
P-Bench: Benchmarking in Data-Centric

Pervasive Application Development

Sabina Surdu1,2,3, Yann Gripay1,2, Vasile-Marian Scuturici1,2, and Jean-Marc
Petit1,2

1 Université de Lyon, CNRS
2 INSA-Lyon, LIRIS, UMR5205, F-69621, France

3 UBB Cluj-Napoca, Faculty of Mathematics and Computer Science, RO-400084,
Romania

{sabina.surdu,yann.gripay,vasile-marian.scuturici,jean-marc.petit}@

insa-lyon.fr

Abstract. Developing complex data-centric applications, which man-
age intricate interactions between distributed and heterogeneous entities
from pervasive environments, is a tedious task. In this paper we pursue
the difficult objective of assessing the ”easiness” of data-centric devel-
opment in pervasive environments, which turns out to be much more
challenging than simply measuring execution times in performance anal-
yses and requires highly qualified programmers. We introduce P-Bench, a
benchmark that comparatively evaluates the easiness of development us-
ing three types of systems: (1) the Microsoft StreamInsight unmodified
Data Stream Management System, LINQ and C#, (2) the StreamIn-
sight++ ad hoc framework, an enriched version of StreamInsight, that
meets pervasive application requirements, and (3) our SoCQ system, de-
signed for managing data, streams and services in a unified manner. We
define five tasks that we implement in the analyzed systems, based on
core needs for pervasive application development. To evaluate the tasks’
implementations, we introduce a set of metrics and provide the exper-
imental results. Our study allows differentiating between the proposed
types of systems based on their strengths and weaknesses when building
pervasive applications.

Keywords: pervasive environments, data-centric pervasive applications,
heterogeneous data, continuous queries, benchmarking

1 Introduction

Nowadays we are witnessing the commencement of a new information era. The
Internet as we know it today is rapidly advancing towards a worldwide Internet
of Things [15], a planetary web that interconnects not only data and people,
but also inanimate devices. Due to technological advances, we can activate the
world of things surrounding us by enabling distributed devices to talk to one
another, to signal their presence to users and to provide them with various data
and functionalities.



2 Surdu, Gripay, Scuturici, Petit

In [16], Mark Weiser envisioned a world where computers vanish in the back-
ground, fitting smoothly into the environment and gracefully providing infor-
mation and services to users, rather than forcing them to adapt to the intricate
ambiance from the computing realm. Computing environments that arise in this
context are generally referred to as pervasive environments, and applications
developed for these environments are called pervasive applications. To achieve
easy to use pervasive applications in a productive way, we must accomplish the
realization of easy to develop applications.

Developing complex data-centric applications, which manage intricate inter-
actions between distributed and heterogeneous entities from pervasive environ-
ments, is a tedious task, which often requires technical areas of expertise span-
ning multiple fields. Current implementations, which use DBMSs, Data Stream
Management Systems (DSMSs) or just ad hoc programming (e.g., using Java,
C#, .NET, JMX, UPnP, etc), cannot easily manage pervasive environments.
Recently emerged systems, like Aorta [17], Active XML [1] or SoCQ [9], aim at
easing the development of data-centric applications for pervasive environments.
We call such systems Pervasive Environment Management Systems (PEMSs).

In this paper we pursue the difficult objective of assessing the ”easiness”
of data-centric development in pervasive environments, which turns out to be
much more challenging than simply measuring execution times in performance
analyses and requires highly qualified programmers. The main challenge lies in
how to measure the easiness of pervasive application development and what
metrics to choose for this purpose. We introduce Pervasive-Bench (P-Bench),
a benchmark that comparatively evaluates the easiness of development using
three types of systems: (1) the Microsoft StreamInsight unmodified DSMS [10],
LINQ and C#, (2) the StreamInsight++ ad hoc framework, an enriched version
of StreamInsight, which meets pervasive application requirements, and (3) our
SoCQ PEMS [9], designed for data-centric pervasive application development.
We define five tasks that we implement in the analyzed systems, based on core
needs for pervasive application development. At this stage, we focus our study on
applications built by a single developer. To evaluate the tasks’ implementations
and define the notion of easiness, we introduce a set of metrics. P-Bench allows
differentiating between the proposed types of systems based on their strengths
and weaknesses when building pervasive applications.

