatawarehouse federate data from
multiple systems mainly for reporting purpose. But historical reporting may
be problematic if the changes tomaster data over time are notmanaged as ver-
sions. Moreover a data warehouse does not build a synchronization system
in contrast to MDM. Wharehouses provide limited data management capa-
bilities. In practice, warehouses are a good complement to a MDM solution,
rather than being the solution themselves.

In another comparison line, Extract-Transform-Load (ETL) capabilities can
be used for extractingmaster data frommultiple sources and loading the data
into the master data repository. ETL is not a management technique but a
purely technical process with data integration capabilities. Therefore setting
an ETL system is not really managingmaster data. For example, using ETL to
try to manage master data does not allow to take into account business rules.
This distinction is important to notice, we were confronted with this question
several times during our PhD thesis.

It is also important to note that Enterprise Resource Planning (ERP) so-
lutions are consumers of master data. They are not MDM solution. MDM
issues have to be considered as a whole and every solution must be designed
with respect to the context and the complexity of the problem. There is no
universal MDM implementation which solves all MDM needs but different
standard implementation techniques coexist.

2. MASTER DATA MANAGEMENT 14

2.2 Implementation Styles

Different implementation “styles” of MDM can be considered, applicable in
different situations and providing different capabilities. [Gartner, 2010] and
other analysts describe four different techniques of MDM deployment, bor-
rowed and presented in the following.

Consolidation Registry

CoexistenceCentralized

R W

Figure 2.3: Different MDM architecture implementations [Gartner, 2010]

The consolidation style achieves a single version of master data mainly for
lookup or Business Intelligence (BI) purposes. Master data is authored in the
source systems, then copied to the central "hub" where it undergoes a match-

2. MASTER DATA MANAGEMENT 15

and-merge process to create a trusted copy. There is no publishing or use for
data in any operational systems, only in BI environments. A complication
emerges once such a data source is used as a source for new applications that
create new data as a result. Therefore, the style shifts from consolidation to
one of the other styles where there is an explicit desire to fix source data.

The registry style matches and links master data from source systems to
create and maintain a central index into the master data. Different versions
of the truth are held in the index and, at runtime, the system assembles a
point-in-time composite view. This style is a relatively noninvasive, virtual
approach and requires less governance agreement relative to the styles that
maintain a physical trusted record.

Data are not duplicated, the index stores only the source record IDs and
the key data values needed for mapping techniques similar as one used in
data integration issues [Bellahsene et al., 2011], [Rahm and Bernstein, 2001].
There is no consolidation of data due to the use of an index of correspon-
dence, very useful for real time reference. The registry style is fast to build
but can be complex to manage. No data is sent back to the system. This ar-
chitecture avoids the problem of over-writing data in the sources. However,
performance can be an issue in this architecture, since the index have to be
maintain continuously and since calls are made to each source which can cost
a lot when there are many.

The centralized style supports a centralized repository of all the master
data for authorship, storage and validation, and is the most invasive style,
due to the change in application and information architecture. This is com-
monly desired when there is a high demand for automated integration be-
tween source systems and MDM infrastructure like in ETL techniques.

The master data are accessed directly in read and write. All records must
be created and modified using the MDM system which maintains a single
version of the truth spread back to the sources. The latter may contain addi-
tional information which are only relevant locally. The architecture has the
advantage of providing a synchronized master data repository but all appli-
cations existing on the source systems require changes because the insertion
of data takes place directly in the MDM system. This style is also known as
transactional hub. The Orchestra Networks EBX solution uses a centralized
architecture style.

The coexistence style recognizes that master data may be authored and
stored in different systems across a heterogeneous and distributed environ-
ment. It creates greater consistency and data quality across systems, and
rapid access to a single version (publishing that view to subscribing systems).
This style is much more complex than the other styles because it is not really

2. MASTER DATA MANAGEMENT 16

Style Consolidation Registry Coexistence Centralized
What Aggregate

master
data into
a common
repository
for reporting

Maintain thin
system of
record with
links to more
complete
data spread
across sys-
tems; useful
for realtime
reference

Manage sin-
gle view of
master data,
synchroniz-
ing changes
with other
systems

Manage sin-
gle view of
master data,
providing
access via
services

Benefits Good for
preparing
data to feed
downstream
systems

Complete
view is as-
sembled as
needed; fast
to build

Assumes
existing
systems un-
changed,
yet provides
read-write
management

Support
new and
existing
trans-
actional
applications

Drawbacks Read only;
not efficient

Read mostly;
may be more
complex to
manage

Not always
consistent
with other
systems

May require
changes
to existing
systems to
exploit

Figure 2.4: An overview of MDM Implementation styles [Dreibelbis et al.,
2008]

one style. Some instances represent simple publish/subscribe models (ERP
pushes data out to a best-of-breed application), while others (newly emerg-
ing)mix andmatchwhere individual attributes persist that, combined at run-
time (i.e., transaction request), represent the master data.

The coexistence style is a mix between consolidation and registry styles.
The MDM system is not just a system of record like in consolidation archi-
tecture because master data can be updated in other application. Therefore
a particular attention must be paid when synchronizing changes to avoid in-
consistencies.

Thedifferent architecture are often complementary and also additive. One
MDM domain may start a deployment with a given style and terminates by
extending the systemwith another one, most of the time the coexistence style.
Figure 2.4 give an overview, benefits and drawbacks of each implementation
style.

2. MASTER DATA MANAGEMENT 17

2.3 MDM and Data Quality

On the one hand and according to [Loshin, 2009], there is a codependence
between MDM and Data Quality. Actually, MDM success depends on high-
quality data. The Data Quality techniques can be applied to any style seen
in section 2.2 and then supports the reliability of master data. On the other
hand, Data Quality can be improved through a MDM program. Integration
tools driven in aMDMprocess identify and reduce errors on data. This code-
pendence does notmeanmanagingmaster data is equivalent to ensuring data
quality. MDM requires collaborative processes and decisions through data
governance. Data quality procedures can be called in this setting but MDM
goes beyond data quality management [Russom, 2008].

The quality of data in general depends on many facts. For example poor
data definition, wrong metadata design between operating system, dupli-
cate values. . . In particular, Figure 2.5 summarizes some dimensions onwhich
master data quality can be measured. These dimensions are commented in
details by [Batini and Scannapieco, 2006], [Fan and Geerts, 2012] and must be
respected in a MDM system.

Dimension Definition
accuracy the extent to which data are correctly representing an ac-

tion or a real world object
completeness the extent towhich values are present in a data collection
timeliness the extent to which data represents the real world at a

given point in time
consistency the extent to which data knowable in one database corre-

spond to the data in a redundant or distributed database
relevancy the extent to which data is applicable and helpful for the

task at hand
accessibility the extent to which data is available at a given point in

time

Figure 2.5: Data Quality Dimensions [Otto and Ebner, 2010]

Data quality is critical to aMDMsystem, leading some expert like [Loshin,
2009] to define master data with respect to data quality. In this thesis we rely
on this vision of master data to address problems.

We get back to one of the original drivers for data quality tools: “correcting
dirty data”. Data quality rules are then mined from master data. Based on
these rules we build tools in a data cleaning setting to efficiently correct dirty
source data.

2. MASTER DATA MANAGEMENT 18

2.4 Summary

MDMis an on-growing subject and is essentially driven by companies. Identi-
fying andmaintaining “golden data” is a dream formost of companiesworld-
wide, MDM fulfills that dream. MDM should not be thought as an applica-
tion. Rather it is a set of good practice and processes which aim to provide
a unique consistent view of data to all business users and services among
many other benefits. Although the centralized implementation style is very
common in use, the architecture of aMDM system varies with respect to busi-
ness needs. Moreover, data quality issues, such as data cleaning, addressed
by the database community can benefit from MDM.

CHAPTER 3
PRELIMINARIES

Chapter Outline
3.1 Relational Model . 20

3.1.1 Structure . 20
3.1.2 Constraints . 22

3.2 Conditional Functional Dependencies 23
3.2.1 Definition and Semantics . 24
3.2.2 Consistency . 27
3.2.3 The implication problem . 27
3.2.4 Minimal cover . 28

3.3 Editing Rules . 29

In this Chapter we address preliminaries of this thesis. Relational model is pre-
sented, particularly the structural and the constraints parts. We present the class of
CFD recently introduced. Finally we give preliminary notions about ER.

19

3. PRELIMINARIES 20

3.1 Relational Model

This section describes a formalization of relational databases [Abiteboul et al.,
2000], [Levene and Loizou, 1999]. The relational data model, or simply the
relational model, is a combination of the following three components:

• Structural: how the data are organized?

• Integrity constraint: how to prevent the insertion of “non valid” data.

• Languages: how to query the data? tipically relational algebra, rela-
tional calculus or Datalog.

The structural and integrity parts are relevant for us, the languages are
omitted.

3.1.1 Structure

The relational model has a unique data structure, the relation represented by
a two dimensions table. The columns give the characteristic of what is repre-
sented. The lines are values of what is represented. The first line indicating
column names are called attributes.

Let U be an countable infinite set of attribute names denoted by univers.
Let D be a countable infinite set of constant values. The possible values that
can constitute a database is D.

Definition 3.1. For an attribute A ∈ U, we denote DOM(A) the domain of A, i.e.
the subset of D in which the values of A are taken: (DOM(A) ⊆ D).

A relational symbol is a symbol associated to an integer type(R) corre-
sponding to the number of attributes of R. Each symbol R is associated to a
function attR defined from {1,. . . ,type(R)} in the univers U allowing to asso-
ciate attributes of U to R in a particular order.

We denote schema(R) = {attR(1), . . ., attR(type(R))} the set of attributes
of R, in other words the schema of R. In the sequel we do not distinguish a
relation symbol from its schema when clear from context, i.e. R = schema(R).

Example 3.1. Let Pers be a relation symbol with type(Pers) = 4. The schema of Pers
is schema(Pers)={att(1), att(2), att(3), att(4)} with att(1) = id, att(2) = name,
att(3) = f irstname, att(4) = age.

Definition 3.2. Let R be a relational symbol with schema(R)={A1,. . .,Am} and
attR(i)=Ai, i = 1, m. A tuple on R is an element of the Cartesian product DOM(A1)×
. . . ×DOM(Am)

A relation over R is a finite set of tuples on R.

3. PRELIMINARIES 21

Person id name firstname age
12 Dupont Pierre 45
45 Diallo Hadi 35

Figure 3.1: The relation Person

Person id name firstname age
12 Dupont Pierre 45
45 Diallo Hadi 35

Department dep address
IF 10 rue de la republique
GC 87 rue de bruxelles

Work id dep activity
12 IF Prof
45 IF Prof
45 GC Dr

Table 3.1: A database d={Person, Department, Work}

Example 3.2. The Person relation illustrated on Figure 3.1 is a relation on the symbol
Pers. The tuple <12,Dupont,Pierre,45> belongs to the relation Person.

Definition 3.3. An active domain of an attributeA ∈ schema(R) in r, denotedADOM(A)
is the set of constant values taken by A in r. In other words ADOM(A, r) = πA(r).

Example 3.3. Let us consider the relation Person in Figure 3.1, we have:

ADOM(name) = {Dupont, Diallo}

The active domain of an attribute can be extended to a relation. It is the
union of active domains of attributes.

Definition 3.4. The active domain of a relation r, denoted by ADOM(r) is:

ADOM(r) = ⋃
A∈schema(R)

ADOM(A, r)

Let R = {R1, . . . , Rn} be a database schema, we can define a database d =
{r1, . . . , rn} over R with ri defined over Ri(i = 1..n).

Example 3.4. Let Person, Department and work be a set of relations defined re-
spectively on schemas Pers, Depart and Working. One can defined the database
d={Person, Department, work} in Table 3.1.

In the sequel, we shall use classical database notions defined by [Levene
and Loizou, 1999]. Letters from the beginning of the alphabet (A, B, C, . . .)
shall represent single attribute whereas letters from the end of the alphabet
(X, Y, Z, . . .) attribute sets. For convenience, XY will refer to as X ∪Y.

3. PRELIMINARIES 22

3.1.2 Constraints

Integrity constraints can be viewed as logic statements that restrict the set
of allowable relations in database. For example stating that id is the primary
key of the relational schema Pers is in fact defining an integrity constraint that
specifies: no distinct two tuples in a relation over Pers have the same id. This
notion of primary key is a particular case of the more general class of FD.

3.1.2.1 Functional Dependencies

The concept of FD helps define a relational schema without anomalies. In
practice, they have been intensively studied in database design.

Definition 3.5. Let R be a relation schema. A FD over R is an expression in the form
R ∶ X → Y, or simply X → Y when R is clear from context, where X, Y ⊆ schema(R).
A FD X → Y is said :

• trivial if Y ⊆ X

• standard if X ≠ ∅

cust CC AC phn type FN LN STR CT ZIP item
t1 ∶ 01 908 1111111 1 Mike Brant Tree Ave. NYC 01974 CD
t2 ∶ 01 908 1111111 1 Rick James Tree Ave. NYC 01974 DVD
t3 ∶ 01 212 2222222 2 Joe Dalton Elm Str. NYC 01202 CD
t4 ∶ 01 212 2222222 2 Jim Cook Elm Str. NYC 01202 Book
t5 ∶ 01 215 3333333 2 Ben Wade Oak Av. PHI 01202 CD
t6 ∶ 44 131 4444444 1 Ian Duc High St. EDI 03560 DVD
t7 ∶ 44 140 5555555 2 Kim Lee High St. PHI 03560 DVD

Figure 3.2: relation cust

Example 3.5. Let us consider the relation cust described in Figure 3.2. Cust rep-
resents a customer with country code (CC), area code (AC), phone number (phn),
mobile phone or land line (type), first name (FN), last name (LN), street (STR), city
(CT), zip code (ZIP) and item bought by customer (item). For example, we can state
the following FD:

• f1 = CC, AC, phn → STR, CT, ZIP

• f2 = CC, AC → CT, ZIP

• f3 = CC, ZIP → STR

3. PRELIMINARIES 23

Semantics: a FD is then a constraint defined on a schema. The constraint
must be verified or satisfied by any relation defined on this schema.

Definition 3.6. Let r be a relation over R and X → Y a FD over R. X → Y is
satisfied by r, denoted by r ⊧ X → Y, if and only if ∀t1, t2 ∈ r if t1 [X] = t2 [X] then
t1 [Y] = t2 [Y].

In other words if two tuples are equal on the set of attributes X then they
must also be equal on the attributes set Y.

Example 3.6. We have: cust ⊧ f1, cust ⊧ f2 but cust /⊧ f3. Indeed the tuples t4
and t5 are equals on CC, ZIP but are different on STR. Formally t4[CC, ZIP] =
t5[CC, ZIP] but t4[STR] ≠ t5[STR].

FD obey Armstrong axioms (or rules) [Armstrong, 1974]:

• Reflexivity: if Y ⊆ X ⊆ schema(R), then F ⊢ X → Y

• Augmentation: if F ⊢ X → Y and W ⊆ schema(R), then F ⊢ XW → YW

• Transitivity: if F ⊢ X → Y and if F ⊢ Y → Z, then F ⊢ X → Z

Theorem 3.1. [Armstrong, 1974] Armstrong axioms are sound and complete.

Closure operator for FD:

Definition 3.7. Let X ⊆ schema(R) be a set of attributes over R, and let F be a set
of FD over R. The closure of X with respect to F, denoted by X+

F , is defined as follows:

X+

F = {A ∈ schema(R) ∣ F ⊧ X → A}

Property 3.1. F ⊧ X → Y if and only if Y ⊆ X+

F .

This property helps to check the implication of a dependency by a set us-
ing the closure operator. In fact to prove the sentence F ⊧ X → Y, it is enough
to prove that Y ⊆ X+

F .

3.2 Conditional Functional Dependencies

CFDhave been recently introduced by [Bohannon et al., 2007] in the context of
data cleaning as a compromise to bridge the gap between FD and AR. They
can be seen as an unification of these two families since they allow to mix
attributes and attribute/values in dependencies.

3. PRELIMINARIES 24

3.2.1 Definition and Semantics

Consider a relation schema R, the syntax of a CFD is given as follows: a CFD
ρ on R is a pair (X → Y, Tp) where:

1. XY ⊆ schema(R),

2. X → Y a standard FD,

3. and Tp is a pattern tableau with attributes in R.

For each attribute A ∈ schema(R) and for each pattern tuple tp ∈ Tp, tp[A] is
either

• a constant in DOM(A)

• or an ‘unnamed variable’denoted by ’_’ referring to any value in DOM(A)

• or an empty variable denoted by ’∗’ which indicates that the correspond-
ing attribute does not contribute to the pattern (i.e. A /∈ XY)

We recall the relation cust from Figure 3.2.

cust CC AC phn type FN LN STR CT ZIP item
t1 ∶ 01 908 1111111 1 Mike Brant Tree Ave. NYC 01974 CD
t2 ∶ 01 908 1111111 1 Rick James Tree Ave. NYC 01974 DVD
t3 ∶ 01 212 2222222 2 Joe Dalton Elm Str. NYC 01202 CD
t4 ∶ 01 212 2222222 2 Jim Cook Elm Str. NYC 01202 Book
t5 ∶ 01 215 3333333 2 Ben Wade Oak Av. PHI 01202 CD
t6 ∶ 44 131 4444444 1 Ian Duc High St. EDI 03560 DVD
t7 ∶ 44 140 5555555 2 Kim Lee High St. PHI 03560 DVD

The semantics of a CFD extends the semantics of FD mainly with the no-
tion of matching tuples. Let r be a relation over R, X ⊆ R and Tp a pattern
tableau over R. A tuple t ∈ r matches a tuple tp ∈ Tp over X, denoted by
t[X] ≍ tp[X], iff for each attribute A ∈ X, either

• t[A] = tp[A]

• or tp[A] =’_’

• or tp[A] =’∗’

Example 3.7. Let us consider the three FD previously described:

• f1 = CC, AC, phn → STR, CT, ZIP

• f2 = CC, AC → CT, ZIP

• f3 = CC, ZIP → STR

3. PRELIMINARIES 25

CFD are constraints that hold on a subset of tuples rather than on the entire re-
lation. So the basic idea of CFD is to define through a selection formula a subset of a
relation on which some FD hold.

For instance the FD f3 ∶ CC, ZIP → STR holds on the set of tuples t6 and t7
on cust, selected by the formula σCC=44(cust). Technically this constraint is denoted
by the CFD φ0 = (CC, ZIP → STR, (44, _ ∥ _)), where the symbol ‘∥’ is used to
separate the left-hand side from the right-hand side of the dependency. This CFD
states that in the United Kingdom (CC = 44), the ZIP code determines the street
where the customer lives. Which indeed is not available for example in the United
States (CC = 01) or in France. CFD that hold on cust also include the following (and
more):

• φ1 ∶ (CC, AC, phn → STR, CT, ZIP(01, 908,_ ∥ _, NYC,_))

• φ2 ∶ (CC, AC, phn → STR, CT, ZIP(01, 212,_ ∥ _, PHI,_))

• φ3 ∶ (CC, AC → CT(01, 215 ∥ PHI))

One can consider different selection formulas like inferior or superior op-
erator for the embedded condition. For example the CFD φ4 = (CC, ZIP →
STR, (_,> 01974 ∥ _)) can be defined on the relation cust stating that the FD
holds on the condition that ZIP must be superior to the value 01974. It may
be interesting to enlarge the scope of condition formulas, this interest is out
of the scope of our study. In this thesis we only consider selection formula
made by equality.