P-Bench is driven by our experience in building pervasive applications with
the SoCQ system [9]. It also substantially expands our efforts to develop the
ColisTrack testbed for SoCQ, which materialized in [8]. Nevertheless, the bench-
mark can evaluate systems other than SoCQ, being in no way limited by this
PEMS.

We present a motivating scenario, in which we monitor medical containers
transporting fragile biological content between hospitals, laboratories and other
places of interest. A pervasive application developed for this scenario handles
slower-changing data, similar to those found in classical databases, and dis-
tributed entities, represented as data services, that provide access to potentially
unending dynamic data streams and to functionalities. Under reasonable as-



P-Bench: Benchmarking in Pervasive Application Development 3

sumptions drawn by these types of scenarios, where we monitor data services
that provide streams and functionalities, P-Bench has been devised to be a com-
prehensive benchmark.

To the best of our knowledge, this is the first study in the database commu-
nity that addresses the problem of evaluating easiness in data-centric pervasive
application development. Related benchmarks, like TPC variants [20] or Lin-
ear Road [3], focus on performance and scalability. While also examining these
aspects, P-Bench primarily focuses on evaluating how easy it is to code an ap-
plication, including deployment and evolution as well. This is clearly a daunting
process, much more challenging than classical performance evaluation. We cur-
rently focus on pervasive applications that don’t handle big data, in the order of
petabytes or exabytes, e.g., home monitoring applications in intelligent buildings
or container tracking applications. We believe the scope of such applications is
broad enough to allow us to focus on them, independently of scalability issues.
We strive to fulfill Jim Gray’s criteria [7] that must be met by a domain-specific
benchmark, i.e., relevance, portability, and simplicity. Another innovative feature
of P-Bench is the inclusion of services, as dynamic, distributed and queryable
data sources, which dynamically produce data, accessed through stream sub-
scriptions and method invocations. In P-Bench, services become first-class cit-
izens. We are not aware of similar works in this field. Another contribution of
this paper is the integration of a commercial DSMS with service discovery and
querying capabilities in a framework that can manage a pervasive environment.

This paper is organized as follows. Section 2 provides an insight into the
requirements of data-centric pervasive application development, highlighting ex-
igencies met by DSMSs, ad hoc programming and PEMSs. In Section 3 we
describe the motivating scenario and we define the tasks and metrics from the
benchmark. Section 4 presents the systems we assess in the benchmark, focusing
on specific functionalities. In Section 5 we provide the results of our experimental
study. Section 6 discusses the experimental results, highlighting the benefits and
limitations of our implementations. Section 7 concludes this paper and presents
future research directions.

2 Overview of Data-Centric Pervasive Applications

Pervasive applications handle data and dynamic data services4 distributed over
networks of various sizes. Services provide various resources, like streams and
functionalities, and possibly static data as well. The main difficulties are to
seamlessly integrate heterogeneous, distributed entities in a unified model and
to homogeneously express the continuous interactions between them via declar-
ative queries. Such requirements are met, to different extents, by pervasive ap-
plications, depending on the implementation.

DSMSs. DSMSs usually provide a homogeneous way to view and query rela-
tional data and streams, e.g., STREAM [2]. Some of them provide the ability to

4 We will refer to a data service as a service or data source in the rest of the paper.



4 Surdu, Gripay, Scuturici, Petit

handle large-scale data, like large-scale RSS feeds in the case of RoSeS [4], or the
ability to write SQL-like continuous queries. Nevertheless, developing pervasive
applications using only DSMSs introduces significant limitations, highlighted by
P-Bench.

Ad hoc programming using DSMSs. Ad hoc solutions, which combine
imperative languages, declarative query languages and network protocols, aim at
handling complex interactions between distributed services. Although they lead
to the desired result, they are not long-term solutions, as P-Bench will show.

PEMSs. These systems aim at reconciling heterogeneous resources, like
slower-changing data, streams and functionalities exposed by services in a unified
representation in the query engine. PEMSs can be realized with many systems
or approaches, such as Aorta [17], Active XML [1], SoCQ [9] or HYPATIA [5],
to mention a few.

3 P-Bench

The P-Bench benchmark aims at providing an evaluation of different approaches
to building data-centric pervasive applications. The common objective of bench-
marks is to provide some way to evaluate which system yields better performance
indicators when implementing an application, so that a ”better” system can be
chosen for the implementation [12]. Although we also consider performance in
P-Bench, our focus is set on evaluating the easiness of data-centric pervasive
application development with different types of systems: a DSMS, ad hoc pro-
gramming and a PEMS.

To highlight the advantages of declarative programming, we ask that the
evaluated systems implement tasks based on declarative queries. Some imple-
mentations will also require imperative code, others will not. We argue that one
dimension of investigation when assessing the easiness of building pervasive ap-
plications is imperative versus declarative programming. A pervasive application
seen as a declarative query over a set of services from the environment provides a
logical view over those services, abstracting physical access issues. It also enables
optimization techniques and doesn’t require code compilation. When imperative
code is included, restarting the system to change a query, i.e., recompiling the
code, is considered as an impediment for the application developer.

3.1 Scenario and Framework

In our scenario, fragile biological matter is transported in sensor-enhanced med-
ical containers, by different transporters. During the containers’ transportation,
temperature, acceleration, GPS location and time must be observed. Corre-
sponding sensors are embedded in the container: a temperature sensor to verify
temperature variations, an accelerometer to detect high acceleration or deceler-
ation, a timer to control the deadline beyond which the transportation is unnec-
essary and a GPS to know the container position at any time.



P-Bench: Benchmarking in Pervasive Application Development 5

A supervisor determines thresholds for the different quality criteria a con-
tainer must meet, e.g., some organic cells cannot be exposed to more than 37°
C. When a threshold is exceeded, the container sends a text message (e.g., via
SMS) to its supervisor.

In our scenario, only part of these data are static and can be stored in classi-
cal databases: the medical containers’ descriptions, the different thresholds. All
the other data are dynamically produced by distributed services and accessed
through method invocations (e.g., get current location) or stream subscriptions
(e.g., temperature notifications). Moreover, services can provide additional func-
tionalities that change the environment, like sending some messages (e.g., by
SMS) when an alert is triggered; they can also provide access to data stored
in relations, if necessary. Therefore, our scenario is representative for pervasive
environments, where services provide static data, dynamic data streams and
methods that can be invoked [9]. It is also compatible with existing scenarios for
DSMSs (like the one from Linear Road), but services are promoted as first-class
citizens.

A data service that models a device in the environment has an URL and ac-
cepts a set of operations via HTTP. P-Bench contains car, medical container

and alert services, which expose streams of car locations, of medical container
temperature notifications, the ability to send alert messages when exceptional
situations occur, etc.

We developed a framework to implement this scenario (Figure 1). Since we
use a REST/HTTP-based protocol to communicate with services, they can be
integrated independently of the operating system and programming language.
Moreover, assessed systems can be equipped with modules for dynamic service
discovery.

The World Simulator Engine is a C# application that runs on a Windows
2008 Server machine and simulates (i.e., generates) services in the environment.
The simulator accepts different options, like the number of cars, the places they
visit, the generation of medical containers, etc. Services’ data rate is also param-
eterizable (e.g., how often a car emits its location). The engine uses the Google
Maps Directions API Web Service to compute real routes of cars.