Definition 3.8. Let r be a relation over R and ρ = (X → Y, T) a CFD with XY ⊆ R.
We say that r satisfies ρ, denoted by r ⊧ ρ, iff for all ti,tj ∈ r and for all tp ∈ T, if
ti[X] = tj[X] ≍ tp[X] then ti[Y] = tj[Y] ≍ tp[Y].

Example 3.8. The relation cust of the Figure 3.2 satisfies CFD φ0, φ1 and φ3.

Definition 3.9. Let Σ1 and Σ2 be two sets of CFD defined over the same schema R.
We say that Σ1 is equivalent to Σ2 denoted by Σ1 ≡ Σ2 iff for any relation r over R,
r ⊧ Σ1 iff r ⊧ Σ2.

In fact, an FD X → Y is a special case of CFD (X → Y, tp) where tp is a
single pattern tuple and for each B ∈ XY, tp[B] = ’_ ’.

Example 3.9. The FD f1 of Example 3.7 can be expressed as the CFD (CC, AC, PN →
STR, CT, ZIP(_,_,_ ∥ _,_,_)). Similarly for f2.

Compare to FD, note that a single tuple relation may violate a CFD. It
may occur when the pattern tableau has at least one row with at least one
constant on the right-hand side. Given a relation, the satisfaction of a CFD
has to be checked with both every single tuple and every couple of tuples. As
for classical FD, the non-satisfaction is easier to verify: it is enough to exhibit

3. PRELIMINARIES 26

a counter-example, i.e. either a single tuple or a couple of tuples.
More formally, we have the relation r which violates a CFD ρ = (X → Y, T),
denoted by r /⊧ ρ, iff

• there exists a tuple t ∈ r and a pattern tuple tp ∈ T such that t[X] ≍ tp[X]
and t[Y] /≍ tp[Y]

• or there exists ti, tj ∈ r and a pattern tuple tp ∈ T such that ti[X] = tj[X] ≍
tp[X] and ti[Y] ≠ tj[Y]

The first condition is new with respect to FD violation. As we will see
later, this condition turns out to be “embedded” into the second one.

Example 3.10. In Figure 3.2 the relation cust does not satisfy these two CFD:

• φ2 ∶ (CC, AC, PN → STR, CT, ZIP(01, 212,_ ∥ _, PHI,_)).
Indeed, t3 violates φ2 ∶ t3 [CC, AC, PN] ≍ (01, 212,_) but t3 [STR, CT, ZIP] /≍
(_, PHI,_).

• φ4 = (CC, CT → ZIP(01,_ ∥ _)). Indeed, t2 and t3 violate φ4 since t2 [CC, CT] =
t3 [CC, CT] ≍ (01,_), but t2 [ZIP] ≠ t3 [ZIP].

Definition 3.10. [Fan et al., 2008a] A CFD (X → Y, Tp) is in the normal form ,
when ∣Y∣ = 1 and ∣Tp∣ = 1.

A normalized CFD has then a single attribute on the right-hand side and
its pattern tableau has only one single tuple.

Proposition 3.1. [Fan et al., 2008a] For any set Σ of CFD there exists a set Σn f of
CFD such that each CFD ρ ∈ Σn f is in the normal form and Σ ≡ Σn f .

In the sequel we consider CFD in their normal form, unless stated other-
wise. A CFD (X → A, tp) is called:

• a constant CFD if tp [XA] consists of constants only, i.e. tp [A] is a con-
stant and tp [B] is also a constant for all B ∈ X.

• a variable CFD if the right hand side of its pattern tuple is the unnamed
variable ’_’, i.e. tp[A] = ’_’, the left-hand side involving either constants
or ’_’.

Proposition 3.2. [Fan et al., 2008a] For any set Σ of CFD over a schema R, there
exists a set Σc of constant CFD and a set Σv of variable CFD over R such that Σ ≡
Σc ∪Σv.

There always exists a relation that satisfies constraints expressed using FD,
without worrying about their consistency. This is no more the case for CFD.

3. PRELIMINARIES 27

CFD1: if A ∈ X then (X → A, tp).
CFD2: if (X → A, tp), B ∈ schema(R)
then (XB → A, t′p) where t′p [B] = _ and t′p [C] = tp [C]∀C ∈ X ∪ {A}.

CFD3: if (X → A, t), (A → B, tp) and t[A] ≍ tp[A]
then (X → B, t′p), where t′p [X] = t [X] and t′p [B] = tp [B]

CFD4: if (BX → A, tp), tp [B] = _ and tp [A] = cte,
then (X → A, t′p) where t′p [C] = tp [C]∀C ∈ X ∪ {A}

CFD5: if (BX → A, tp), tp [B] = _
then (BX → A, t′p), where t′p [C] = tp [C]∀C ∈ X ∪ {A} − {B}, and t′p [B] = b

CFD6:if (X → A, tp) and tp [A] = cte
then (X → A, t′p) where t′p [A] = _ and t′p [X] = tp [X]

Figure 3.3: Inference system for CFD [Bohannon et al., 2007]

3.2.2 Consistency

We beginwith an example to illustrate the consistency problemwhen dealing
with CFD.

Example 3.11. Let Σ = {φ1, φ2} be a set of CFD with φ1 = A → B(_ ∥ b) and
φ2 = A → B(_ ∥ c), b ≠ c. There exist no relation r over AB that satisfies Σ because
∀t ∈ r for the same value of t[A], t[B] can not be equal to b and c at the same time.

This particular case is often observed for attributes with finite domain like
Boolean. The latter increases the complexity of the consistency issue. In fact,
studying the consistency problem for a set Σ of CFD defined over a schema
R is equivalent to check if there exists a relation r over R such that r ⊧ Σ. The
consistency problem is NP-complete [Fan et al., 2008a]. In the sequel we do
not detail the problem and we assume the consistency of CFD.

3.2.3 The implication problem

Given a set of CFD and a single CFD, we want to know if the satisfaction
of the set of constraints is enough to satisfy the single one. The Armstrong
rules [Armstrong, 1974] are fundamental for the implication problem of FD.
In Figure 3.3, [Bohannon et al., 2007] proposes a sound and complete infer-
ence system similar to the Armstrong inference system for FD to solve the
implication problem of CFD.

The following example illustrates the use of the inference system.

Example 3.12. Let φ1 = (A → B, (−, b)), φ2 = (B → C, (−, c)) and φ3 = (A →
C, (a,−)) be CFD. We want to check whether the set {φ1, φ2} implies φ3 ?

1. (A → B, (−, b)) by φ1

2. (B → C, (−, c)) by φ2

3. PRELIMINARIES 28

3. (A → C, (−, c)) by 1, 2 and the rule CFD3

4. (A → C, (a, c)) by 3 and the rule CFD5

5. (A → C, (a,−)) by 4 and the rule CFD6

3.2.4 Minimal cover

Definition 3.11. [Bohannon et al., 2007] A minimal cover Σcm of a set Σ of CFD
is a set of CFD such that:

1. Each CFD in Σcm is of the form (X → A, tp). In other words the CFD are in
normal form.

2. The set Σcm is equivalent to Σ. Thus exactness is guaranteed.

3. No proper subset of Σcm implies Σcm.

4. For each (X → A, tp) in Σcm, there exists no CFD (X′ → A, tp[X′ ∪ A]) in
Σcm such that X ⊂ X′. Thus there is no redundancy.

The minimal cover Σcm is equivalent to Σ but does not contain redundan-
cies. The minimal cover is computed by first removing redundant attributes,
then redundant CFD as illustrated in Algorithm 1.

Algorithm 1Minimal cover for CFD
Require: a set of CFD Σ
Ensure: Σcm: a minimal cover for Σ
1: if Σ is not consistent then
2: Σcm ∶= ∅
3: end if
4: for all ρ = (X → A, tp) ∈ Σ do
5: for all attribute B ∈ X do
6: if Σ ⊧ (X − B → A, (tp[X − B], tp[A])) then
7: Σ ∶= Σ − {ρ} ∪ {(X − B → A, (tp[X − B], tp[A]))}
8: end if
9: end for

10: end for
11: Σcm ∶= Σ
12: for all ρ = (X → A, tp) ∈ Σ do
13: if Σ − {ρ} ⊧ ρ then
14: Σcm ∶= Σcm − {ρ}
15: end if
16: end for

FD or CFD are static rules. Their satisfaction is checked in the current state
of a single database. There are other classes of rules which are dynamic in the

3. PRELIMINARIES 29

r FN LN AC phn type str city zip item
t1 Bob Brady 020 079172485 2 501 Elm St. Edi EH7 4AH CD
t2 Robert Brady 131 6884563 1 null Lnd null CD
t3 Robert Brady 020 6884563 1 null null EH7 4AH DVD
t4 Mary Burn 029 9978543 1 null Cad null BOOK

s FN LN AC Hphn Mphn str city zip DOB g
s1 Robert Brady 131 6884563 079172485 51 Elm Row Edi EH7 4AH 111155 M
s2 Mark Smith 020 6884563 075568485 20 Baker St. Lnd NW1 6XE 251267 M

u ItemId Item DOF Price
u1 701B Book 04/03/10 45
u2 017A CD 11/10/10 11
u3 904A DVD 25/08/10 16

Figure 3.4: Source relation r and master database {s, u}

sense that two databases need to be examined in order to apply them. ER are
one of those dynamic constraints.

3.3 Editing Rules

ER are a new class of data quality rules that tells how to efficiently fix errors,
i.e. which attributes exactly are wrong andwhat values they should take [Fan
et al., 2010]. ER are boosted by the recent development of MDM [Deloitte and
Oracle, 2005], [Russom, 2008], [Loshin, 2009]. The global intuition is to help
fix and enrich dirty data using the corresponding values from master data.
ER syntax [Fan et al., 2010] is slightly rephrased in the following definition.

Definition 3.12. Syntax: Let R be source relation schema and S be a master rela-
tion schema. Let X (resp. Y) be a list of distinct attributes from schema(R) (resp.
schema(S)), A ∈ schema(R) ∖ X, B ∈ schema(S) and Z ⊆ schema(R). An ER ϕ
over (R, S) is of the form ϕ ∶
((X, Y) → (A, B), tp[Z]) where tp[Z] is a pattern tuple over R.

Let r and s be respectively a source and a master relation over R and S.
The semantics of ER has been defined with respect to the insertion of a tuple
t in r [Fan et al., 2010]. The idea is to “correct” r using values of s with respect
to pattern selection applying on r.

Definition 3.13. Semantics: An ER ϕ=((X,Y)→(A,B),tp[Z]), with respect to a
master tuple tm ∈ s, is applied to t ∈ r to obtain t′ if: (1) t[Z] matches tp[Z]. (2)
t[X] = tm[Y]. (3) t′ is obtained by the update t[A] ∶= tm[B]. That is, if t matches tp
and if t[X] equals tm[Y], then tm[B] is assigned to t[A].

3. PRELIMINARIES 30

Example 3.13. The relation r in Figure 3.4 represents a customer and is defined
over the same schema than relation schema of cust of Figure 3.2. The schema of s
and u describes the master database. Let us consider the tuples t1 and s1. The tuple
t1 is in the source relation r and the tuple s1 is in the master relation s. The value
t1[FN] = Bob may be corrected using the right name s1[FN] = Robert from the mas-
ter relation with respect to the ER ((phn, Mphn) → ((FN),(FN)),tp2[type]=(2)).
That is, if t[type] = 2 (indicating mobile phone) and if there is a master tuple s with
s[Mphn]=t[phn], then t[FN]:=s[FN].

The Example 3.13 illustrates by theway the added value of ERwith respect
to CFD in a data cleaning context. In next Chapters we address respectively
the discovery problem of CFD, the discovery problem of ER and the applica-
tion of ER in a data cleaning process.

CHAPTER 4
DISCOVERING CONDITIONAL
FUNCTIONAL DEPENDENCIES

Chapter Outline
4.1 Related Works . 32
4.2 New notations for CFD . 34

4.2.1 Search space for constant CFD 34
4.3 Discovering constant CFD using conditional agree sets 37

4.3.1 From agree sets to conditional agree sets 37
4.3.2 Conditional agree set for the discovery problem 39
4.3.3 Implementation strategy . 42

4.4 Frequent constant CFD discovery . 43
4.4.1 The Formal concepts of Fun approach 45
4.4.2 From Fun to CFun . 46

4.5 Experimentation . 49
4.6 Summary . 53

In this Chapter, we address the discovery problem of CFD which can be seen as a
clarification of some simple and basic notions underlying CFD. In particular we point
out how datamining techniques developed for FD andAR can be reused for themining
of constant CFD.We focus on two types of techniques. The first one extends the notion
of agree sets. The second one is based on a closure operator to efficiently integrate
frequency of constant CFD. The techniques have been implemented and experiments
have been carried out showing both the feasibility and the scalability of our proposal.

31

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 32

Figure 4.1: AnOverview of the Steps That Compose the KDDProcess [Fayyad
et al., 1996]

The discovery problem of CFD is a data mining problem and more glob-
ally a Knowledge Discovery in Databases (KDD) issue. The KDD process is
described in Figure 4.1. This iterative process requires the understanding of
the knowledge discovery scope. Regarding the goal of the process, data are
carefully selected to get target data. The latter may be transformed in order to
prepare and enter the mining step in a best way. Data mining is a step in the
KDDprocess that consists of applying data analysis and discovery algorithms
that produce a particular enumeration of patterns over the data [Fayyad et al.,
1996]. We particularly address this data mining step. In our context patterns
mined are CFD.

The Chapter is organized as follows. Related works are discussed in Sec-
tion 4.1. We introduce news notations in Section 4.2. We attack the particular
class of constant CFD and present our first proposition based on the exten-
sion of agree sets [Beeri et al., 1984b] in Section 4.3. The second proposition
is based on the algorithm Fun [Novelli and Cicchetti, 2001a] for mining FD.
The latter technique is extended to take into account the frequency of CFD to
discover frequent constant CFD in Section 4.4. The experimental results are
presented in Section 4.5 and finally a summary is given.

4.1 Related Works

The idea of extending constraints with condition is not recent. For exam-
ple [Maher and Srivastava, 1996] early proposed a procedure that generate
tuples and constraints that have attached conditions when they exist/hold in
order to solve the implication problem for constrained tuple-generating de-
pendencies (CTGDs) [Baudinet et al., 1995].

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 33

CFD extend FDwith conditions and can be seen as a particular case of CT-
GDs. CFD have been recently introduced in a data cleaning purpose by [Bo-
hannon et al., 2007]. In addition, classical problems in data dependencies such
as the implication problem or the consistency question have been revisited in
a theoritical setting.

[Golab et al., 2008] studied the characterization and the generation of pat-
tern tableaux to realize the full potential of CFD. They formally definewhat is
a good pattern tableau using the support and the confidence. An algorithm
evaluated on real life data is proposed to generate optimal pattern tableau for
CFD.

A common hierarchy of CFD, FD and AR along with some theoretical
results on pattern tableaux equivalence have also been proposed by [Med-
ina and Nourine, 2009]. Authors used the more global work of [Bra and
Paredaens, 1983], based on horizontal decomposition of a relation, as a way
to represent and reason on CFD.

But most of these works on CFD assume that CFD are already designed
and provided or are manually made. In this setting the discovery problem of
CFD is a relevant issue and has been addressed in the five last years.

CFD are still in current interest, so the mining problem is not widely ad-
dressed. In another hand plenty of contributions have been proposed for FD
inference and for AR mining. In the context of this thesis, we can quote for
example [Agrawal et al., 1993], [Pasquier et al., 1999], [Huhtala et al., 1999a],
[Lopes et al., 2000], [Novelli and Cicchetti, 2001a], [Goethals et al., 2010]. As
far as we know, two main contributions have been made by [Chiang and
Miller, 2008] and [Fan et al., 2011] for CFD mining.

[Chiang andMiller, 2008] propose a new data driven tool for data quality
management which suggests possible rules and identify conform and non-
conform records. They present effective algorithms for discovering data qual-
ity rules and the portion of contextual data where the dependency holds, i.e.
the context. Actually the rules discovered can be consider similar to CFD
when the dependency and the context are merged and considered together.
Authors also propose in the same tool, a set of dirty values in a data instance
with respect to rules. But the rules discovered may contain redundant pat-
terns which can reduce the effectiveness of the rules when used in a practical
concern of data cleaning for example.

[Fan et al., 2011] propose three methods to discover CFD:

1. The first one called CFDMiner which mines only constant CFD is based
on techniques for mining closed itemsets from [Pasquier et al., 1999].
CFDminer finds a canonical cover of k-frequent minimal constant CFD
based on AR concepts of free and closed itemsets popularized by [Zaki,
2004].

2. The second one CTANE is developed for discovering general CFD, i.e.
whenever they are constant or variable. CTANE is an extension of well

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 34

known algorithms TANE, proposed by [Huhtala et al., 1999a] for min-
ing FD. CTANE prevents from discovering inconsistent CFD, ensure a
minimal reduction of left hand sides and ensure also that the pattern is
the most general possible. Authors first propose the solution for discov-
ering CFDwith a minimal support, and then generalize CTANE to deal
with k-frequent minimal CFD.

3. The last one is FastCFD, which extends the algorithm FastFD proposed
by [Wyss et al., 2001] for the discovery problem of FD. FastCFD is an
alternative for CTANE. In contrast of CTANE, FastCFD is a depth first
approachmore effective. The validity of a CFD is checked on the fly and
k-frequent CFD are directly addressed instead of doing a first pass with
1-frequent CFD.

4.2 New notations for CFD

We now introduce new notations which will turn out to be convenient to rep-
resent CFD in our context. Since CFD allow to mix attributes and values in
the same semantics, we enrich initial CFD notation gave in section 3.2 of pre-
liminaries Chapter in order to carry a couple “attribute-value” in the search
space of CFD. We also characterize the order between CFD using elements of
the new search space.

4.2.1 Search space for constant CFD

Usually, the search space for classical FD and AR is a powerset of the set of
attributes (or items). With CFD, attributes have to be considered together
with their possible values from their domain. This is formally defined in the
following for constant CFD.

Definition 4.1. Let R be a relation symbol. The search space of CFD over R, denoted
by SPCFD(R), is defined as follows:

SPCFD(R) = {(A, a) ∣ A ∈ R, a ∈ DOM(A)}

The search space is a set of couples composed by attributes of the schema
and the respective possible values from their domain. The notation SPCFD
refers to “Search sPace of CFD”. SPCFD(R) is infinite if at least one of the at-
tributes of R has an infinite domain. Based on this search space, any constant
CFD can be for example rewritten as follows:

Let ρ =(A1 . . . An → A, tp[A1 . . . An A]) be a constant CFD over R. This con-
stant CFD ρ can be seen as syntactically equivalent to the CFD X → A, with X
= {(A1, tp[A1]), . . . , (An, tp[An])} ⊆ SPCFD(R) and A=(A, tp[A]) ∈ SPCFD(R).

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 35

In the sequel, CFD will be represented using this new notation unless
stated otherwise, with elements of the search space SPCFD(R) only. If nec-
essary we will use the following additional notations.

Given an element A=(A, v) ∈ SPCFD(R), we note A.att the attribute A
and A.val the value v. By extension, a set of elements X ⊆ SPCFD(R), X.att
represents the union of attributes belonging to X, i.e. X.att=⋃A∈X A.att and
X.val=⋃A∈X A.v.

The previous Definition 4.1 of the search space of CFD SPCFD(R) was de-
fined just over a schema and for any class. This search space of constant CFD
is now extended to take into account a relation r over R. The building process
is described in Algorithm 2. The A of ASPCFD refers to the word “Active” like
in active domain ADOM.