The Control & Visualization Interface allows visualizing services in theWorld,
and writing and sending declarative queries to a query engine. The Visualization
Interface runs on an Apache Web server; the server side is developed in PHP.
On the client side, the web user interface is based on the Google Maps API to
visualize the simulated world on a map, and uses Ajax XML HTTP Request to
load the simulated state from the server side. Several remote clients can connect
simultaneously to the same simulated environment, by using their Web browser.
This user interface is not mandatory for our benchmark, but it does provide a
nice way of visualizing services and the data they supply. Declarative queries
can be written using an interface implemented as an ASP.NET Web application
that runs on the Internet Information Services server. We thoroughly describe
this scenario and framework in our previous paper on ColisTrack [8].



6 Surdu, Gripay, Scuturici, Petit

In our experiments we eliminate the overhead introduced by our web in-
terface. In the StreamInsight and StreamInsight++ implementations we use an
in-process server and send queries from the C# application that interacts with
the server. In the case of SoCQ, we write and send queries from SoCQ’s interface.

Fig. 1. Scenario framework architecture

3.2 Benchmark Tasks

We define five benchmark tasks to evaluate the implementation of our scenario
with the assessed systems. The main challenge in pervasive applications is to
homogeneously express interactions between resources provided by dynamically
discovered services, e.g., data streams, methods and static data. Therefore, we
wrap tasks’ definitions around functionalities dictated by these necessities. Each
task is built around a main functionality that has to be implemented by a system
in order to fulfill the task’s objective. The parameters of the tasks are services
specific to our scenario. These parameters can easily be changed, so that a task
can be reformulated on any pervasive environment-based scenario, whilst main-
taining its specified objective. The difficulty of the tasks is incremental. We start
with a task that queries a single data stream from a given service, and we end
with a task that combines heterogeneous resources from dynamically discovered
services of different types.

Since P-Bench is concerned with assessing development in pervasive environ-
ments, our tasks are defined in the scope of pervasive applications. Other types
of applications like data analysis applications are not in the focus of our current
study.

Task 0: Startup. The objective of this task is to prepare the assessed sys-
tems for the implementation of the scenario. It includes the system-specific de-
scription of the scenario, i.e., data schema, additional application code, etc.



P-Bench: Benchmarking in Pervasive Application Development 7

Task 1: Localized, single stream supervision. The objective of this
task is to monitor a data stream provided by a service that had been localized
in advance, i.e., dynamic service discovery is not required. Task 1 tracks a single
moving car and uses a car service URL. The user is provided, at any given time
instant, with the last reported location of the monitored car.

Task 2: Multiple streams supervision. The objective of this task is to
monitor multiple data streams provided by dynamically discovered services. Task
2 tracks all the moving cars. The user is provided, at any given time instant,
with the last reported location of each car.

Task 3: Method invocation. The objective of this task is to invoke a
method provided by a dynamically discovered service. Task 3 provides the user
with the current location of a medical container, given its identifier.

Task 4: Composite data supervision. The objective of this task is to
combine static data, and method invocations and data streams provided by
dynamically discovered services, in a monitoring activity. Task 4 monitors the
temperatures of medical containers and sends alert messages when the supervised
medical containers exceed established temperature thresholds.

3.3 Benchmark Metrics

Similarly to the approach from [6], we identify a set of pervasive application
quality assurance goals: easy development, easy deployment and easy evolution.
Since easiness alone cannot be a sole criterion for choosing a system, we also
introduce the performance goal to assess the efficiency of a system under realistic
workloads. Based on these objectives we define a set of metrics that we think
fits best for evaluating the process of building pervasive applications.

We define the life cycle of a task as the set of four stages that must be
covered for its accomplishment. Each stage is assessed through related metrics
and corresponds to one of the quality assurance goals:

– development - metrics from this stage assess the easiness of task development;
– deployment - metrics from this stage evaluate the easiness of task deploy-

ment;
– performance - in this stage we assess system performance, under realistic

workloads;
– evolution - metrics from this stage estimate the impact of the task evolution,

i.e., how easy it is to change the current implementation of the task, so that
it adapts to new requirements. The task’s objective remains unmodified.

By defining the life cycle of a task in this manner, we adhere to the goal
of agility [13] in P-Bench. Agility spans three life cycle stages: development,
deployment and evolution. Since we are not concerned with big data, we don’t
focus on scale agility.

We now define a set of metrics for each of the four stages:
Development.We separate task development on two levels: imperative code

(written in an imperative programming language, e.g., C#) and declarative code



8 Surdu, Gripay, Scuturici, Petit

(written in a declarative query language, e.g., Transact-SQL). We measure the
easiness and speed in the development of a task through the following metrics:

– LinesOfImperativeCode outputs the number of lines of imperative code re-
quired to implement the task (e.g., code written in Java, C#). The tool used
to assess this metric is SLOCCount [21]. We evaluate the middleware used
to communicate with services in the environment, but we exclude predefined
class libraries from our assessment (e.g., classes from the .NET Base Class
Library);

– NoOfDeclarativeElements provides the number of declarative elements in
the implementation of the task. We normalize a query written in a declara-
tive language in the following manner. We consider a set of language-specific
declarative keywords describing query clauses, for each of the evaluated sys-
tems. The number of declarative elements in a query is given by the number
of keywords it contains (e.g., a SELECT FROM WHERE query in Transact-
SQL contains three declarative elements);

– NoOfQueries outputs the number of declarative queries required for the im-
plementation of the task;

– NoOfLanguages gives the number of imperative and declarative languages
that are used in the implementation of the task;

– DevelopmentTime roughly estimates the number of hours spent to imple-
ment the task, including developer training time and task testing, but ex-
cluding the time required to implement the query engine or the middleware
used by the systems to interact with services.

Deployment. The deployment stage includes metrics:

– NoOfServers gives the number of servers required for the task (e.g., the
StreamInsight Server);

– NoOfSystemDependencies outputs the number of system-specific dependen-
cies that must be installed for the task;

– IsOSIndependent indicates whether the task can be deployed on any oper-
ating system (e.g., Windows, Linux, etc).

Performance. Once we implemented and deployed the task, we can mea-
sure the performance of this implementation. We need now to rigorously define
accuracy and latency requirements.

The accuracy requirement states that queries must output correct results.
Our work for an accuracy checking framework in a pervasive environment setting
is ongoing. Using this framework we will compute the correct results for queries
in a given task, we will calculate the results obtained when implementing the
task with an assessed system, and finally, we will characterize the accuracy of
the latter results using Precision and Recall metrics. We will consider both the
results of queries and the effects that query executions have on the environment.

We place an average latency requirement of 5 seconds on continuous queries,
i.e., on average, up to 5 seconds can pass between the moment an item (i.e.,
a tuple or an event) is fed into a query and the moment the query outputs a



P-Bench: Benchmarking in Pervasive Application Development 9

result based on this item. We set a query execution time of 60 seconds. When
assessing performance for systems that implement dynamic service discovery, a
query starts only after all the required services have been discovered, but during
query execution both StreamInsight++ and SoCQ continue to process messages
from services that appear and disappear on and from the network.

To evaluate performance, we consider the average latency and accuracy re-
quirements described above and define a set of metrics for continuous queries.
In the current implementation, the metrics are evaluated by taking into account
the average latency requirement, but our accuracy checking framework will al-
low us to evaluate them with respect to the accuracy constraints as well. The
performance stage metrics are:

– MaxNoDataSources gives the maximum number of data sources (i.e., ser-
vices) that can feed one continuous query, whilst meeting accuracy and la-
tency requirements. We assign a constant data rate of 10 events/minute for
each data source;

– MaxDataRate outputs the maximum data rate for the data sources that feed
a continuous query, under specified accuracy and latency requirements. All
the sources are supposed to have the same constant data rate. This metric is
expressed as number of events per second. We are not interested in extremely
high data rates for incoming data, so we will evaluate the task up to a data
rate of 10.000 events/second. Unless specified otherwise in the task, this
metric is evaluated for 10 data sources;

– NoOfEvents is the number of processed events during query execution when
assessing the MaxDataRate metric. This metric describes the limitations of
our implementations and hardware settings, more than system performance;

– AvgLatency outputs the average latency for a continuous query, given a
constant data rate of 10 events/second for the data sources that feed the
query. AvgLatency is expressed in milliseconds and is computed across all
the data sources (10 by default) that feed a continuous query, under specified
accuracy requirements.