Definition 4.2. Let R be a relation symbol and r a relation over R. The search space
of constant CFD for r, denoted by ASPCFD(R, r), is defined as:

ASPCFD(R, r) = {(A, a) ∣ A ∈ R, a ∈ ADOM(A, r)}

Algorithm 2 The space search of constant CFD
Require: a relation r over a schema R
Ensure: ASPCFD(R, r) the search space of constant CFD for r
1: ASPCFD(R, r) = ∅;
2: for all tuple t ∈ r do
3: for all attribute A ∈ R do
4: if (A, t[A]) /∈ ASPCFD(R, r) then
5: ASPCFD(R, r) = ASPCFD(R, r)⋃(A, t[A]);
6: end if
7: end for
8: end for
9: return ASPCFD(R, r)

The set ASPCFD(R, r) is finite since ADOM(r) is finite.

Example 4.1. Let r be a toy illustration relation over schema R = {A, B, C, D} in
Figure 4.2. For sake of clearness we denote the couple (Ai, v) by Aiv. We have:
ASPCFD(ABCD, r) = {A0, A2, B0, B1, B2, C0, C3, D1, D2}.

Definition 4.3. Let X,Y ⊆ ASPCFD(R, r). We say that Y generalizes X (or X spe-
cializes Y), denoted by X ⪯ Y, iff Y.att ⊆ X.att and for all A ∈ Y,∃B ∈ X such that
B = A.

Example 4.2. Let r be the relation in Figure 4.2.
ASPUVCFD(ABCD, r) = {A0, A2, B0, B1, B2, C0, C3, D1, D2} is the search space
of all CFD that hold in r. Then for example: {A0, B1} ⪯ {B1} and {A0, B1} /⪯ {B2}.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 36

r A B C D
t1 ∶ 0 1 0 2
t2 ∶ 0 1 3 2
t3 ∶ 0 0 0 1
t4 ∶ 2 2 0 1
t5 ∶ 2 1 0 1

Figure 4.2: A toy relation r over R = {A, B, C, D}

A consequence of the partial order is the characterization of a monotonic
predicate.

Property 4.1. Let r be a relation over R, X, Y ⊆ ASPCFD(R, r) such that X ⪯ Y and
A ∈ ASPCFD(R, r). We have:

r ⊧ X → A⇒ r ⊧ Y → A (or equivalently r /⊧ Y → A⇒ r /⊧ X → A)

Proof. Let us assume that r ⊧ X → A. Then
∀ti,tj ∈ r, if ti[X.att] = tj[X.att] = X.val then ti[A.att] = tj[A.att] = A.val.
In addition X ⪯ Y. So Y.att ⊆ X.att and therefore ti[Y.att] = tj[Y.att] =

Y.val.
Finally r ⊧ Y → A ◻

Example 4.3. Let r be the relation in Figure 4.2 and let {A0, B1} ⪯ {B1}. We have
r ⊧ (A0B1→ D2) ⇒ r ⊧ (B1→ D2).

Definition 4.4. A constant CFD X → A is said to be left-reduced on r if for any
Y.att ⊂ X.att, r /⊧ Y → A.

Proposition 4.1. For any relation r, there exists a set Σc of constant CFD such that
Σr ≡ Σc, Σr being the set of satisfied CFD in r.

According to [Fan et al., 2011] constant CFD are instant-level FD that are
particularly useful in object identification, an essential issue to both data qual-
ity and data integration. The object identification is very relevant and very
expressive for detecting the violation of CFD in the process of repairing data.
The proposition 4.1 states that discovering the set of constant CFD satisfied
by a given relation is equivalent to the discovery of satisfied CFD even if the
latter contains variable CFD. Therefore, in this thesis we concentrate attention
to the particular class of constant CFD for our discovery problem.

Given a relation r the problem statement is to discover a minimal cover
(Section 3, Definition 3.11) of constant CFD satisfied by r.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 37

4.3 Discovering constant CFD using conditional agree
sets

In this section we show how to extend agree set with condition to obtain con-
ditional agree set. We also study how conditional agree sets are used for the
discovery problem of CFD.

4.3.1 From agree sets to conditional agree sets

Traditional agree sets were mainly developed in the context of classical FD.

Definition 4.5. [Beeri et al., 1984b] Let t1 and t2 be tuples and let X be a set of
attributes. We say that t1 and t2 agree exactly on X if t1[X] = t2[X], and if t1[A] ≠
t2[A] for each attribute A not in X.

This definition guarantees that tuples are similar only in the set of at-
tributes X and nowhere else. We extend this notion to conditional agree sets
as follows:

We first define the conditional agree set between a single tuple and a pat-
tern.

Definition 4.6. Let r be a relation over R, t ∈ r a single tuple, tp a pattern tuple
over R. A conditional agree set between a single tuple t and a pattern tp, denoted by
ag(t, tp), is defined by:

ag(t, tp) = {(A, t[A]) ∣ t[A] ≍ tp[A], A ∈ R}

.

The set ag(t, tp) is the set of couples “attribute/value” that verify the pro-
jection of the attribute in the pattern tuple. Algorithm 3 computes this set
given a relation r and a pattern tuple tp.

Algorithm 3 The conditional agree sets between each tuple of a relation and
a pattern
Require: a relation r over a schema R, a pattern tuple tp
Ensure: result
1: result = ∅;
2: for all tuple t ∈ r do
3: for all attribute A ∈ R do
4: if t[A] ≍ tp[A] then
5: result = result⋃(A, t[A]);
6: end if
7: end for
8: end for
9: return result

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 38

Example 4.4. Let r be the relation over R = ABCD (cf. Figure 4.2).
tp = (0, 1, 3,_) a pattern tuple.
ag(t1, tp) = {A0, B1, D2}.
ag(t2, tp) = {A0, B1, C3, D2}.

Next, we introduce the conditional agree set between two tuples and a
pattern.

Definition 4.7. Let r be a relation over R, t1, t2 two tuples of r and tp a pattern
tuple over R. A conditional agree set between two tuples t1, t2 and tp, denoted by
ag(t1, t2, tp), is defined by: ag(t1, t2, tp) = {(A, t1[A]) ∣ t1[A] = t2[A] ≍ tp[A], A ∈
R}.

Example 4.5. Let r be the relation over R = ABCD (cf. Figure 4.2).
tp = (0, 1, 3,_) a pattern tuple.
ag(t1, t2, tp) = {A0, B1, D2}.

In practice, the main information we have from ag(t1, t2, tp) is a counter-
example when A = 0, B = 1 and D = 2. For instance, {t1, t2} /⊧ A0, B1, D2→ C0
or {t1, t2} /⊧ A0, B1, D2 → C3. That is the power of ag(t1, t2, tp), and it will be
very useful for capturing CFD violation for the discovery problem.

In the followingwe define the conditional agree set between a relation and
a pattern. The build process of such a set is described in Algorithm 4.

Definition 4.8. Let r be a relation over R and tp a pattern tuple over R. The con-
ditional agree set between r and tp, denoted by ag(r, tp) is defined by: ag(r, tp) =
{ag(ti, tj, tp) ∣ ti, tj ∈ r, ti ≠ tj}.

Algorithm 4 The conditional agree sets between a relation and a pattern
Require: a relation r over a schema R, a pattern tuple tp
Ensure: result
1: result = ∅;
2: for all tuple t1 ∈ r do
3: for all tuple t2 ∈ r do
4: agt = ∅;
5: for all attribute A ∈ R do
6: if t1[A] = t2[A] ≍ tp[A] then
7: agt = agt⋃(A, t1[A]);
8: end if
9: result = result⋃ agt;
10: end for
11: end for
12: end for
13: return result

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 39

Lastly we define the conditional agree setwith all possible pattern tuples of
a given relation r denoted by cag(r).

Definition 4.9. cag(r) = ⋃tp ag(r, tp) for all pattern tuples tp.

Example 4.6. Continuing the Example 4.5, we get:
cag(r) = {{A0B1D2},{A0C0},{C0},{B1C0},{A0},{B1},{C0D1},{A2C0D1}}

4.3.2 Conditional agree set for the discovery problem

We recall the problem statement. Given a relation r over a schema R, the
problem is to discover a minimal cover of constant CFD satisfied in r. More
formally, we are interested in enumerating the left-hand sides denoted by lhs
of all minimal CFD satisfied in r whose right-hand side is reduced to a single
couple (attribute, value) that belongs to the search space of constant CFD.

Definition 4.10. The left-hand side of left-reduced constant CFD for A, denoted by
lhs(A, r), is defined by:

lhs(A, r) = {X ⊆ ASPCFD(R−A.att, r′(A)) ∣ r ⊧ X → A and ∀Y ⊂ X, r /⊧ Y → A}

with r′(A) = πR−A.att(σA.att=A.val(r)) defined over R′(= R − A).

In other words, the left hand side of (A) in the relation r is the smallest
set X of the search space such that r satisfies the constant CFD X → A. Many
works exist for the characterization of left hand side in this pattern mining
context. For example, to characterize lhs(A, r), we can borrow the same prin-
ciples used by [Mannila and Räihä, 1994] for inferring FD. We first define the
maximal sets of attribute/values in the search space that do not satisfy the
constant CFD.

Definition 4.11. The maximal sets of not satisfied constant CFD for A in r, denoted
by max(A, r), is defined by:

max(A, r) = max⊆{X ⊆ ASPCFD(R − A.att, r′(A)) ∣ r /⊧ X → A}

From the monotonic Property 4.1 applied to constant CFD, i.e. the in-
clusion set is the partial order, maximal sets are enough to capture invalid
constant CFD. So we can bridge the gap between conditional agree sets and
these maximal sets. Intuitively, we need to consider elements X of the condi-
tional agree sets cag(r) such that A does not belong to X. The property 4.2
characterizes this link.

Property 4.2. max(A, r) = max⊆{X ∈ cag(r) ∣ A /∈ X}

Continuing the Example 4.6, we have the following illustration regarding
maximal sets:

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 40

Example 4.7. max(A0, r) = {{B1C0},{C0D1}}
max(A2, r) = {{B1C0},{C0D1}}
max(B0, r) = {{A0C0},{C0D1}}
max(B1, r) = {{A0C0},{A2C0D1}}
max(B2, r) = {{A2C0D1}}
max(C0, r) = {{A0B1D2}}
max(C3, r) = {{A0B1D2}}
max(D1, r) = {{A0C0},{B1C0}}
max(D2, r) = {{A0C0},{B1C0}}

Now, from the maximal sets of elements that do not satisfy the CFD, we
have to identify theminimal sets of elements that satisfy the CFD. This kind of
relationship has been heavily studied inmany pattern enumeration problems
like FD [Mannila and Räihä, 1994] and has been early formalized. In our con-
text, constant CFD can be seen as interesting sentence, and the task of finding
them can be described as follows according to [Mannila and Toivonen, 1997].
Let us consider a relation r, a language L for expressing properties or defining
subgroups of the data, and a selection predicate q are given. The predicate q is
used for evaluating whether a sentence φ ∈ L defines a potentially interesting
subclass of r. The task is to find the theory of r with respect to L and q, i.e. the
set Th(L, r, q) = {φ ∈ L ∣ q(r, φ) is true}. Our problem is no more than a new
instance of this pattern enumeration formal problem said to be representable
as sets. Such formal concepts helped us to define the minimal set element of
the search space that do satisfy the constant CFD from the maximal set that
do not satisfy it.

So we define the complement of elements of max(A, r) in ASPCFD(R −
A.att, r′(A)). For a given A, the search space is the set of all possible couples
of the form (attribute, value) from r′(A).

Definition 4.12. cmax(A, r) = {ASPCFD(R−A.att, r′(A))−X ∣ X ∈ max(A, r)}.

Continuing the previous Example 4.7. Let us consider cmax(A0, r). For
A0, we have ASPCFD(R − A.att, r′(A0))={B0, C3, D2, B1, D1}. So the comple-
ment of max(A0, r) with respect to ASPCFD(R − A.att, r′(A0)) is:
cmax(A0, r)={{B0C3D1D2},{B0B1C3D2}}

Similarly, for the other attribute-value couples, we have:
cmax(A2, r) = {{B2D1},{B1B2}}
cmax(B0, r) = {{D1},{A0}}
cmax(B1, r) = {{A2C3D1D2},{A0C3D2}}
cmax(B2, r) = {}
cmax(C0, r) = {{A2B0B2D1}}
cmax(C3, r) = {}
cmax(D1, r) = {{A2B0B1B2},{A0A2B0B2}}

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 41

cmax(D2, r) = {{B1C3},{A0C3}}

The main result of this process can be stated. We reused the well-known
connection between positive and negative borders of interesting pattern enu-
meration problems representable as sets described by [Mannila andToivonen,
1997]. This connection relies on minimal transversal of a hypergraph. Let us
recall some definitions borrowed from [Berge, 1987].

• A collection H of subsets of a finite set is a simple hypergraph if ∀X ∈
H, X ≠ ∅ and (X, Y ∈ H and X ⊆ Y → X = Y).

• A transversal T of H is a subset of R intersecting all the edges of H, i.e.
T ∩ E ≠ ∅,∀E ∈ H.

• A minimal transversal ofH is a transversal T such that it does not exist
a transversal T′ of H, T′ ⊂ T. The collection of minimal transversals of
H is denoted by Tr(H).

The important Theorem 4.1 that follows, characterize the link between left
hand sides andminimal transfersal regarding single couple attribute-value of
the search space of constant CFD.

Theorem 4.1. [Mannila and Toivonen, 1997] Let r be a relation over R and A ∈
ASPCFD(R, r).

lhs(A, r) = TrMin(cmax(A, r))

where TrMin(H) is the set of minimal transversal of the hypergraph H.

Continuing the previous examples, we have the following left-hand sides:

Example 4.8.

lhs
lhs(A0, r) = {{B0},{C3},{D2},{B1D1}}
lhs(A2, r) = {{B2},{B1D1}}
lhs(B0, r) = {{A0D1}}
lhs(B1, r) = {{C3},{D2},{A0A2},{A0D1}}
lhs(B2, r) = {}
lhs(C0, r) = {{A2},{B0},{B2},{D1}}
lhs(C3, r) = {}
lhs(D1, r) = {{A2},{B0},{B2},{A0B1}}
lhs(D2, r) = {{C3},{A0B1}}

Now we can define the minimal cover of satisfied constant CFD with re-
spect to left hand sides of the search space.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 42

Definition 4.13. Let r be a relation over R. The minimal cover of satisfied constant
CFD in r, denoted by Σcm(R, r), is defined by:

Σcm(R, r) = ⋃
A∈ASPCFD(R,r)

lhs(A, r) → A

Continuing the previous example, we obtain the minimal cover of con-
stant CFD satisfied in the relation r.

Example 4.9. Σcm(R, r) = { B0 → A0; C3 → A0; D2 → A0; B1D1 → A0;
B2 → A2; B1D1 → A2; A0D1 → B0; C3 → B1; D2 → B1; A0A2 → B1;
A0D1 → B1; A2 → C0; B0 → C0; B2 → C0; D1 → C0; A2 → D1; B0 → D1;
B2 → D1; A0B1 → D1; C3 → D2; A0B1 → D2 }.

The element D2 → A0 of the minimal cover Σcm(R, r) carries for example
the constant CFD ((D → A), (2, 0)) that is satisfied by the relation r. By the
waywe note that the CFD A0A2→ B1 does not make sense since the attribute
A can only be involved with one value in the same dependency. This can be
avoided and have to be pruned in a post-processing stage. Such kind of CFD
can be seen as a side effect of the transversal minimal computation.

4.3.3 Implementation strategy

Regarding to implementation, as we have shown, inferring constant CFD us-
ing conditional agree sets is an instance of the class of interesting pattern enu-
meration problem formalized by [Mannila and Toivonen, 1997]. Therefore,
existing implementations can be used to get constant CFD in this context. For
instance, we use the iZi library [Flouvat et al., 2009], an adjustable tool for
pattern mining problem representable as set, by considering the following:

• the set of sentences {X ∣ X ⊆ ASPCFD(R, r)} involved in the constant
CFD X → A.

• the selection predicate q such that q(r, X) is true if and only if X → A
holds in the relation r.

• for Y ⊆ X, if q(r, X) is true then q(r, Y) is also true.

Concretely, given a relation r on R, we first compute the search space
of constant CFD ASPCFD(R, r). Then with iZi library, we initialize the al-
gorithm with elements of ASPCFD(R, r) having only one attribute and one
value. Then during the execution of the algorithm, the predicate being a sat-
isfied constant CFD is used to test each pattern against the data. This strategy
is repeated for each element A ∈ ASPCFD(R, r) to get all left-hand sides of A
which compose constant CFD as described in the previous example 4.9. Ex-
perimentation are addressed in section 4.5.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 43

Nevertheless, let us consider the CFD A0, D1→ B1. There is no tuple that
matches (0, 1,_, 1) in the relation of Figure 4.2. This highlights that themining
method based on conditional agree sets proposed in this sectionmay produce
“useless” CFD, i.e. CFD that do not match any tuple of r. This could be ad-
dressed by taking into account the frequency of the CFD, i.e. the number of
tuples that match a given CFD. As a post-treatment, it requires a full scan of
the database. But this kind of “useless" discovered constant CFD carries some
information, i.e. no proper subset of {A0D1} implies B1.

It also turns out that the notion of frequency or support which capture
the strength of a dependency cannot be taken into account easily using con-
ditional agree sets. The dualisation of the minimal transversal does not allow
to take into account frequency during its computation. Therefore a better ap-
proach is necessary to be able to integrate the frequency of the constraint and
address the discovery of frequent constant CFD. We overcome this limita-
tion by integrating the support (or frequency) from the beginning, i.e. in the
problem definition.

4.4 Frequent constant CFD discovery

In this section we address the discovery problem of frequent constant CFD
in a given relation. Intuitively, the frequency of a CFD in a relation is the
number of tuples that matches its pattern, i.e. the size of the corresponding
selection query when we consider using a selection query. We reuse on effi-
cient technique used for the discovery of frequent FD. Precisely we adapt the
principles of the Fun approach [Novelli and Cicchetti, 2001a], [Novelli and
Cicchetti, 2001b] for FD inference. We revisit the notion of free sets of FD,
also called generators sets and quasi-closure in [Pasquier et al., 1999]. The al-
gorithm Fun provides level-wise techniques well suited to take into account
the frequency. Since we attack the problem of discovering frequent constant
CFD, we first define the notion of frequency.

Definition 4.14. Let θ = (X → Y) be a constant CFD over R and r a relation over
R. The frequency of θ in r, denoted by f req(θ, r), is defined as follows:

f req(θ, r) = ∣σ
∧
(A,v)∈X∪Y(A=v)(r)∣

Let ε be an integer threshold value. A CFD θ is said to be frequent in r, if
f req(θ, r) ≥ ε.

The important property carried by the notion of frequency for the discov-
ery problem is amonotonic predicate as for the support of classicalARmining
problem.

Property 4.3. Let r be a relation over R and X, Y ⊆ ASPCFD(R, r) such that X ⊆ Y
and ε a threshold.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 44

We have:
f req(Y, r) ≥ ε⇒ f req(X, r) ≥ ε (or f req(X, r) < ε⇒ f req(Y, r) < ε)

Definition 4.15. [Fan et al., 2011] A canonical cover of CFD on a relation r consists
of non-redundant frequent CFD on r, from which all frequent CFD that hold on r can
be infered.

The previous problem statement of discovering minimal cover of satisfied
CFD using conditional agree sets did not take into account the frequency. The
problem is now stated when frequency is consedered. Given a relation r, our
problem statement is to discover a conical cover of constant CFD on r.