Evolution. The evolution stage encompasses metrics that quantify the im-
pact that new requirements or changes have on the whole task. The evolution of
a task does not suffer radical changes (i.e., we don’t modify a task that subscribes
to a stream, to invoke a method in its updated version). A task’s parameters, e.g.,
the services, may change, but the specified objective for a task is maintained.
This stage contains the following metrics:

– ChangedImperativeCode outputs the number of lines of imperative code that
need to be changed (added, modified or removed), when the task evolves, in
order to accomplish newly specified requirements. Lines of imperative code
are counted like in the case of the LinesOfImperativeCode metric;

– ChangedDeclarativeElements provides the number of declarative elements
that need to be changed in any way (added, modified or removed), in order
to update the task. Counting declarative elements is performed like in the
case of the NoOfDeclarativeElements metric.



10 Surdu, Gripay, Scuturici, Petit

Metrics in this stage provide a description of the reusability dimension when
developing pervasive applications. We are assessing the energy and effort devoted
to the process of task evolution.

4 Assessed Systems

The DSMS we use in P-Bench is StreamInsight. To accomplish the tasks in an
ad hoc manner, we enrich StreamInsight with dynamic service discovery fea-
tures, obtaining a new framework: StreamInsight++. As a PEMS, we use SoCQ.
To communicate with services in the environment, we use UbiWare, the mid-
dleware we developed in [14] to facilitate application development for ambient
intelligence.

StreamInsight was chosen based on the high familiarity with the Microsoft
.NET-based technologies. We chose SoCQ because of the expertise our team has
with this system and the ColisTrack testbed. We don’t aim at conducting a com-
prehensive study of DSMSs or PEMSs, but P-Bench can as well be implemented
in other DSMSs like [18], [4], [2], or PEMSs like [1] or [5].

4.1 Microsoft StreamInsight

Microsoft StreamInsight [10] is a platform for the development and deployment of
Complex Event Processing (CEP) applications. It enables data stream processing
using the .NET Framework. For pervasive application development, additional
work has to be done in crucial areas, like service discovery and querying. To
execute queries on the StreamInsight Server, one requires a C# application to
communicate with the server. We enrich this application with a Service Manager
module, which handles the interaction with the services in the environment and
which is based on UbiWare.

As described in the technical documentation [19], StreamInsight processes
event streams coming in from multiple sources, by executing continuous queries
on them. Continuous queries are written in Language-Integrated Query (LINQ)
[11]. StreamInsight’s run-time component is the StreamInsight server, with its
core engine and the adapter framework. Input adapters read data from event
sources and deliver them to continuous queries on the server, in a push man-
ner. Queries output results which flow, using pull mechanisms, through output
adapters, in order to reach data consumers.

Figure 2 shows the architecture of an application implemented with StreamIn-
sight (similar to [19]). Events flow from network sources in the pervasive envi-
ronment through input adapters into the StreamInsight engine. Here they are
processed by continuous queries, called standing queries. For simplicity, we de-
pict data streaming in from one car service and feeding one continuous query
on the server. The results are streamed through an output adapter to a con-
sumer application. Static reference data (e.g., in-memory stored collections or
SQL Server data) can be included in the LINQ standing queries specification.



P-Bench: Benchmarking in Pervasive Application Development 11

Fig. 2. StreamInsight application architecture

4.2 StreamInsight++

StreamInsight contains a closed source temporal query engine that cannot be
changed. Instead, we enrich the Service Manager with dynamic service discovery
capabilities, using ad hoc programming, thus obtaining the StreamInsight++.