We are particularly interested in defining a test to check whether or not
a given CFD holds in a relation, using projection on attributes embeded in
the dependency. Such a property exists for testing the satisfaction of an FD
in a relation. The following property is used for FD: r ⊧ X → Y iff ∣πX(r)∣ =
∣πXY(r)∣. Regarding the search space of constant CFD previously described,
we can state the following property.

Property 4.4. Let R is a relation symbol, r is a relation over R, X, Y ⊆ ASPCFD(R, r)
and CX, CY are two selection formulas over X and Y respectively.

r ⊧ X → Y iff ∣σCX
(r)∣ = ∣σCX∧CY

(r)∣ where CX = ∧
(A,v)∈X(A = v) and CY =

∧
(A,v)∈Y(A = v).

Proof. σCX
(r) and σCX∧CY

(r) respectively represent the equivalence classes of
X.att and {X.att ∪Y.att} according to r. They verify conditions CX and CX ∧
CY in r. ∣σCX

(r)∣ and ∣σCX∧CY
(r)∣ denote the cardinality of each equivelance

classes.

• r ⊧ X → Y ⇒ ∣σCX
(r)∣ = ∣σCX∧CY

(r)∣:
We suppose that r ⊧ X → Y /⇒ ∣σCX

(r)∣ = ∣σCX∧CY
(r)∣. There are two

cases:

1. ∣σCX
(r)∣ > ∣σCX∧CY

(r)∣. There exists t ∈ σCX
(r) such that t /∈ σCX∧CY

(r),
however r ⊧ X → Y, this is contradictious.

2. ∣σCX
(r)∣ < ∣σCX∧CY

(r)∣. Thismeans that there exists at least one tuple
t that satisfies CX ∧CY and does not satisfy CX. This is obviously
impossible because all conditions are conjunctions

Thus, r ⊧ X → Y ⇒ ∣σCX
(r)∣ = ∣σCX∧CY

(r)∣.

• ∣σCX
(r)∣ = ∣σCX∧CY

(r)∣ ⇒ r ⊧ X → Y:

1. ∣σCX
(r)∣ < ∣σCX∧CY

(r)∣: there exists at least one tuple in r that satisfies
CX ∧CY and does not satisfy CX. Impossible.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 45

2. ∣σCX
(r)∣ > ∣σCX∧CY

(r)∣: there exists at least one tuple t in r that sat-
isfies CX and does not satisfies CX ∧CY. Thence, t does not satisfy
CY and r /⊧ X → Y.

3. ∣σCX
(r)∣ = ∣σCX∧CY

(r)∣: this assertion means that it does not exist
any tuples in r that satisfy CX and do not satisfy CX ∧ CY. Thus,
r ⊧ X → Y.

◻

4.4.1 The Formal concepts of Fun approach

Before the presentation of the adaptation, called CFun, of the Fun approach
[Novelli and Cicchetti, 2000], [Novelli and Cicchetti, 2001a], [Novelli and Ci-
cchetti, 2001b], we recall some notations and definitions provided by Fun.
The approach called Fun proposes a characterization of minimal FD which
provides a simpler formal framework. The approach is based on the follow-
ing concepts: the concept of free set for capturing source of FD and those of
closure and quasi-closure of attribute sets from which targets of such depen-
dencies can be captured.

Definition 4.16. Free Set [Novelli and Cicchetti, 2001a]
Let X ⊆ R be a set of attributes. X is a free set in r if and only if: /∃X′ ⊂ X, ∣X′∣r = ∣X∣r.

The set of all free sets in r is denoted by FSr. Any combination of at-
tributes not included in FSr is called a non free set.

Lemme 4.1. ∀ X ⊆ R, ∀ X′ ⊂ X, ∣X′∣r = ∣X∣r ⇔ X′ → X.

The following properties help to characterize free sets.

• Any subset of a free set is a free set itself: ∀ X ∈ FSr, ∀ X′ ⊂ X, X′ ∈ FSr.

• Any superset of a non free set is non free: ∀ X /∈ FSr, ∀ Y such that
X ⊂ Y, Y /∈ FSr.

The definition of attribute set closure in a given relation is recalled below.

Definition 4.17. Attribute set closure in a relation
Let X be a set of attributes, X ⊆ R. Its closure in r is defined as follows:
X+

r = X ∪ {A ∈ R −X / ∣X∣r = ∣X ∪ A∣r}.

The attribute set quasi-closure in a relation is derived from attribute set
closure as described in the following definition.

Definition 4.18. Attribute set quasi-closure in a relation [Novelli and Cicchetti,
2001a]
The quasi-closure of an attribute set X in r, denoted by X◇

r , is: X◇

r = X ∪⋃A∈X(X −
A)+.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 46

According to the monotony property of the closure [Birkhoff, 1967], [Got-
tlob and Libkin, 1990], [Ganter and Wille, 1999], in the context of classical
FD, we have: X ⊆ X◇

r ⊆ X+

r . Thus Definition 4.17 of attribute set closure in a
relation can be rewritten as follows.

Definition 4.19. Attribute set closure in a relation
Let X be a set of attributes, X ⊆ R. Its closure in r is defined by:
X+

r = X◇

r ∪ {A ∈ R −X◇

r / ∣X∣r = ∣X ∪ A∣r}.

These concepts are key futures of Fun approach for the discovery of clas-
sical FD [Novelli and Cicchetti, 2001a]. In the sequel the concept of closure
and quasi-closure are adapted for the discovery problem of CFD. Thus the
approach is extended to CFun (Conditional Fun).

4.4.2 From Fun to CFun
In the FD inference context, the search space is the power set of R. In the con-
stant CFD inference problem, the search space is the power set of SPCFD(R)
given in Definition 4.1. The notions of Fun are adapted as follows, with re-
spect to this new search space. We first define conditional free sets known
also as conditional non-redundant sets.

Definition 4.20. Conditional non-redundant sets
Let X ⊆ ASPCFD(R, r) is a set of conditional attributes.
X is a conditional non-redundant set (or a conditional free set) in r if and only if
/∃ X′ ⊆ X such that ∣σC

X′
(r)∣ = ∣σCX

(r)∣.

The set of all conditional non-redundant sets (free sets) in r is denoted
by NRSr, respectively CFSr. Any set of conditional attributes not included
in NRSr is called a conditional redundant set. The following properties help
characterize them.

• Any subset of a conditional free set is a conditional free set itself: ∀
X ∈ CFSr, ∀ X′ ⊂ X, X′ ∈ CFSr.

• Any superset of a non conditional free set is non a conditional free set:
∀ X /∈ CFSr, ∀ Y such that X ⊂ Y, Y /∈ CFSr.

The characterization of themonotonicity of CFD described in Property 4.1
can be adapted in the context of non-redundant sets.

Property 4.5. Let r be a relation over R and X, Y ⊆ ASPCFD(R, r) such that X ⪯ Y.
We have:

Y ∈ NRSr ⇒ X ∈ NRSr (or equivalently X /∈ NRSr ⇒ Y /∈ NRSr)

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 47

Clearly,APRIORI-like algorithms [Agrawal et al., 1993], [Agrawal and Srikant,
1994], [Borgelt andKruse, 2002] can be used to discover frequent non-redundant
sets thanks to this monotonic property. From the non-redundant sets, the re-
sults given in [Novelli and Cicchetti, 2001a], [Novelli and Cicchetti, 2001b] for
FD inference are extended to propose a new characterization of the canonical
cover of CFD in which a frequency threshold is extended. It is based on non-
redundant sets, frequency, closure and quasi-closure of CFD. The definitions
follow.

Definition 4.21. Conditional attribute set closure in a relation
Let X be a set of conditional attributes, X ⊆ ASPCFD(R, r). Its closure in r is defined
as follows:

X
∗

Σr = X ∪ {A/A.att ∈ R −X.att ∧ ∣σCX
(r)∣ = ∣σCX∧CA

(r)∣}.

The concept of quasi-closure allows now to accumulate the knowledge
extracted from the subsets of the considered conditional attribute set.

Definition 4.22. Conditional attribute set quasi-closure in a relation
The quasi-closure of a conditional attribute set X in ASPCFD(R, r), denoted by X

◇

Σr ,
is defined by:

X
◇

Σr = X ∪ ⋃
A∈X

(X − A)∗Σr

According to the monotony property of the closure operator, we have:
X ⊆ X

◇

Σr ⊆ X
∗

Σr . Through the following theorem, we prove that the set of
constant CFD characterized using the introduced concepts of non-redundant
sets, closure and quasi-closure is the canonical cover of constant CFD for the
relation r.

Theorem 4.2.
Σccε(R, r) = {X → A | X ∈ NRSr, f req(X, r) ≥ ε and A ∈ X

∗

Σr −X
◇

Σr}

The theoretical framework proposed is well adapted to implement a level-
wise approach for discovering CFD from a relation. The CFun algorithm is
based on the concepts of APRIORI to find all conditional non-redundant sets.
Once the conditional non-redundant sets discovered for each level and the
corresponding frequency (count), quasi-closure and closure, discoveringCFD
follows with respect to Theorem 4.2. This philosophy is the same as the one
used for the FD inference Fun approach [Novelli and Cicchetti, 2001a], [Nov-
elli and Cicchetti, 2001b]. The pruning rule is provided by the Proposition 4.5
to extract only non-redundant sets.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 48

Each level contains a collection of quadruplets < X, ∣X∣, X
◇

Σ, X
∗

Σ > that re-
spectively represents the candidate, its frequency, quasi-closure, and closure
as shown in the Figure 4.3. The algorithm starts by initializing the first two
levels 0 and 1 then it follows by a loop through levels (line 3-9). Each loop
computes the closure (line 4) of non-redundant sets left in the previous level
then the quasi-closure (line 5) of candidates in the current level according to
the Definition 4.21. The CFD that hold are displayed (line 6) according to the
Theorem 4.2. The redundant sets are removed from the current level (line 7)
with respect to the Proposition 4.5) then the next level can be generated (line
8) following the well-known APRIORI technique. The loop is over when the
new level is empty. The algorithm completes by displaying the CFD discov-
ered at the last valid level.

Algorithm 5 CFun
Require: a relation r over a schema R
Ensure: a set of constant CFD satisfied by r
1: L0 := < ∅, 1, ∅, ∅ >
2: L1 := { < A, ∣A∣, A, A > ∣ A ∈ ASPCFD(R, r) ∧ ∣A.att∣ = 1 }
3: for all k := 1; Lk ≠ ∅; k := k + 1 do
4: ComputeClosures(Lk−1, Lk)
5: ComputeQuasiClosures(Lk, Lk−1)
6: DisplayCFD(Lk−1)
7: PruneRedundantSets(Lk, Lk−1)
8: Lk+1 := GenerateCandidates(Lk)
9: end for
10: ComputeClosures(Lk−1, Lk)
11: DisplayCFD(Lk−1)
12: return

Example 4.10. The process is illustrated in Figure 4.3 using the relation already
described in Figure 4.2. The first column of the following table is the X candidate
which can be or not a conditional redundant set. The candidate prefixed by ’*’ is a
conditional redundant set. The second column corresponds to the cardinality of X and
the two last columns represent the conditional quasi-closure and conditional closure
of X. On the right, the CFD discovered are displayed.

TheCFun algorithmuses the partitions representation introduced by [Cos-
madakis et al., 1986], [Spyratos, 1987] and often used for the FD inference
problem [Huhtala et al., 1998], [Huhtala et al., 1999b], [Lopes et al., 2000],
[Novelli and Cicchetti, 2001a], [Novelli and Cicchetti, 2001b]. Indeed, one can
compute quite efficiently the frequencies and generate only valid combina-
tions of candidates. Thus, for instance, in our context AA is invalid and will
not be generated as candidate unlike the approach based on conditional agree
sets.

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 49

X ∣X∣ X
◇

Σ X
∗

Σ
A0 3 A0 A0
A2 2 A2 A2 C0 D1 A2→ C0D1
B1 3 B1 B1
B0 1 B0 A0 B0 C0 D1 B0→ A0C0D1
B2 1 B2 A2 B2 C0 D1 B2→ A2C0D1
C0 4 C0 C0
C3 1 C3 A0 B1 C3 D2 C3→ A0B1D2
D2 2 D2 A0 B1 D2 D2→ A0B1
D1 3 D1 C0 D1 D1→ C0
A0 B1 2 A0 B1 A0 B1 D2 A0B1→ D2
*A0 B0 1 A0 B0 C0 D1 A0 B0 C0 D1
A2 B1 1 A2 B1 C0 D1 A2 B1 C0 D1
*A2 B2 1 A2 B2 C0 D1 A2 B2 C0 D1
A0 C0 2 A0 C0 A0 C0
*A0 C3 1 A0 B1 C3 D2 AO B1 C3 D2
*A2 C0 2 A2 C0 D1 A2 C0 D1
*A0 D2 2 A0 B1 D2 A0 B1 D2
A0 D1 1 A0 C0 D1 A0 B0 C0 D1 A0D1→ B0
*A2 D1 2 A2 C0 D1 A2 C0 D1
...
*A0 B1 C0 1 A0 B1 C0 D2 A0 B1 C0 D2
...

Figure 4.3: Illustration of the proposed characterisation

Example 4.11. In the following the use of partitions is illustrated. The toy relation
in Figure 4.2 is recalled. The threshold is set to 1. The partitions following the at-
tributes A and C are πA = {(1, 2, 3), (4, 5)} and πC = {(1, 3, 4, 5), (2)}. The values
corresponding to equivalence classes are 0, 2 for A and 0, 3 for C. The product of
πA and πC is πAC = {(1, 3), (2), (4, 5)}. The values corresponding are (0, 0), (0, 3)
and (2, 0). It directly provides the conditional attributes with their frequency:
f req(< A0 >) = 3, f req(< A2 >) = 2, f req(< C0 >) = 4, f req(< C3 >) = 1,
f req(< A0, C0 >) = 2, f req(< A0, C3 >) = 1, f req(< A2, C0 >) = 2.
Hence the CFD A2 → C0 is held since f req(< A2 >) = f req(< A2, C0) >) = 2.
Moreover, no impossible combinations have been generated.

4.5 Experimentation

The approach for discovering frequent constant CFD described in Section 4.4
and based on CFun has been implemented in C++ in order to assess perfor-
mances. The source code 1 is available for free. An executable file can be
generated with Visual C++ 9.0 or GNU g++ compilers. We also evaluates the
approach using conditional agree set described in Section 4.3 and based on
the iZi library [Flouvat et al., 2009]. We compare the two techniques. Exper-

1http://pageperso.lif.univ-mrs.fr/ noel.novelli/CFDProject

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 50

iments are run on both real life and synthetic datasets with various parame-
ters.

Real Datasets The experiments used real datasets from the UCI machine
learning repository 2. In particular, theWinsconsin Breast Cancer (WBC) and
Chess datasets. These datasets are also used by [Fan et al., 2011] in their exper-
imentation for the discovery problemofCFD. The following table summarises
the characteristics of the real life datasets.

Datasets #Attributes #Tuples Size (Ko)
Wirsconsin Breast Cancer 11 699 19
Chess 7 28 056 519

Synthetic Datasets Synthetic data are also generated with a random data
generator. It is a generator of uniform data for each column independently
of each other. The synthetic datasets are automatically generated using the
following parameters:

• the cardinality of the relation, ∣r∣.

• the number of attributes, ∣R∣.

• the correlation rate c between attribute values. The more it increases,
the more values are similar.

Parameters Our experimentations have been performed on an Intel Pentium
Centrino 2 GHz with 2 GB of main memory, running on Linux operating sys-
tem. The parameters are the number of attributes, the number of tuples, the
response time, the number of discovered CFD, the frequency and the data
correlation rate.

The Figure 4.4 shows the behavior of CFun approach applied on real life
datasets above describedwhen the support of frequent CFD varies. When the
support is minimal, all CFD are considered. The graphs illustrate the execu-
tion time in seconds, the total number of CFD discovered and the memory
usage in Mo when the minimal support varies. As expected, when the mini-
mal support increases, the execution time and memory usage decrease with
respect to less number of candidates to bemined. For aminimal support of 10,
the approach discovered 250 CFD in 0.05 secondes, consuming 1Mo of mem-
ory. Nevertheless this measure can be optimized and the scalability of the
approach can be increased using various implementation optimisation tech-
niques like pruning. In fact, the results obtained during the experiments are
the worse possible in time and memory usage. These results appear to be of
the same order in response timew.r.t [Fan et al., 2011] approaches. We did not

2http://archive.ics.uci.edu/ml

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 51

Figure 4.4: Execution time , number of CFD, and memory usage for the Wis-
concin Breast Cancer and Chess real life datasets

experimented the approach based on conditional agree sets when the mini-
mal support varies. We have not implemented the predicate being a satisfied
CFD and being frequent using iZi library. Indeed as stated in the implemen-
tation strategy of Section 4.3, the dualization of the minimal transversal does
not allow to take into account frequency during its computation.

The Figure 4.5 shows the behavior ofCFun approach and conditional agree
set (Cag) approach when the number of tuples goes from 5 000 to 50 000 on
different generated synthetic datasets. The data correlation rate is set to 30%
allowing us to fix the number of satisfied CFD indepently of the number of
tuples. The support is minimal, i.e. all CFD are mined such that there is no
notion of frequency, enabling us to experiment the approach based on con-
ditional agree set (Cag) and to compare it to CFun. The memory usage and
the execution time are linear according to the number of tuples for both strat-
egy. The two approaches discover the same number of constant CFD while
the number of tuples increase. This result help us to check the exactness of
the two approaches. The number of CFD does not vary because the data cor-
relation rate is fixed. The number of CFD discovered is independent of the
number of tuples.

The figure 4.6 shows the behavior when the number of attributes goes
from 5 to 15 on different generated synthetic datasets. The data correlation
rate is fixed to 30%. Considering all constant CFD to be mined, the two ap-

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 52

Figure 4.5: Execution time, number of CFD, and memory usage for various
number of tuples

proaches does not scale very well with the arity as expected. The memory
usage and the execution time are exponential according to the number of at-
tributes, and the number of CFD discovered seems to follow the same ten-
dancy. Indeed when the arity increases, the space search of constant CFD
varies exponentially.

The Figure 4.7 shows the behavior when the data correlation rates goes
from 30% to 70% on different synthetic datasets. The total number of tuples
is set to 5 000 and the number of attributes is set to 7. There is no frequency,
all CFD are mined. For Cag approach when data corelation rate dicreases
the algorithm has to examine more candidates at each level which leads to a
performence degradation in term of memory usage and execution time. The
higher the correlation the fewer the distinct value appears in each attribute
column. The lenght of the partition increases and the calculation at each stage
become time and memory consuming. In contrast the performance of CFun
only degrades slightly according to the data correlation rates despite the in-
herent exponential complexity. This behaviour of CFun is also verified when
the support is considered. The main reason comes from the efficient imple-
mentation of CFun based on partitions of attribute values and generate only
valid combinations of candidates. The number of discovered CFD is the same
for both strategies with respect to data correlation rate.

The different experiments show the behavior of the CFun approach and

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 53

Figure 4.6: Execution time, number of CFD, and memory usage for various
number of attributes

Cag approach for the discovery problemof constant CFD. The two approaches
are exponential according to the number of attributes in time and space but
are linear according to the number of tuples. When data correlation dicrease
CFun outperforms the Cag approach.

4.6 Summary

In this Chapter, we studied the discovery of constant CFD in an existing rela-
tion. Two approaches have been proposed. The first one is conditional agree
set, a proposition that extendswell known agree set [Fagin andVardi, 1983] to
extract CFD. Nevertheless the proposal is suitable only for mining all possible
constant CFDwithout any threshold. The second contribution is an extension
of the Fun approach [Novelli and Cicchetti, 2001b] whose advantage is to eas-
ily deal with the frequency of CFD which was difficult to integrate using the
approach based on conditional agree sets. The two approaches have been
tested against different synthetic and real-life datasets showing a linear scal-
ability in the size of the relation, but an exponential behaviour with respect
to the arity. The two approaches are less time and memory consuming when

4. DISCOVERING CONDITIONAL FUNCTIONAL DEPENDENCIES 54

Figure 4.7: Execution time, number of CFD, and memory usage for various
data correlation rates

the support of CFD increase, but CFun outperforms the approach based on
conditional agree set when the correlation rate of attribute values decreases.

CHAPTER 5
DISCOVERING EDITING RULES

Chapter Outline
5.1 New Semantic of Editing Rules . 57
5.2 Discovering Editing Rules . 59

5.2.1 Discussion . 59
5.2.2 From Source and Master Relations to IND 60
5.2.3 From Unary Approximative IND to a Mapping Function . . . 65
5.2.4 Mining Editing Rules . 67

5.3 Related Works . 68
5.4 Experimentation . 69

5.4.1 Mining one-to-one correspondences 70
5.4.2 Discovering Editing Rules . 73

5.5 Summary . 74

Editing Rules are a new class of data quality rules introduced thanks to the re-
cent development of Master Data Management. In practice, designing Editing Rules
is an expensive process that involves intensive manual efforts. In this Chapter, we
develop automatic pattern mining techniques for discovering Editing Rules from ex-
isting source relations (possibly dirty) with respect to master relations (supposed to
be clean and accurate). In this setting, we propose a new semantics of Editing Rules
taking advantage of both source and master data. The problem turns out to be strongly
related to the discovery of both Conditional Functional Dependencies and one-to-one
correspondences from sources to master attributes. We finally evaluate our techniques
on both synthetic and real-life databases.

55

5. DISCOVERING EDITING RULES 56

Source 1

relation r

Source 2

Input tuple t in r

MASTER
relation s

Figure 5.1: A master database with two source databases

ER help enrich and fix dirty source data using the corresponding values
from clean and accurate master data. For example in Figure 5.1 the tuple t
may be corrected with respect the master relation s that corresponds to the
source r.

However, for ER to be effective in practice, it is necessary to have tech-
niques in place that can automatically discover such rules, relaying to human
manual rule designers is unrealistic, evenmore for huge volume of data. This
practical concern highlights the need for studying the discovering problem of
ER. Given a master database and a source database, it is to mine all possible
ER. We assume the existence of both sources and master data. Our approach
can be summarized as follows.

1. First, finding one-to-one attribute mapping between source and master
relations. This first step is justified by the fact that ER are dynamic rules,
i.e. defined using two relations and may also be used to correct input
source tuples on the fly. It is necessary to find correspondences between
attributes relation involved by the rule in order to apply the correction
to the right attribute. This step is equivalent tomine amapping function
from source attributes to master attributes.

5. DISCOVERING EDITING RULES 57

2. Inferring rules from master relations. This second and last step is re-
lated to the discovery of CFD. Actually, we mine CFD from the master
relations.

3. Generating ER using the mapping function from the first step.

This Chapter is organized as follows. In section 5.1, we propose a new
semantics suitable for the discovery of ER.We address in detail the process of
discovering ER in section 5.2. Finally we conclude the section by giving the
process of mining ER when the mapping function is known. Related works
are discussed in section 5.3 before we present the experimentation in section
5.4.

5.1 New Semantic of Editing Rules

The problem we are interested in can be stated as follows: given instance ri
from a source database d and an instance si from a master database m, it is to
find all applicable ER on ri with respect to si. However, the definition 3.13 of
ER in Chapter 3 needs to be extended since it just involves tuple modification.
This semantics of ER based on tuple modification was introduced for a repair
purpose. We need first to define a new semantics independent of any tuple
modification and then focus on their mining.

First we introduce a mapping function f from attributes of source rela-
tion to attributes of master relation. This function is based on the following
requirements:

1. Each attribute of a source relation should have a mapping attribute by f
in the master relations, and only one. This assumption is driven by the
fact that master data structure are well designed, strongly expressive
and should cover the structure of source relations.

2. If two attributes A, B of a source relation have the same mapping at-
tribute by f in a master relation, then they are the same, A = B. This
assertion avoids having any confusion when the rule is applied for cor-
rection.

Definition 5.1. Let schema(R) be the source schema relation and schema(S) be the
master schema relation. We next formally describe the mapping function. A mapping
function f from schema(R) to schema(S), is defined as a total and injective function.

f ∶ schema(R) → schema(S)

Definition 5.2. [Levene and Loizou, 1999] A function f :X → Y is one-to-one or
injective if every element of X is mapped to a unique element of Y, namely for all x1,
x2 ∈ X if x1 ≠ x2 then f (x1) ≠ f (x2), or equivalently if f (x1) = f (x2) then x1 = x2.

5. DISCOVERING EDITING RULES 58

r FN LN AC phn type str city zip item
t1 Bob Brady 020 079172485 2 501 Elm St. Edi EH7 4AH CD
t2 Robert Brady 131 6884563 1 null Lnd null CD
t3 Robert Brady 020 6884563 1 null null EH7 4AH DVD
t4 Mary Burn 029 9978543 1 null Cad null BOOK

s FN LN AC Hphn Mphn str city zip DOB g
s1 Robert Brady 131 6884563 079172485 51 Elm Row Edi EH7 4AH 111155 M
s2 Mark Smith 020 6884563 075568485 20 Baker St. Lnd NW1 6XE 251267 M

Figure 5.2: Source relation r and master relation s from Figure 3.4

So only a unique attribute is considered. By extension, for a set of attribute
X ⊆ schema(R) we note: f (X) = ⋃A∈X{ f (A)}. The new semantics of ER can
be now given.

Definition 5.3. New semantics: Let ϕ=((X,Y) → (A,B), tp[Z]) be an ER over
(R, S), r a source relation over R and s a master relation over S. We say that ϕ is
satisfied in (r, s) with respect to f , denoted by (r, s) ⊧ f ϕ, if:

1. f (X) = Y.

2. f (A) = B.

3. s ⊧ Y → B, tp[Z′] with Z′ = f (Z).

Thus the semantics is based on the notion of satisfaction very popular in
dependency theory, for example the satisfaction of FD or CFD presented in
Chapter 3 Preliminaries.

Example 5.1. We recall source and master relations of Figure 3.4 describing a cus-
tomer to illustrate the new semantics in term of satisfaction. Let ϕ = ((zip, zip) →
(AC, AC), tp = (EH7 4AH)) be an ER defined on r, s of Figure 5.2. This ER means
the area code must be corrected with respect to the value from the master data when-
ever there exist an inconsistency driven by the dependency between the zip code and
the area code for a subset of tuples captured by the pattern EH7 4AH. We can say
that ϕ is satisfied in (r, s) with respect to the identity function f . Indeed, attributes
zip and AC are defined in each relation and have correspondents: f (zip) = zip,
f (AC) = AC and finally the last condition of CFD satisfaction by the master relation
is verified, i.e. s ⊧ zip → AC, tp = (EH7 4AH).

We can give the problem statement.

The problem of Discovering ER, denoted byDER, is defined as fol-
lows: Given a source relation r, a master relation s and a mapping
function f , it is to find all ER satisfied in (r, s) with respect to f .

5. DISCOVERING EDITING RULES 59

5.2 Discovering Editing Rules

In order to solve the DER problem, we first consider the case when the source
relation and themaster relation are defined over the same relation schema, i.e.
the mapping function f is the identity function. Then we address the general
case when relation schemas are different.

In fact when schemas of the source and the master relation are identical,
the DER problem is almost equivalent to the discovery of CFD addressed in
Chapter 4 of this thesis. The DER problem can be therefore resolved as fol-
lows:

1. Discovering a canonical cover of CFD satisfied in the master relation s.

2. For each discovered constant CFD (X → A,tp[Z]), generating the ER
((X, f (X)) → (A, f (A)),tp[Z]). Since f is the identity function, the gen-
erated ER become ((X, X) → (A, A),tp[Z]).

5.2.1 Discussion

When the schemas of the source relation and themaster relation are different,
it is necessary to find out correspondences. Different techniques may be used
to specify such correspondences, among them we quote:

• User interaction: interacting with we user may be a solution to catch
correspondences between attributes. Given a source attribute, the user
is asked to propose a corresponding attribute from the master relation.
This solution used in many tools is conflicting with our automatic pro-
cess of discovering ER.

• Attribute naming assumption: in the relational model, the unique name
assumption (URSA)) states that the attributes with the same name have
same semantics and same meaning [Levene and Loizou, 1999], so rep-
resent the same real world entity. This assumption can be used to catch
correspondences between attributes. But in practice, two real world en-
tities can have different attribute names and URSA is rarely respected.

• INclusionDependencies (IND): INDgeneralize foreign keys in the same
way than FD generalize primary keys. Mining unary IND between R
and S corresponds to find a correspondence between R and S.

In the sequel we focus on the solution based on IND to retrieve correspon-
dences between attributes. Clearly, due to the presence of errors in source re-
lations and due to the high quality data of the master relation, the definition
of such a correspondence should be flexible.

5. DISCOVERING EDITING RULES 60

r A B C D
t1 ∶ 0 1 0 2
t2 ∶ 0 1 3 2
t3 ∶ 0 0 0 1
t4 ∶ 2 2 0 1
t5 ∶ 2 1 0 1

The condensed representation of the toy relation r is CR(r):

0 A B C
1 B D
2 A B D
3 C

Figure 5.3: Condensed Representation of the toy illustration relation r

5.2.2 From Source and Master Relations to IND

We define a mapping function f with respect to unary IND from the source
relation r to the master relation s. Efficient techniques have been proposed
by [Lopes et al., 2002] to discover suchunary IND satisfied in a givendatabase.
Let A and B be respectively single attributes. The unary inclusion depen-
dency A ⊆ B means all values of attribute A are included in the bag of values
of attribute B.

Let d be a database over schema R, where r1, r2 are relations over R1 and R2
∈ R. An IND is satisfied in a database d over R, denoted by d ⊧ R1[X] ⊆ R2[Y],
if ∀t1 ∈ r1, ∃t2 ∈ r2 such that t1[X] = t2[Y]. Equivalently d ⊧ R1[X] ⊆ R2[Y]
whenever πX(r1) ⊆ πY(r2). For example in Figure 5.2, the set of relation {r, s}
satisfies the unary inclusion dependency Hphn ⊆ phn.

We introduce a preprocessing of relations to be as close as possible to AR
syntax. The intuition is to use AR techniques through a well known con-
densed representation of relations. Here is an example.

Example 5.2. The condensed representation CR(r) of toy illustration relation r from
Figure 4.2, is given in Figure 5.2. We can also say that the value 0 is associated to the
set of attributes {A, B, C}, read from the first line.

Definition 5.4. Given a common relation r over a schema schema(R), the condensed
representation of r, denoted by CR(r), is defined by:

CR(r) = {(v, X)∣v ∈ ADOM(r), X = ⋃{A ∈ schema(R)∣∃t ∈ r, t[A] = v}}

For convenience concerning the condensed representation, we use the fol-
lowing notations:

• CR(r).val = {v∣(v, X) ∈ CR(r)}

5. DISCOVERING EDITING RULES 61

• CR(r).v.atts = {X∣(v, X) ∈ CR(r)}

The followingAlgorithm 6 computes the condensed representation of a given
relation r.

Algorithm 6 Condensed representation of relation r
Require: A relation r over R.
Ensure: The condensed representation CR(r) of the relation r
1: CR = ∅;
2: for all t ∈ r do
3: for all A ∈ R do
4: if t[A] ∈ CR.val then
5: – Value already seen
6: if A /∈ CR.t[A].atts then
7: CR.t[A].atts+ = A;
8: end if
9: else
10: – New value
11: CR+ = (t[A], A);
12: end if
13: end for
14: end for
15: return CR.

From source and master relations, the goal is to discover IND using the
condensed representation. We first rely on an approach based on a closure
operator with respect to the condensed representation before taking into ac-
count the support of attributes inside the condensed representation.

5.2.2.1 Discovering IND from sets

Given an attribute A and an attribute B, we are interested in to checking if
all values of A are included in the set of values of B, i.e. if ADOM(A) ⊆
ADOM(B) using the condensed representation. This verification is done by
introducing a closure operator with respect to the condensed representation.

Definition 5.5. The closure of an attribute A ∈ schema(R) with respect to CR(r),
denoted by A+

CR(r), is defined as:

A+

CR(r) = ⋂
(v,X)∈CR(r)

{X∣A ∈ X}

Property 5.1. Let A and B be attributes from a relation schema. Let A+ be the closure
of A. If B ∈ A+ then A ⊆ B.

5. DISCOVERING EDITING RULES 62

Algorithm 7 outputs the closure of an attribute with respect to the con-
densed representation.

Algorithm 7 Closure of an attribute with respect to the condensed represen-
tation
Require: the condensed representation of r: CR(r), an attribute A ∈ R.
Ensure: The closure A+

CR(r) of A
1: A+

CR(r) = R
2: for all (v, X) ∈ CR(r) do
3: if A ∈ X then
4: A+

CR(r) = A+

CR(r)⋂X;
5: if A+

CR(r) = A then
6: return A
7: end if
8: end if
9: end for
10: return A+

CR(r)

Thanks to the condensed representation it is easy to compute the closure.

Example 5.3. For example let us compute the closure of the attribute A in Figure 5.2.
We consider the condensed representation. The attribute A appears in the following
sets: ABC and ABD. The intersection ABC⋂ABD outputs the set AB. So the
closure of the attribute A with respect to the condensed representation CR(r) is the
attribute set AB. More formally A+

CR(r) = AB.

In the toy illustration relation, with the property 5.1 and thanks to the con-
densed representation in Figure 5.2 we can state that A ⊆ B because A+

CR(r) =
AB. Visually the values {0, 2} of attribute A are included in the values {0, 1, 2}
of attribute B.

5.2.2.2 Towards discovering unary approximative IND

The discovering may miss some IND that almost hold. And it may be also
interesting to take into account the support in the discovery process of unary
IND.

Definition 5.6. The support of an attribute set X ⊆ R in the condensed representa-
tion CR(r), denoted by sup(X, CR(r)), is defined by:

sup(X, CR(r)) = ∣{(v, Y) ∈ CR(r)∣X ⊆ Y}∣

Example 5.4. For example in Figure 5.2, the support of attribute A with respect to
the condensed representation is 2, i.e. sup(X, CR(r)) = 2.

5. DISCOVERING EDITING RULES 63

The support can be also used to characterize the satisfaction of an IND.
The closure of an attribute, the satisfaction of an IND and the equality of the
support of attributes with respect to the condensed representation are equiv-
alent when the following condition is verified:

Property 5.2. Let r be a relation over R and A, B attributes of R. r ⊧ A ⊆ B ⇐⇒
B ∈ A+

CR(r) ⇐⇒ sup({A, B}, CR(r)) = sup({A}, CR(r)).

Proof. r ⊧ R[A] ⊆ S[B]. For all value v ∈ πA(r), there exists a tuple t ∈ r
such that v = t[B]. So the assertion v ∈ πA(r) is equivalent to the assertion
v ∈ πB(r). Thus ∀(v, X) in the condensed representation CR(r), the assertion
A ∈ X is equivalent to the assertion B ∈ X. So B ∈ to the intersection set
⋂(v,X)∈CR(r){X∣A ∈ X}.
Finally attribute B belongs to the closure of attribute A with respect to the
condensed representation, i.e. B ∈ A+

CR(r). ◻

The property 5.2 avoids the heavy process of computing the intersection
between attributes when calculating the closure to extract IND.

In practice, it is necessary to introduce an approximation measure to ex-
tract unary approximative IND from relation. For example, this can be done
using the natural error measure g′3 introduced by [Lopes et al., 2002]. We
recall their error measure definition in our context.

Definition 5.7. [Lopes et al., 2002] Let r be a source over schema R and let s be a
master relation over schema S.

g′3(R[X] ⊆ S[Y],{r, s}) = 1− max{∣πX(r′)∣ ∶ r′ ⊆ r,{r, s} ⊧ R[X] ⊆ S[Y]}
∣πX(r)∣

Example 5.5. In Figure 5.2, we have:

g′3(R[AC] ⊆ S[AC],{r, s}) = 1− (2/3) = 1/3 = 0.33

The intuition is to count theminimal number of tuples to remove to obtain
a relation that satisfies the given IND. This errormeasure helped [Lopes et al.,
2002] approximate IND to take into account IND that almost hold in a given
database. The use of this particular error measure helps us characterize the
correspondence between attributes based on unary approximative IND with
respect to an epsilon threshold ε. We propose the following condition to obey
one-to-one correspondences in our context.

Definition 5.8. Let A ∈ schema(R), B ∈ schema(S) and ε a [0, 1]-threshold value.
We say that A corresponds to B in r, swith respect to ε, denoted by {r, s} ⊧ε corr(A, B),
if g′3(R[A] ⊆ S[B],{r, s}) ≤ ε.

5. DISCOVERING EDITING RULES 64

By extension, we say that X corresponds to Y with respect to ε if ∀A ∈
X,∃B ∈ Y such that {r, s} ⊧ε corr(A, B). The natural error measure g′3 related
to the correspondence can be also defined using the support of attribute sets
in the condensed representation. The error defined using the support of IND
is denoted error.

Definition 5.9. Let r be a relation over R and let A and B be attributes from schema
of R. The error of the dependency is the ratio of the support,

error(A ⊆ B) =
sup({A, B})

sup({A})

In practice, errors computed from the support or from the naturalmeasure
g′3 are equivalent as stated in the following property:

Property 5.3. Let r be a relation over R and let A and B be attributes from schema
of R.

error(A ⊆ B) = g′3(A ⊆ B)

.

Example 5.6. In Figure 5.2, we have:

• g′3(B ⊆ A,{r, s}) = 1-(1/3) = 2/3 = 0.66

• error(B ⊆ A) = sup({A,B})
sup({B}) = 2/3 = 0.66

In fact B ⊆ A does not hold. The tuples t1, t2 and t5 carry for the attribute B the
value 1 that does not belong to πA(r). The error is then equal to 66%. This is the key
intuition behind the approximation. Indeed when the tuples t1, t2 and t5 are somehow
removed, the IND B ⊆ A become exact.

Thanks to the Definition 5.9 and Property 5.3, we can now infer a very im-
portant result about approximating unary INDusing the support of attributes
involved in the dependency. More formally we have the following result.

Property 5.4. Let r be a relation over R and let A and B be attributes from schema
of R.

g′3(A ⊆ B) =
sup({A, B})

sup({A})
.

Thus to approximate unary IND we just need to compute the support of
every single attribute and the support of every couple of attributes. This issue
can be addressed using algorithms designed for the discovery of AR between
items in transaction databases.

Single attributes are considered as items of size 1 also referenced as F1
and the generated candidates lead to itemsets of size 2 referenced as F2. For

5. DISCOVERING EDITING RULES 65

example, the algorithm APRIORI [Agrawal and Srikant, 1994] for mining AR
includes a step for the candidates generation. From the condensed represen-
tation of the source and master relation we can generate itemsets F1 and F2
thanks to the CandidateGeneration function of [Agrawal and Srikant, 1994]
until level 2. Algorithm 8 describes the process.

Algorithm 8 Scalable Closure
Require: A condensed representation CR of r and s.
Ensure: F1, F2, itemsets of size 1 and 2 and their supports.
1: F1 = {(A, support(A))∣A ∈ CR}
2: C2 = CandidateGeneration(F1) [Agrawal and Srikant, 1994]
3: for all (v, X) ∈ CR(r) do
4: F2 = subset(C2, X) – Return the subset of C2 containing X
5: for all element e ∈ F2 do
6: support(e)+ = 1
7: end for
8: end for
9: return F1, F2

The set F1 is computed using the condensed representation. The candi-
dates C2 are generated from the set F1 and F2 is deducted using C2. The ratio
of the support of attribute from F1 and F2 directly ensure an approximation
of any unary IND build with attributes of the itemsets.

We now concentrate on inferring the mapping function from the unary
IND. We remind that the mapping function is the key feature that enable us
to retrieve one-to-one correspondences between attributes of the source and
the master relation in the process of discovering ER.

5.2.3 From Unary Approximative IND to a Mapping Function

In previous subsection, we concentrate attention on how to discover and ap-
proximate unary IND from relations, indeed source and master. We build
sets F1 and F2 to that end. In the sequel we describe how to finally infer the
mapping function that catches the one-to-one correspondences between at-
tributes. Given a source relation, a master relation and a ε threshold, the
Algorithm 9 (SR2MR) outputs a mapping function between a source relation
and a master relation based on approximative unary IND through F1 and F2
sets.

5. DISCOVERING EDITING RULES 66

Algorithm 9 (SR2MR) Mapping from Source Relation to Master Relation
Require: a source relation r over R, a master relation s over S, a user-defined threshold ε.
Ensure: A mapping function f from R to S
1: CR = Preprocessing(r, s);
2: (F1, F2) = scalableClosure(CR);
3: for all A ∈ R do
4: ((B, ε), F2) = FindBest(F1, F2, A);
5: while g′3(A ⊆ B) ≤ ε do
6: ε = ε + 0.05
7: end while
8: f (A) = B
9: end for
10: return f

The first step of Algorithm 9 called Preprocessing(r,s) computes for both
relations the condensed representation. The itemsets F1, F2 including the
support of each element are generated thanks to Algorithm 8. For each at-
tribute A in the source schema R a corresponding attribute in the source S
is mined by FindBest procedure with respect to a target result mapping func-
tion f . The FindBest procedure is described in details in Algorithm 10. The ε
threshold is increased until a correspondence is found.

Algorithm 10 FindBest: find the best corresponding attribute
Require: F1, F2 and A ∈ R.
Ensure: attribute B ∈ S that is a mapping attribute for A, an approximation

of the mapping and the remaining itemsets F2 of size 2 with supports.
1: Let (A, v) ∈ F1;
2: Let E = {(Ai Aj, v) ∈ F2∣A = Ai or A = Aj}
3: if ∃(AB, v) ∈ E such that for all (X, v′) ∈ E, v ≥ v′ then
4: Remove all occurrences of B in F2
5: return ((B, v′

v), F2)
6: else
7: return ((⊥, 1), F2)
8: end if

Given itemsets F1, F2 derived from the condensed representation and an
attribute A from the source schema R, the procedure FindBest outputs a cor-
responding attribute B, for attribute A. The procedure selects, from F2, ele-
ments that contains the attribute A and such the ratio of the support of the
elements and the attribute is maximized. When many approximative unary
IND are concerned, the one with the biggest support is chosen. The symbol
⊥ refers to the default attribute.

5. DISCOVERING EDITING RULES 67

5.2.4 Mining Editing Rules

Once it is possible to retrieve one-to-one correspondences between source at-
tributes and master attribute, the building process of ER naturally follows
using the discovered constant CFD satisfied by the master relation s. The
mapping function f is first computed thanks to Algorithm 9. Then for each
attribute A from the source relation (Line 4), a mapping attribute s.B is de-
fined with an error approximation err. The approximation err is the output
error measure when computing the corresponding attribute from FindBest
procedure of Algorithm 10. We consider all constant CFD (Line 6) from the
master relation such that the right hand side of the dependency is the corre-
sponding attribute of A and we finally generate the ER using the mapping
function. Following Algorithm 11 describes the process.

Algorithm 11 Discovering ER
Require: r a source relation, s a master relation, Σ the set of CFD satisfied in

s, ε a user defined threshold.
Ensure: ER for r with respect to s
1: res = ∅;
2: f = SR2MR(r, s);
3: for all A ∈ R do
4: Let (s.B, err) = f (A);
5: CFD = {c f d ∈ Σ∣ cfd that are defined over s }
6: for all X → A, tp[Z] ∈ CFD do
7: if g(A ∪X ∪ Z) ∈ R then
8: if ∀B ∈ (A ∪X ∪ Z) such that B.err ≤ ε then
9: res+ = (f −1(X), X) → f −1(A), A), tp[f −1(Z)]
10: end if
11: end if
12: end for
13: end for
14: return res

Finally, in this sectionwe detailed the different steps to solve the discovery
problem of ER, i.e. given a source relation, a master relation and a mapping
function between these relations, it is to find all ER that can be applied to the
source to correct inconsistencieswith respect to themaster relation. We attack
in detail the complex case when the schemas of source and master relation
are different. In this non trivial case we proposed a method based on approx-
imative unary IND to find a mapping function between attributes to explicit
one-to-one correspondences. Once the correspondences are retrieved, the ER
are mined based on the discovery of constant CFD.

5. DISCOVERING EDITING RULES 68

5.3 Related Works

Since introduction of ER by [Fan et al., 2010], as far as we know, no contribu-
tion has been made for their discovery problem. Nevertheless the approach
we adopted to resolve the discovery problemof ER is related to amore general
problem of mapping function discovery between source and target schemas
in a data integration purpose. Indeed, attributes involved in IND correspond
each other with respect to a mapping function [Lopes et al., 2002]. Many con-
tributions have been proposed in this setting.

For example, [Bauckmann et al., 2007] proposed an efficient algorithm to
find all the IND satisfied by a given relation in a context of schema match-
ing for data integration. The technique focused on unary IND. In this case all
pairs of attributes must be tested to check the satisfaction of the dependency,
i.e. all the dependent values must be included in the referenced value set. In
this setting [Bauckmann et al., 2007] propose the Single Pass Inclusion DE-
pendency Recognition (SPIDER) algorithm that detect satisfied unary IND in
a given database. The SPIDER algorithm first sorts attribute value sets and
testes IND candidates in parallel while reading attributes values. The algo-
rithmoutputs unary IND evenwithout having information about the schema,
all the process is based on values. Even if the algorithm is powerful, it does
not detect approximative unary IND.

We earlymentioned the solution based on identifying similar columnnames
to extract one-to-one correspondences. But sometimes column names are dif-
ficult to interpret. [Kang andNaughton, 2003] proposed a technique that over-
comes this limitation and check matching schema in the presence of opaque
column names and data values. The matching techniques are not dependent
of data interpretation and are based on a new two-step schemamatching tech-
nique that takes into account the dependency relations among the attributes.
In fact [Kang and Naughton, 2003] consider the schemamatching problem as
a graph matching problem. A labeled graph is built by capturing and struc-
turing dependencies between attributes. Nevertheless all possible cardinality
constraints are consideredwhen building the graph for thematching strategy.
Therefore this solution is too generic and do not directly index the case of one-
to-one correspondences we focus on. Because the technique does not relies
on the interpretation of data elements, it can somehow complement existing
techniques and can be combined with some schema matching technique like
ones based on IND when enlarging the problem to more generic cardinality
constraints such as partial mapping.

In general, many techniques have been proposed to identify matching at-
tributes. For example in [Zhang et al., 2010], a robust algorithm for discover-
ing single-column andmulti-column foreign keys is proposed. The algorithm
may be used as a mapping algorithm for mining correspondences between
attributes. The problem has also been addressed in others domain such as
ontology alignment by [Euzenat and Shvaiko, 2007] for example.

5. DISCOVERING EDITING RULES 69

Moreover, an interesting survey has been done by [Rahm and Bernstein,
2001]. The authors present a taxonomy that covers many existing techniques
that have been classified in term of schema, instance, structure, language and
constraint level. Different existing approaches are characterized and com-
pared in a very useful way for developing more effective schema matching
algorithms.

5.4 Experimentation

We remind the DER problem statement. “Given a source relation r, a mas-
ter relation s and a mapping function f , it is to find all ER satisfied in (r, s)
with respect to f”. In this section we first experiment the discovery of corre-
spondences based on approximative IND. We then experiment the discover-
ing process of ER.

The approaches for discovering unary IND and discovering ER have been
implemented. Techniques are evaluated and compared in this section on both
real life and synthetic datasets with various parameters. In particular we run
our techniques for discovering ER on the same real life dataset than [Fan et al.,
2010] to compare the discovered ER with the ones their manually designed.
The synthetic dataset are exclusively used to evaluate our process of discov-
ering one-to-one correspondences between attribute based on approximative
IND.

Real Datasets The experiments for discovering and building ER are set in
the real life data Hospital Compare 1 that compares high quality data from
different hospital in the United States. The database is composed by several
tables, among them:

• the tableHOSP records the hospital information includingprovider num-
ber (id), hospital name (hName), phone number (phn), state (ST), zip
code (ZIP) and address.

• the table HOSP_MSR_XWLK records the score of each measurement
on each hospital in HOSP, e.g. measure name (mName), measure code
(mCode) and the score of the measurement for this hospital (Score).

• the table STATE_MSR_AVG records the average score of each measure-
ment on hospitals in all US states, e.g. state (ST), mName and state av-
erage (sAvg) the average score of all hospitals in this state.

We merge this three main tables to obtain a single table with the following
characteristic.

1http://www.hospitalcompare.hhs.gov

5. DISCOVERING EDITING RULES 70

Datasets #Attributes #Tuples Size (Mo)
Hospital Compare Table 12 170 000 33

The same synthetic datasets and parameters of discovering constant CFD
experimentation are reused.

5.4.1 Mining one-to-one correspondences

Wepreviously described our techniques to identify correspondences between
attributes based on unary IND. Given two single attribute A and B, the unary
inclusion dependency sentence A ⊆ B is equivalent to the sentence A corre-
sponds to B when the dependency is satisfied. Therefore we exclusively ex-
periment the process of discovering unary IND from relations to evaluate the
mining of one-to-one correspondences between attributes through amapping
function. We rely on two techniques:

• the first technique is based on the closure operator (property 5.1). The
technique is referred as IND1.

• the second technique is based on the support of attribute set to approx-
imate unary IND as stated in property 5.4. The technique may be used
to extract both exact unary IND as well as approximative ones. This
technique is referenced as IND2.

5. DISCOVERING EDITING RULES 71

Figure 5.4: Response time andMemory usagewith respect to instance size for
different attribute size and correlation rate

5. DISCOVERING EDITING RULES 72

The first step of computing condensed representation of relations is simi-
lar to both of the techniques and is out of our evaluation scope.

For both techniques, we first evaluate response time and memory usage
with respect to instance size. We generate synthetic data by fixing the num-
ber of attribute to 10, then 100, and finally 1000. For each set we have used
two different correlation factors, 20% with less similarities between attribute
values and 80% to increase similarities between them.

In Figure 5.4, IND1 outperforms IND2. Iterations over the search space,
attribute search process with a complexity of O(n) and intersection comput-
ing between the result of closure are heavy. In contrast the IND2 technique
has an dichotomous attribute research approach in O(log(n)). It is also no
longer necessary to compute intersection of closure sets, the ratio of support
is enough to extract unary IND. The support computation is not time con-
suming and is directly obtained from the condensed representation.

We evaluate the behaviour of the techniqueswhen the number of attributes
evolves for a given instance of 10000 tuples with a correlation rate of 80%. In
Figure 5.5 we note the premise of an exponential behaviour of response time
and memory usage for both techniques. When the number of attributes in-
creases, in the one hand computing closure and intersection between sets be-
comes heavy and time consuming. In the sameway the number of candidates
generated increases exponentially.

Figure 5.5: Response time and Memory usage with respect to the number of
attributes for a 10 000 tuples instance with a correlation rate of 80%

In Figure 5.6, when the correlation rate increases, there aremore andmore
similar values in the instance relation. Therefore the space search is reduced
and the storing structure are less heavy and easy to iterate. This reduce the
time response and the memory usage. In another hand the number of IND
increases because values are more and more similar, so easily included each
other. It is clear that whenever the technique is, the number of discovered
unary IND is the same. In addition using IND2 approach, we can infer ap-
proximative unary IND.

5. DISCOVERING EDITING RULES 73

Figure 5.6: Response time, Memory usage, Number of IND for a 100 000 tu-
ples and 100 attributes instance

5.4.2 Discovering Editing Rules

The discovery process of ER follows naturally when correspondences have
been extracted. In the sequel we describe and experiment how ER are built
once themapping function is known. The experimental study has been set up
in the same condition of [Fan et al., 2010]. We use the sameHospital Compare
real life dataset. [Fan et al., 2010] manually designed for HOSP data 37 ER in
total, obtained by a careful analysis. Only few of them are publicly available.
Indeed five ER cited by [Fan et al., 2010] are:
ϕ1=((ZIP,ZIP)→(ST,ST),tp1[ZIP]=());
ϕ2=((phn,phn)→(ZIP,ZIP),tp2[phn]=());
ϕ3=((mCode,ST),(mCode,ST))→(sAvg,sAvg),tp3=());
ϕ4=((id,mCode),(id,mCode))→(Score,Score),tp4=());
ϕ5=(id,id)→(hName,hName),tp5=());

We have been able to recover all ER listed by [Fan et al., 2010] using our
technique. We discover a canonical cover of constant CFD from the master
relation. For each discovered constant CFD (X → A,tp[Z]), we automatically
generate the ER ((f −1(X), X) → (f −1(A), A),tp[Z]) using the mapping func-
tion f . For example the ER ϕ5=(id,id)→ (hName,hName),tp5=()) is equivalent
to the set of constant CFD in the form id → hName. The Figure 5.7 recalls

5. DISCOVERING EDITING RULES 74

Figure 5.7: Execution time, number of ER, and Memory usage for the Hosp
real life dataset

our previous experiment for the discovery of constant CFD in section 4.5 of
Chapter 4. The experiment is run here with the Hospital Compare real life
dataset. The behaviour is similar, i.e. the memory usage and the response
time decrease when the support increases even if the approach spend more
time and consume more memory to discover constant CFD for the Hospital
Compare dataset.

5.5 Summary

ER are a new class of data quality rules boosted by the emergence of master
data both in industry [Deloitte and Oracle, 2005, Russom, 2008, Power, 2010]
and academia [Fan et al., 2010]. In this Chapter we attack the discovering
problem of ER from master data and source data. We proposed a new se-
mantics of ER in order to be able to infer them from existing source relation
and a corresponding master relation. Based on this new semantics, we have
proposed a mining process in 3 steps:

1. Eliciting one-to-one correspondences between attributes of a source re-
lation and attributes of the master database using unary IND. We have
presented a first approach based on intersection of closure sets. The
latter technique is improved by proposing a second approach taking

5. DISCOVERING EDITING RULES 75

into account the support of attribute set and the error measure defined
by [Lopes et al., 2002] to efficiently compute and approximate unary
IND.

2. Once correspondences between master attribute and source attributes
identified, we mined a cover of constant CFD satisfied in the master
relation as described in Chapter 4.

3. Finally we presented how to build ER using the mapping function ex-
tracted from step one and CFD mined from step two. As a result, we
were able to discover and automatically build all ERmanually designed
and listed by [Fan et al., 2010], which is a good result.

In a data cleaning setting, the process of discovering ER is just a step. We next
attack the question: how to efficiently apply ER in order to clean data sources?

CHAPTER 6
EDITING RULES FOR DATA CLEANING

Chapter Outline
6.1 Data Repairing based on CFD . 77
6.2 Data Repairing based on ER . 78
6.3 Related Works . 80
6.4 Experimentation . 81
6.5 Summary . 83

This Chapter addresses the repair process based on ER. We give a quick overview
of main issues of techniques based on CFD before using ER in a data cleaning setting.
We propose heuristics to efficiently apply ER. We experiment the techniques in a real
life database to show their feasibility and their scalability.

76

6. EDITING RULES FOR DATA CLEANING 77

Data quality problems occurs in databases mainly due to invalid data or
missing information. Data cleaning, also called data cleansing or scrubbing,
deals with detecting and removing errors and inconsistencies from data in
order to improve the quality of data [Rahm and Do, 2000]. More, data clean-
ing is very relevant when data sources are multiple such as in MDM context.
In the sequel we point out the limitation of data cleaning approach based on
CFD and then we propose heuristic repairs using ER.

6.1 Data Repairing based on CFD

CFDoutperform traditional FDwhen coming to detect inconsistencies. There-
fore they aremore suitable in practicewhendeveloping constraint basedmethod
for improving data quality through data cleaning. In this setting, the detec-
tion of constraint violation is the first step for data cleaning before removing
inconsistencies from the data.

r1 A B C D E
t1 ∶ 0 0 1 2 3
t2 ∶ 0 0 1 4 5
t3 ∶ 1 0 2 2 0

$1 = (DC → E, (∗,∗, 2, 2 ∥ 5))
$2 = (AB → C, (0, 0 ∥ 2,∗,∗))
$3 = (CD → E, (∗,∗, 1, 2 ∥ 5))
$4 = (CD → E, (∗,∗, 1, 4 ∥ 5))

Figure 6.1: Relation r1 over ABCDE and a set of CFD

Actually removing or repairing inconsistencies using CFD is very chal-
lenging. For example, the repair of dirty tuples may cause some constraints
rules no more applicable [Bohannon et al., 2007]. In this setting the order in
which they are applied is important to maximize the number of rules used in
practice to correct data.

We illustrate this issue in Figure 6.1. When the set of CFD is applied in the
order they appear on Figure 6.1, only $2 is applied. There are no tuples that
match the pattern of $3 and $4 because $2 changed the value of t[C] from 1 to
2. On the other hand, if we apply the following order $4, $3, $2 and finally $1,
all of them are actually considered, $2 and $1 are applied. Figure 6.2 outputs
two different relations obtained as a result.

This example highlights the importance of the order in which constraint
rules are applied. Therefore it is necessary to develop heuristics that maxi-
mize the number of rules applied in practice, even for ER.

It is also possible to introduce new inconsistencies when trying to repair
data using CFD. Precisely, the semantic of a CFD does not guarantee a certain

6. EDITING RULES FOR DATA CLEANING 78

r2 A B C D E
t1 ∶ 0 0 2 2 3
t2 ∶ 0 0 2 4 5
t3 ∶ 1 0 2 2 0

r3 A B C D E
t1 ∶ 0 0 2 2 5
t2 ∶ 0 0 2 4 5
t3 ∶ 1 0 2 2 5

Figure 6.2: Relation r2 after applying $1, $2, $3, $4 and relation r3 after applying
$4, $3, $2, $1

fix. CFD as traditional FD do not carry the information about which value
to choose when correcting the inconsistencies. For example, let us consider
a dependency X → Y defined in a schema R of a relation r. If there exits
two different tuples t1 and t2 in r such that t1[X] = t2[X] and t1[Y] ≠ t2[Y],
the dependency is violated. But there does not exist a unique way to correct
the inconsistency. One can change the value of t1[Y] by t2[Y] to have the
equality or vice versa. This may lead to create new inconsistencies when the
good value is not set even if the dependency is satisfied. ER overcome this
limitation with respect to the good value taken from master data.

6.2 Data Repairing based on ER

Once ER are discovered, it is necessary to have heuristics to apply the rules in
some given order to correct data.

Heuristic H0: Baseline Let Σ be the set of discovered ER and r the relation
to be cleaned. The use of ER in a basic and natural data cleaning process is
described in Algorithm 12, which corresponds to a first naive approach and
referred as baseline technique. The rules are applied randomly, i.e. in the
order they are produced during the discovery.

6. EDITING RULES FOR DATA CLEANING 79

Algorithm 12 Heuristic H0: Baseline
Require: r, Σ
Ensure: A new relation r′ ⊧ Σ and cpt: the number of corrected tuples of r.
1: cpt = 0;
2: r′ = r;
3: for all t ∈ r′ do
4: for all (X, Y) → (A, B), tp[Z] ∈ Σ such that t ≍ tp[Z] do
5: if t[X] ≍ tp[Z] then
6: t[A] ∶= t[B]
7: cpt ++
8: end if
9: end for
10: end for
11: return r′, cpt

The number of corrected tuples cpt into the relation is kept to evaluate the
accuracy of the process. The others heuristics are compared to the baseline
approach.

Heuristic H∗

0 : Baseline-Recall The heuristic H∗

0 called Baseline-Recall ex-
tends the baseline approach by iterating over rules. Therefore a rule not ap-
plied at a given iteration step i can be finally applied at the next iteration step
i + 1. For example, on Figure 6.1 at a first step we apply the set of rules $1, $2,
$3 and $4 using baseline heuristic H0. In this case, only $2 is applied. As a
consequence, t[C] is changed from 1 to 2. The use of Baseline-Recall heuris-
tic H∗

0 ensure a second iteration and then $1 can be now applied by editing
t1[E] = t3[E] = 5 to obtain the relation r3. Since we have no guarantee of ter-
mination in some noisy case due to rule conflict (see example 3.11 of Chapter
3) we have set a maximum value of iteration to 100.

Heuristic H1: Left-Hand-Side-Length-Sorted We now investigate sorting
the rules with respect to the size of their left hand side (the largest first). In
fact the application of a rule may invalidate some others when the attributes
involved in rules are similar. When rules are sorted with respect to their left
hand sides, the largest are applied first because they carries a repair process
on many attributes. By the way this strategy is more suitable for rules build
from FD.

Heuristic H2: Left-Hand-Side-Length-and-Support-Sorted In this strategy,
when two ormany sets of left hand side attributes have the same size, we take
into account the support of rules. In this case, the rule with the biggest sup-
port is applied first. In fact, the rules with largest support impact more tuples
when applied and thus are more effective.

6. EDITING RULES FOR DATA CLEANING 80

The Recall strategy of iteration can be also applied to H1 and H2 respec-
tively to obtain H∗

1 and H∗

2 .

6.3 Related Works

This work finds similarities with data repair techniques based on constraints
proposed this last decade. First data repairing techniques concentrate on con-
straints. The main goal of repairing data based on constraints is to apply
changes to data so they can satisfy the constraints early violated due to the
presence of errors. Early works such as [Chomicki and Marcinkowski, 2005]
evaluated the cost of changes in term of tuples insertions and deletions. In
contrast [Bohannon et al., 2005] propose a cost based model stated in term of
value modification instead of tuple insertions and deletions. In this case, the
repair problem becomes much more difficult and complex when tuples mod-
ifications is considered instead of tuples insertions and deletions. The ap-
proach used is carried by FD and IND and is built using equivalence classes.
This technique suggests repair for dirty data but the repair when appliedmay
introduce new inconsistencies.

In the same context, the cost based model of [Bohannon et al., 2005] is ex-
tended by [Cong et al., 2007] with respect to CFD to improve the consistency
and accuracy of data. [Cong et al., 2007] first characterize howdirty the data is
by formalizing the violation of CFD and then better resolve the violation. The
repair operation is at attribute value modifications level with respect to the
cost model enriched using the levenstein metric [Galhardas et al., 2001] in or-
der to reduce repair cost and then improve accuracy. The levenstein distance
guarantees aminimum ofmodifications to correct dirty values to obtain good
ones. But repairs still may introduce some errors. When dealing with ER this
model is unnecessary, good values are directly taken from master data. Nev-
ertheless repairs can be improved by proposing only repairs that are above
of predefined user threshold with a high confidence. The user feedback is
fully explored and integrated in the dirty data repair process by [Yakout et al.,
2011]. The repair process is then improved but the framework only relies on
CFD.

In a dynamic environment where data and constraints evolve, [Chiang
and Miller, 2011] propose a novel unified cost model for data and constraint
repair. The co-dependence between constraint anddatamaybe relevantwhen
a MDM solution is integrated to an existing information system for example.
New data sources have to be integrated in the master data repository and
constraint may evolve over time. Even if the approach is just limited to FD, an
equivalence can be found with the work of [Fan et al., 2008b]. In a schema in-
tegration context such as MDM, this alternative requires a mapping between
old schema and new evolved schema. The goal is quite similar since with
CFD conditions are carried by values and when values are modified then the

6. EDITING RULES FOR DATA CLEANING 81

constraints may be modified.

6.4 Experimentation

In this section we experiment the data repair based on ER. We use the same
real life dataset as the one for the discovery problem. Therefore we set an
experimental protocol as follows, to be as close as possible to a real master
data context:

1. We reuse the relation of Hospital Compare dataset (Chapter 5, section
5.4).

2. The relation is duplicated to obtain a second relation r′.

3. Null values are introduced into r′ at attribute level to simulate noise.

4. ER are discovered on Hospital Compare to obtain a set Σ of rules.

5. The set Σ of ER is applied to the noisy relation r′ to correct inconsisten-
cies.

Datasets #Attributes #Tuples Size (Mo)
Hospital Compare Table 12 170 000 33

Our experimentation have beenperformedon the same configuration than
in Chapter 5. Additional parameters are set: the noise rate of the relation is
defined as the ratio between the number of noisy tuples and the total number
of tuples. The accuracy is in term of percentage of errors corrected, it is de-
fined as the ratio between the total number of corrected tuples and the total
number of noisy tuples.

Experimentation are run on Hosp dataset with 10% of noise according to
our protocol. The response time, the memory usage and the number of ER
effectively applied are measured for the heuristics. The number of ER dis-
covered with respect to the Hosp dataset is about 6000 (Figure 5.7) when the
support is minimal. We consider this number of ER as input for the correc-
tion. For the measure of accuracy of data repair, we have varied the noise rate
from 1 to 10%, which is a realistic interval. All the results are aggregated on
Figure 6.3 illustrating heuristics of data repair using ER.

Whatever the heuristic is, all the ER are not applied because the applica-
tion of one ER may invalidate some others. Heuristics H1 and H2 are a little
more time consuming (Fig 1). In fact they impact more tuples due to the sort-
ing strategy even if they apply less ER (Fig 3). The memory usage is quite
similar for all non iterative strategies (Fig 2) because there is only a single
pass on ER and non applied rule are tested even if “useless”. When the it-
erative strategies are applied the memory usage slightly increases (Fig 6), ER

6. EDITING RULES FOR DATA CLEANING 82

not applied at step i are marked and may be applied at step i+1. Iteration in-
creases the number of applied ER (Fig 7). When a rule with a large support
is applied, the response time increases (Fig 5) because the repair impact more
tuples.

Generally, the quality of the repair decreaseswhen the noise rate increases,
but it remains superior to 80% for all strategies (Fig 4 and Fig 8). Heuristics
are quite equivalent when inconsistencies are in low rate, i.e. less than 3%
for non iterative heuristics and less than 4% for iterative heuristics. The dis-
tance between non iterative strategies is 90-80 = 10% of correction. For itera-
tive strategies the distance is 6%. So the distance decreases because iterations
maximize repairs. Iterative strategies outperforms non iterative ones in term
of correction. They repair more inconsistencies while the memory cost and
the response time remain acceptable with respect to non iterative strategies.
The heuristic H∗

2 gives the best accuracy rate (96%) for the worst case of 10%
of noise.

6. EDITING RULES FOR DATA CLEANING 83

Figure 6.3: Response time, Memory usage, Number of ER and accuracy of
Heuristics

6.5 Summary

In this Chapter, we presentedmain issueswhen solving dirty data using CFD.
The repair techniques based on CFD does not ensure a quality of repair in
term of good value to choose when correcting inconsistencies unlike ER. The
semantics of ER carries precisely the value taken from master data to con-
sider when repairing. The solution proposed for the mining problem of ER

6. EDITING RULES FOR DATA CLEANING 84

helped us build heuristics in order to apply automatically discovered ER for
data cleaning. Themost basic of them apply the set of ER naively without any
optimization. We improved this baseline approach by iterating over rules to
maximize the repair. A benefit is also observedwhen the rules are sortedwith
respect to the support.

CHAPTER 7
CONCLUSION

Chapter Outline
7.1 Summary of Contributions . 86
7.2 Discussion and Future works . 87

In this last Chapter we first summarize our contributions in the domain of mining
data quality rules and data cleaning. We finally open discussions about these issues
and we underline some relevant future works to consider.

85

7. CONCLUSION 86

7.1 Summary of Contributions

Dirty data is still an important issue to solve. Lots of time and money are
spent by companies to have techniques in place that can efficiently clean data.
Mining data quality rules is an important step towards solving this issue. The
emergence of MDM enhance data quality and can improve rules. This thesis
brings contributions for the discovery of CFD and also for the mining of ER.

We have proposed two approaches for the discovery problem of constant
CFD. We have named the first one conditional agree set, a contribution that
extends well known agree sets [Fagin and Vardi, 1983] to automatically ex-
tract CFD. The proposal is suitable only for mining all possible constant CFD
without any threshold. The second contribution for the discovery problem
of constant CFD is an extension of the Fun approach [Novelli and Cicchetti,
2001b]. The advantage of this approach is to easily deal with the frequency
of constant CFD which was not integrated in the approach based on condi-
tional agree sets. The notion of free sets of FDwas extended to get conditional
free sets. The CFun algorithm is based on the concepts of well known APRI-
ORI [Agrawal and Srikant, 1994] algorithm to find conditional free sets. Once
the conditional free sets are discovered with the corresponding frequency for
each level, the canonical cover of constant CFD is generated through the clo-
sure. The two approaches have been tested against different synthetic and
real life datasets using CFun and Cag. The results show a linear scalability
in the size of the relation, but remain exponential with respect to the arity.
CFun is less time andmemory consuming when the support of constant CFD
increase. CFun outperforms Cag approach when the correlation rate of at-
tribute values decreases.

ER are a new class of data quality rules boosted by the emergence of mas-
ter data both in industry [Deloitte and Oracle, 2005, Russom, 2008, Power,
2010] and academia [Fan et al., 2010]. In the same line with the discovery
of CFD, we also attack the discovery problem of ER from master data and
source data. The problem has not been yet addressed by the data mining
community to the best of our knowledge. We have proposed a new seman-
tics of ER in order to be able to infer ER from existing source database and
a corresponding master relation. Based on this powerful semantics, we have
proposed a mining process of ER. We first find one-to-one correspondences
through a mapping function from source to master attributes using unary
IND. The experimental results have showed the scalability of the approach.
Thenwemined a cover of constant CFD satisfied by themaster relation before
building ER thanks to the mapping function. As a result, we were able to find
all ER manually designed and listed by [Fan et al., 2010].

We have also proposed heuristics to clean data by applying ER. Themost
basic H0 applies ER randomly, in the same order they are discovered. Two
strategies of improvement have been proposed. One sort rules with respect
to the left hand sides (H1) and the other one (H2) take into account the support

7. CONCLUSION 87

in H1. The repair process reaches more tuples when ER with largest support
are applied first because they impact more inconsistencies. Both heuristics
show good results when data is very dirty. Additionally, we experimentally
verified that the iteration over rules improve the efficiency of the cleaning
process.

7.2 Discussion and Future works

We did not experiment the repair process based on CFD and so we did not
check its limitations. Nevertheless, according to [Fan et al., 2010] ER are more
efficient than CFD. An experimental comparison of these two classes of data
quality rules can be relevant as future works. The heuristic repair approach
based on applying one Editing Rule at a time must be improved. A better
strategy must be found to solve the problem of failure to terminate.
Moreover, since ER is a new class of rules, it is interesting to experiment the
power of ER on existing data repair techniques. For example ER may be used
in existing framework such as [Yakout et al., 2011] to give the user appropriate
control of the repair process, and thus improve repair efficiency.
In a more general formal way, a uniform dependency language for improv-
ing data quality have been recently proposed by [Fan and Geerts, 2011]. This
uniform framework for dependency powerfully helps the use of ER instead of
other constraints rule like CFD. The data repairing strategies may be boosted
thanks toQuality ImprovingDependencies language of [Fan andGeerts, 2011].
As futureworks, the heuristics presented in this thesis should be implemented
with respect to this language. Furthermore, experimentation with real life
master dataset is a must.

ER are a new subject and naturally open new research subject perspec-
tives. In this thesis, we only consider one-to-one mapping. As future works
we may extend the mapping function to deal with other cases of mapping
such as partial andmany-to-many. By theway, the inference ofmany-to-many
correspondences instead of one-to-one is challenging but helps address the
problem of mining ER when an entire source database and a master database
is consider instead of a single source relation and a single master relation.
The main problem is then to propagate the rule into the source data with the
“right” attribute.
In addition, the approach based on approximative IND to find the mapping
may be enforced with the notion of equivalence classes explored by [Bohan-
non et al., 2005]. Nevertheless, the part of finding a mapping function be-
tween source attributes and master attributes in the resolution of the discov-
ery problem of ER may be avoided. Indeed, one can use record matching
techniques to identify links between sources and master data through for ex-
ample Matching Dependencies rules [Fan et al., 2009].

In this thesiswe concentrate attention to the discovery of constant CFD.As

7. CONCLUSION 88

feature works, we plan to address the problem of discovering variable CFD.
For instance level-wise strategies can be applied for variable CFD even if as
such, this pattern enumeration problem has to be proved as representable as
sets [Mannila and Toivonen, 1997]. It is also possible to try to infer variable
CFD from constant ones already discovered. Actually, if the pattern of a sin-
gle constant CFD cover all the active domain of an right hand side attribute,
then the set of the active domain can be replaced by the unnamed variable
“_” which finally corresponds to the structure of an variable CFD.
In addition, the extension of agree sets we proposed may help to study the
existence of Armstrong relation [Beeri et al., 1984b] for CFD, i.e. a relation
that uniquely satisfies a given set of CFD. It may be interesting to study the
complexity, the properties and the building process of such a relation.
It is worth noticing that mining frequent CFD share some characteristics with
the problem of mining frequent projection selection conjunctive queries ad-
dressed by [Jen et al., 2008]. It may be interesting to investigate the possible
cross-fertilization between these two problems like in [Goethals et al., 2010]
using CFD instead of FD. This interactionmay also extends the pattern condi-
tion of a CFD stated using just equality towards a pattern condition stated by
a querywith operators like inferior or superior. This correlationmay goes fur-
ther to query optimization. Indeed, the resolution tree of a query through tra-
ditional FD may be extended, enriched and more precise when built through
CFD and then may improve and fasten access to query resolution.
Discovering Conditional IND is a another perspective towards extending our
work of mining CFD from a relation to a database in order to take into ac-
count links between relations. Conditional IND may also be considered to
define Armstrong database, for example by extending the work of [Fabien
De Marchi, 2005].

MDM is a growing subject that receives more and more attention from
companies in particular. In this thesis we give an overview of MDM by pre-
sentingdifferent vision throughdefinitions andpractice. WehighlightedMDM
key futures and presented the main issues. The most common implementa-
tion styles of an MDM solution was also presented. The choice of the style
to implement generally depends on business needs. In this thesis, the most
relevant added value of MDM is the codependence between MDM and Data
Quality. We saw that MDM can improve quality of data, and in another side
Data Quality Management can boost an MDM solution. This interaction is
the intuition behind the definition of ER to overcome the limits of data de-
pendency rules like CFD when used to clean data. The way of choosing data
tomaster was out of the scope of this thesis. An entire detailed study is neces-
sary to figure out which data to master with respect to the business need and
the complexity of the information system in place. In this thesis we found that
master data and data cleaning can be complementary and can boost efficiency
of traditional cleansing techniques. We think that other relevant subjects can
also benefit from MDM.

LIST OF ALGORITHMS

1 Minimal cover for CFD . 28
2 The space search of constant CFD 35
3 The conditional agree sets between each tuple of a relation and

a pattern . 37
4 The conditional agree sets between a relation and a pattern . . 38
5 CFun . 48
6 Condensed representation of relation r 61
7 Closure of an attribute with respect to the condensed represen-

tation . 62
8 Scalable Closure . 65
9 (SR2MR) Mapping from Source Relation to Master Relation . . 66
10 FindBest: find the best corresponding attribute 66
11 Discovering ER . 67
12 Heuristic H0: Baseline . 79

89

LIST OF FIGURES

2.1 A word cloud of MDM survey definitions 11
2.2 Different applicationsmodeling the same customer differently [Loshin,

2009] . 12
2.3 Different MDM architecture implementations [Gartner, 2010] . . . 14
2.4 An overview of MDM Implementation styles [Dreibelbis et al., 2008] 16
2.5 Data Quality Dimensions [Otto and Ebner, 2010] 17

3.1 The relation Person . 21
3.2 relation cust . 22
3.3 Inference system for CFD [Bohannon et al., 2007] 27
3.4 Source relation r and master database {s, u} 29

4.1 AnOverview of the Steps That Compose the KDDProcess [Fayyad
et al., 1996] . 32

4.2 A toy relation r over R = {A, B, C, D} 36
4.3 Illustration of the proposed characterisation 49
4.4 Execution time , number of CFD, and memory usage for the Wis-

concin Breast Cancer and Chess real life datasets 51
4.5 Execution time, number of CFD, and memory usage for various

number of tuples . 52
4.6 Execution time, number of CFD, and memory usage for various

number of attributes . 53
4.7 Execution time, number of CFD, and memory usage for various

data correlation rates . 54

5.1 A master database with two source databases 56
5.2 Source relation r and master relation s from Figure 3.4 58
5.3 Condensed Representation of the toy illustration relation r 60
5.4 Response time andMemory usage with respect to instance size for

different attribute size and correlation rate 71
5.5 Response time and Memory usage with respect to the number of

attributes for a 10 000 tuples instance with a correlation rate of 80% 72
5.6 Response time, Memory usage, Number of IND for a 100 000 tu-

ples and 100 attributes instance . 73
5.7 Execution time, number of ER, and Memory usage for the Hosp

real life dataset . 74

6.1 Relation r1 over ABCDE and a set of CFD 77

90

LIST OF FIGURES 91

6.2 Relation r2 after applying $1, $2, $3, $4 and relation r3 after applying
$4, $3, $2, $1 . 78

6.3 Response time, Memory usage, Number of ER and accuracy of
Heuristics . 83

BIBLIOGRAPHY

[Abiteboul et al., 2000] Abiteboul, S., Hull, R., and Vianu, V. (2000). Fonda-
tions of Databases. Vuibert. 20

[Agrawal et al., 1993] Agrawal, R., Imielinski, T., and Swami, A. N. (1993).
Mining association rules between sets of items in large databases. In Pro-
ceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, Washington, D.C., May 26-28, 1993, pages 207–216. ACM Press. 5,
33, 47

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast algo-
rithms for mining association rules. In Proceedings of the 1994 VLDB Inter-
national Conference, 1994. VLDB Press. 6, 47, 65, 86

[Armstrong and Delobel, 1980] Armstrong, W. and Delobel, C. (1980). De-
compositions and functional dependencies in relations. ACM. 5

[Armstrong, 1974] Armstrong, W. W. (1974). Dependency structures of data
base relationships. DBLP, pages 580–583. 23, 27

[Batini and Scannapieco, 2006] Batini, C. and Scannapieco, M. (2006). Data
Quality: Concepts,Methodologies and Techniques (Data-Centric Systems andAp-
plications). Springer-Verlag New York, Inc., Secaucus, NJ, USA. 17, 92

[Bauckmann et al., 2007] Bauckmann, J., Leser, U., Naumann, F., and Tietz,
V. (2007). Efficiently detecting inclusion dependencies. In ICDE, pages
1448–1450. 68

[Baudinet et al., 1995] Baudinet, M., Chomicki, J., and Wolper, P. (1995).
Constraint-generating dependencies. Journal of Computer and System Sci-
ences, 59:322–337. 32

[Beeri et al., 1984a] Beeri, C., Dowd, M., Fagin, R., and Statman, R. (1984a).
On the structure of armstrong relations for functional dependencies. J.
ACM, 31(1):30–46. 5, 6

[Beeri et al., 1984b] Beeri, C., Dowd, M., Fagin, R., and Statman, R. (1984b).
On the structure of armstrong relations for functional dependencies. J.
ACM, 31(1):30–46. 32, 37, 88

[Bellahsene et al., 2011] Bellahsene, Z., Bonifati, A., and Rahm, E., editors
(2011). Schema Matching and Mapping. Springer. 15

92

BIBLIOGRAPHY 93

[Berge, 1987] Berge, C. (1987). Hypergraphes. BORDAS. 41

[Berti-Equille, 2006] Berti-Equille, L. (2006). Qualité des données. Technique
de l’ingénieur. H3700. 4

[Birkhoff, 1967] Birkhoff, G. (1967). Lattices Theory. Coll. Pub. XXV, vol. 25,
3rd edition. 46

[Bohannon et al., 2005] Bohannon, P., Fan, W., and Flaster, M. (2005). A cost-
basedmodel and effective heuristic for repairing constraints by valuemodi-
fication. In InACMSIGMOD International Conference onManagement of Data,
pages 143–154. 6, 80, 87

[Bohannon et al., 2007] Bohannon, P., Fan, W., Geerts, F., Jia, X., and Ke-
mentsietsidis, A. (2007). Conditional functional dependencies for data
cleaning. In ICDE, pages 746–755. 4, 5, 6, 23, 27, 28, 33, 77, 90

[Bonnet, 2009] Bonnet, P. (2009). Management des données de l’entreprise.
Lavoisier. 10

[Bonnet, 2010] Bonnet, P. (June 2010). Enterprise Data Governance Master Data
Management and Semantic Modeling: MDM. Wiley-ISTE. 10, 11

[Borgelt and Kruse, 2002] Borgelt, C. and Kruse, R. (2002). Induction of asso-
ciation rules: Apriori implementation. In Proc. 15th Conf. on Computational
Statistics (Compstat 2002, Berlin, Germany), pages 395–400, Heidelberg, Ger-
many. Physika Verlag. 47

[Bra and Paredaens, 1983] Bra, P. D. and Paredaens, J. (1983). Conditional de-
pendencies for horizontal decompositions. In Proceedings of the 10th Collo-
quium on Automata, Languages and Programming, pages 67–82, London, UK.
Springer-Verlag. 33

[Business-Intelligent-Network, 2007] Business-Intelligent-Network (2007).
Getting Started with Master Data Management. Business Intelligent Network
research report. 11

[Chiang and Miller, 2008] Chiang, F. andMiller, R. J. (2008). Discovering data
quality rules. PVLDB, 1(1):1166–1177. 33

[Chiang and Miller, 2011] Chiang, F. andMiller, R. J. (2011). A unified model
for data and constraint repair. In Proceedings of the 2011 IEEE 27th Interna-
tional Conference onData Engineering, ICDE ’11, pages 446–457,Washington,
DC, USA. IEEE Computer Society. 80

[Chomicki and Marcinkowski, 2005] Chomicki, J. and Marcinkowski, J.
(2005). Minimal-change integrity maintenance using tuple deletions. Inf.
Comput., 197(1/2):90–121. 80

BIBLIOGRAPHY 94

[Cong et al., 2007] Cong, G., Fan, W., Geerts, F., Jia, X., and Ma, S. (2007).
Improving data quality: Consistency and accuracy. VLDB. 6, 80

[Cosmadakis et al., 1986] Cosmadakis, S., Kanellakis, P., and Spyratos, N.
(1986). Partition Semantics for Relations. Journal of Computer and System
Sciences, 33(2):203–233. 48

[Deloitte and Oracle, 2005] Deloitte and Oracle (2005). Getting Started with
Master Data Management. Deloitte and Oracle White paper. 4, 10, 11, 29, 74,
86

[Diallo et al., 2010a] Diallo, T., Doré, M., and Mestelan, J.-B. (2010a). Core
cache externalization. Orchestra Networks internal report. 92

[Diallo et al., 2010b] Diallo, T., Doré, M., and Mestelan, J.-B. (2010b). Query
optimization on externalized mode. Orchestra Networks internal report. 92

[Diallo and Novelli, 2010] Diallo, T. and Novelli, N. (2010). Découverte des
dépendances fonctionnelles conditionnelles fréquentes. In 10ièmes Con-
férence Internationale Francophone sur l’Extraction et la Gestion des Connais-
sances (EGC’10), RNTI E-19, pages 315–326. 7

[Diallo et al., 2012] Diallo, T., Novelli, N., and Petit, J.-M. (2012). Discover-
ing (frequent) constant conditional functional dependencies. International
Journal of Data Mining, Modelling andManagement (IJDMMM), Special issue
"Interesting Knowledge Mining":1–20. 7

[Diallo et al., 2012a] Diallo, T., Petit, J.-M., and Servigne, S. (2012a). Discov-
ering Editing Rules for Data Cleaning. In 10th International Workshop on
Quality in Databases In conjunction with VLDB (Very Large Databases) Istanbul
2012. 7

[Diallo et al., 2012b] Diallo, T., Petit, J.-M., and Servigne, S. (2012b). Règles
d’Edition: fouille et application au nettoyage de données. In 28ème journées
Base de Données Avancées. Clermont Ferrand 2012. 7

[Dreibelbis et al., 2008] Dreibelbis, A., Hechler, E., Milman, I., Run, P. V., and
Wolfson, D. (2008). Introducing Master Data Management, An SOA Approach
to Managing Core Information. IBM Press. 16, 90

[Eckerson, 2002] Eckerson, W. (2002). Data Quality and the Bottom Line. Tech-
nical report. iii, 4, 92

[Eschinger, 2008] Eschinger, C. (2008). Report Highlight forMarket Trends: Mas-
ter Data Management Growing Despite Worldwide Economic Gloom, 20007-
2012. Gartner. 4

BIBLIOGRAPHY 95

[Euzenat and Shvaiko, 2007] Euzenat, J. and Shvaiko, P. (2007). Ontology
matching. Springer-Verlag, Heidelberg (DE). 68

[Fabien De Marchi, 2005] Fabien De Marchi, J.-M. P. (2005). Semantic sam-
pling of existing databases through informative armstrong databases. Sci-
ence Direct. 88

[Fagin and Vardi, 1983] Fagin, R. and Vardi, M. Y. (1983). Armstrong
databases for functional and inclusion dependencies. Information Process-
ing Letters, pages 13–19. 53, 86

[Fan and Geerts, 2011] Fan, W. and Geerts, F. (2011). Uniform dependency
language for improving data quality. IEEE Data Eng. Bull., 34(3):34–42. 87

[Fan and Geerts, 2012] Fan,W. andGeerts, F. (2012). Foundations of Data Qual-
ity Management. Synthesis Lectures on Data Management. Morgan & Clay-
pool Publishers. 17

[Fan et al., 2008a] Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. (2008a).
Conditional functional dependencies for capturing data inconsistencies.
ACM Trans. Database Syst., 33(2). 26, 27

[Fan et al., 2011] Fan, W., Geerts, F., Li, J., and Xiong, M. (2011). Discover-
ing conditional functional dependencies. IEEE Trans. Knowl. Data Eng.,
23(5):683–698. 33, 36, 44, 50

[Fan et al., 2009] Fan, W., Jia, X., Li, J., and Ma, S. (2009). Reasoning about
record matching rules. Proc. VLDB Endow., 2(1):407–418. 87

[Fan et al., 2010] Fan, W., Li, J., Ma, S., Tang, N., and Yu, W. (2010). Towards
certain fixes with editing rules and master data. In Proceedings of VLDB’10.
5, 29, 68, 69, 73, 74, 75, 86, 87

[Fan et al., 2008b] Fan, W., Ma, S., Hu, Y., Liu, J., and Wu, Y. (2008b). Prop-
agating functional dependencies with conditions. Proc. VLDB Endow.,
1(1):391–407. 80

[Fayyad et al., 1996] Fayyad, U., Piatetsky-shapiro, G., and Smyth, P. (1996).
From data mining to knowledge discovery in databases. AI Magazine,
17:37–54. 32, 90

[Flouvat et al., 2009] Flouvat, F., Marchi, F. D., and Petit, J.-M. (2009). The
open source library izi for pattern mining problems. In Proceedings of
the Open Source in Data Mining (OSDM) workshop, in conjunction with
PAKDD’09, pages 14–25, Bangkok, Thailand. 42, 49

[Galhardas et al., 2001] Galhardas, H., Florescu, D., and Shasha, D. (2001).
Declarative data cleaning: Language, model, and algorithms. In VLDB,
pages 371–380. 80

BIBLIOGRAPHY 96

[Ganter and Wille, 1999] Ganter, B. andWille, R. (1999). Formal Concept Anal-
ysis: Mathematical Foundations. Springer. 46

[Gartner, 2010] Gartner (September 2010). Magic Quadrant for Master Data
Management of Product Data. Gartner. 4, 14, 90

[Goethals et al., 2010] Goethals, B., Laurent, D., and Le Page, W. (2010). Dis-
covery and application of functional dependencies in conjunctive query
mining. In Proceedings of the 12th international conference on Data warehous-
ing and knowledge discovery, DaWaK’10, pages 142–156, Berlin, Heidelberg.
Springer-Verlag. 33, 88

[Goethals and Zaki, 2003] Goethals, B. and Zaki, M. J., editors (2003). FIMI
2003, Frequent Itemset Mining Implementations, Proceedings of the ICDM 2003
Workshop on Frequent ItemsetMining Implementations, 19 December 2003, Mel-
bourne, Florida, USA, volume 90 of CEUR Workshop Proceedings. CEUR-
WS.org. 92

[Golab et al., 2008] Golab, L., Karloff, H., Korn, F., Srivastava, D., and Yu, B.
(2008). On generating near-optimal tableaux for conditional functional de-
pendencies. Proc. VLDB Endow., 1(1):376–390. 33

[Gottlob and Libkin, 1990] Gottlob, G. and Libkin, L. (1990). Investigations
on Armstrong Relations, Dependency Inference, and Excluded Functional
Dependencies. Acta Cybernetica, 9(4):385–402. 46

[Huhtala et al., 1998] Huhtala, Y., Kärkkäinen, J., Porkka, P., andToivonen, H.
(1998). Efficient Discovery of Functional and Approximate Dependencies
Using Partitions. In ICDE’98, Orlando, Florida, USA, pages 392–401. 48

[Huhtala et al., 1999a] Huhtala, Y., Karkkainen, J., Porkka, P., and Toivonen,
H. (1999a). Tane: An efficient algorithm for discovering functional and
approximate dependencies. The Computer Journal, 42(3):100–111. 33, 34

[Huhtala et al., 1999b] Huhtala, Y., Karkkainen, J., Porkka, P., and Toivonen,
H. (1999b). TANE: An Efficient Algorithm for Discovering Functional and
Approximate Dependencies. The Computer Journal, 42(2):100–111. 48

[IBM, 2007] IBM (2007). MDM: looking beyong the single view to find the right
view. IBMWhite paper. 11, 12

[Jen et al., 2008] Jen, T.-Y., Laurent, D., and Spyratos, N. (2008). Mining all
frequent projection-selection queries from a relational table. In EDBT 2008,
11th International Conference on ExtendingDatabase Technology, Nantes, France,
March 25-29, 2008, Proceedings, pages 368–379. 88

BIBLIOGRAPHY 97

[Kang and Naughton, 2003] Kang, J. and Naughton, J. F. (2003). On schema
matching with opaque column names and data values. In In SIGMOD,
pages 205–216. ACM Press. 68

[Kivinen and Mannila, 1995] Kivinen, J. and Mannila, H. (1995). Approxi-
mate inference of functional dependencies from relations. Theor. Comput.
Sci., 149(1):129–149. 5

[Levene and Loizou, 1999] Levene, M. and Loizou, G. (1999). A Guided Tour
of Relational Databases and Beyond. Springer. 20, 21, 57, 59

[Lopes et al., 2000] Lopes, S., Petit, J.-M., and Lakhal, L. (2000). Efficient dis-
covery of functional dependencies and armstrong relations. In EDBT, vol-
ume 1777 of LNCS, pages 350–364, Konstanz, Germany. Springer. 33, 48

[Lopes et al., 2002] Lopes, S., Petit, J.-M., and Toumani, F. (2002). Discovering
interesting inclusion dependencies: application to logical database tuning.
Inf. Syst., 27(1):1–19. 7, 60, 63, 68, 75

[Loser et al., 2004] Loser, C., Legner, D. C., and Gizanis, D. (2004). Master
data management for collaborative service processes. Institute of Informa-
tion Management research report , University of St.Gallen. 10

[Loshin, 2009] Loshin, D. (2009). Master Data Management. Morgan Kauf-
mann. 4, 11, 12, 13, 17, 29, 90

[Maher and Srivastava, 1996] Maher, M. J. and Srivastava, D. (1996). Chasing
constrained tuple-generating dependencies. In PODS, pages 128–138. 32

[Mannila and Räihä, 1994] Mannila, H. and Räihä, K.-J. (1994). Algorithms
for Inferring Functional Dependencies from Relations. DKE, 12:83–99. 39,
40

[Mannila and Toivonen, 1997] Mannila, H. and Toivonen, H. (1997). Lev-
elwise search and borders of theories in knowledge discovery. DMKD,
1(3):241–258. 40, 41, 42, 88

[Medina and Nourine, 2009] Medina, R. andNourine, L. (2009). A unified hi-
erarchy for functional dependencies, conditional functional dependencies
and association rules. In ICFCA, Lecture Notes in Computer Science, pages
235–248. Springer. 33

[Morris and Vesset, 2005] Morris, H. and Vesset, D. (2005). Managing master
data for business performance management: the issues and hyperion’s solution.
IDC White paper. 10

[Novelli and Cicchetti, 2000] Novelli, N. and Cicchetti, R. (2000). Mining
functional and embedded dependencies using free sets. InActes de la 16ème
conférence Bases de Données Avancées(BDA’00), pages 201–220. 45

BIBLIOGRAPHY 98

[Novelli and Cicchetti, 2001a] Novelli, N. and Cicchetti, R. (2001a). Fun: An
efficient algorithm for mining functional and embedded dependencies. In
ICDT, pages 189–203. 6, 32, 33, 43, 45, 46, 47, 48

[Novelli and Cicchetti, 2001b] Novelli, N. and Cicchetti, R. (2001b). Func-
tional and embedded dependency inference: a data mining point of view.
Information Systems (IS), 26(7):477–506. 43, 45, 47, 48, 53, 86

[Orchestra-Networks, 2012] Orchestra-Networks (2012).
www.orchestranetworks.com. 4

[Otto and Ebner, 2010] Otto, B. and Ebner, V. (2010). Measuring master data
quality. Institute of Information Management, University of St. Gallen. 17, 90

[Pasquier et al., 1999] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L.
(1999). Discovering frequent closed itemsets for association rules. In ICDT,
pages 398–416. 33, 43

[Power, 2010] Power, D. (2010). A Real Multidomain MDM or a Wannabe. Or-
chestra Networks white paper. 4, 74, 86

[Rahm and Bernstein, 2001] Rahm, E. and Bernstein, P. A. (2001). A survey of
approaches to automatic schema matching. The VLDB Journal, 10:334–350.
7, 15, 69

[Rahm and Do, 2000] Rahm, E. and Do, H. H. (2000). Data cleaning: Prob-
lems and current approaches. IEEE Data Engineering Bulletin, 23:2000. 77

[Redman, 1998] Redman, T. (1998). The Impact of Poor Data Quality on the Typ-
ical Enterprise, volume 41. CACM. 4

[Rockwell, 2012] Rockwell, D. (2012). 5 Tips for Cleaning YourDirtyData. Tech-
nical report. iii, 4

[Russom, 2008] Russom, P. (2008). DefiningMaster DataManagement. the data
warehouse institute. 4, 10, 11, 12, 17, 29, 74, 86

[Shilakes and Tylman, 1998] Shilakes, C. C. and Tylman, J. (1998). Entreprise
Information Portal. Merill Lynch. 4

[Spyratos, 1987] Spyratos, N. (1987). The partition model: A deductive
database model. ACM TODS, 12(1):1–37. 48

[The-Data-Warehouse-Institute, 2012] The-Data-Warehouse-Institute (2012).
tdwi.org. 13

[Webster, 2001] Webster, B. F. (2001). Pattern in IT Litigation: Systems Failure
(1976-2000). PricewaterhouseCoopers. 4

BIBLIOGRAPHY 99

[Wyss et al., 2001] Wyss, C., Giannella, C., and Robertson, E. (2001). Fastfds:
A heuristic-driven, depth-first algorithm for mining functional dependen-
cies from relation instances extended abstract. DataWarehousing and Knowl-
edge Discovery, pages 101–110. 34

[Yakout et al., 2011] Yakout, M., Elmagarmid, A. K., Neville, J., Ouzzani, M.,
and Ilyas, I. F. (2011). Guided data repair. Proc. VLDB Endow., 4(5):279–289.
6, 80, 87

[Zaki, 2004] Zaki, M. J. (2004). Mining non-redundant association rules. Data
Min. Knowl. Discov., 9(3):223–248. 33

[Zhang et al., 2010] Zhang, M., Hadjieleftheriou, M., Ooi, B. C., Procopiuc,
C. M., and Srivastava, D. (2010). On multi-column foreign key discovery.
PVLDB, 3(1):805–814. 68

	Contents
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.3 Document Organization

	2 Master Data Management
	2.1 Definitions and Issues
	2.2 Implementation Styles
	2.3 MDM and Data Quality
	2.4 Summary

	3 Preliminaries
	3.1 Relational Model
	3.2 Conditional Functional Dependencies
	3.3 Editing Rules

	4 Discovering Conditional Functional Dependencies
	4.1 Related Works
	4.2 New notations for CFD
	4.3 Discovering constant CFD using conditional agree sets
	4.4 Frequent constant CFD discovery
	4.5 Experimentation
	4.6 Summary

	5 Discovering Editing Rules
	5.1 New Semantic of Editing Rules
	5.2 Discovering Editing Rules
	5.3 Related Works
	5.4 Experimentation
	5.5 Summary

	6 Editing Rules for Data Cleaning
	6.1 Data Repairing based on CFD
	6.2 Data Repairing based on ER
	6.3 Related Works
	6.4 Experimentation
	6.5 Summary

	7 Conclusion
	7.1 Summary of Contributions
	7.2 Discussion and Future works

	List of Figures
	Bibliography