The enriched Service Manager allows the user of StreamInsight++ to write
queries against dynamically discovered services. It can be thought of as the
middleware between the system and the services in the environment, or the
service wrapper that allows both service discovery and querying. The service
access mechanism uses the REST/HTTP-based protocol mentioned in Section
3. The Service Manager delivers data from discovered services to input adapters.

4.3 SoCQ

We designed and implemented the Service-oriented Continuous Query (SoCQ)
engine [9], a PEMS that enables the development of complex applications for
pervasive environments using declarative service-oriented continuous queries.
These SQL-like queries combine conventional and non-conventional data, namely
slower-changing data, dynamic streams and functionalities, provided by services.

Within our data-oriented approach, we built a complete data model, namely
the SoCQ data model, which enables services to be modeled in a unified man-
ner. It also provides a declarative query language to homogeneously handle data,
streams and functionalities: Serena SQL. In a similar way to databases, we de-
fined the notion of relational pervasive environment, composed of several eX-
tended Dynamic Relations, or XD-Relations. The schema of an XD-Relation is
composed of real and/or virtual attributes [9]. Virtual attributes represent pa-
rameters of various methods, streams, etc, and may receive values through query
operators. The schema of an XD-Relation is further associated with binding pat-
terns, representing method invocations or stream subscriptions.

SoCQ includes service discovery capabilities in the query engine. The service
discovery operator builds XD-Relations that represent sets of available services
providing required data. For example, an XD-Relation car could be the result of



12 Surdu, Gripay, Scuturici, Petit

such an operator, and be continuously updated when new car services become
available and when previously discovered services become unavailable.

5 Benchmark Experiments

In this section we present the comparative evaluation of the chosen systems.
For each task, we will describe its life cycle on StreamInsight, StreamInsight++
and SoCQ. We start with the development stage, continue with deployment and
performance and end with task evolution. We rigorously assess each task through
the set of metrics we previously defined. At the end of each subsection dedicated
to a task we provide a table with metrics results and a short discussion. The
experiments were conducted on a Windows Server 2008 machine, with a 2.67GHz
Intel Xeon X5650 CPU (4 processors) and 16 GB RAM.

5.1 Assessing Performance

We present our system-specific evaluation approach for the performance stage:
StreamInsight and StreamInsight++. In this case we use an in-process

server. We connect to one or more service streams and deliver incoming data to
an input adapter. We assess the time right before the input adapter enqueues
an event on the server and the time right after the output adapter dequeues the
event from the server. The time interval delimited by the enqueue and dequeue
moments represents the event’s latency. Average latency is computed incremen-
tally based on individual event latencies. We also enqueue CTI events on the
server, i.e., special events specific to StreamInsight, used to advance applica-
tion time, but we compute average latency by taking into account only events
received from environment services.

By evaluating latency in this manner, we assess the performance of the
StreamInsight engine together with the adapter framework and middleware that
we implemented, and not the pure performance of the StreamInsight engine.

SoCQ. The average latency is computed by comparing events from streams
of data services, to events from the query output stream. An event from a service
is uniquely identified by the service URL and the service-generated event times-
tamp. A unique corresponding event is then expected from the query output
stream. A latency measurement tool has been developed to support the latency
computation, based on UbiWare: it launches the task query in the query engine,
connects to the query result output stream, connects to a number of services, and
then matches expected events from services and query output events from the
query engine. The difference between the arrival time of corresponding events at
the measurement tool provides a latency for each expected event.

5.2 Task 0: Startup

The objective of this task is to prepare the evaluated systems for the implemen-
tation of Tasks 1 to 4. The latter can be implemented independently from one



P-Bench: Benchmarking in Pervasive Application Development 13

another, but they all require the prior accomplishment of the Startup task. We
describe the schema of our scenario in system-specific terms. We also present any
additional modules that need to be implemented. Task 0 uses the UbiWare mid-
dleware [14] previously mentioned, to interact with services in the environment.
UbiWare uses a REST/HTTP-based protocol for this purpose.

The developer that implemented the Startup task in StreamInsight and
StreamInsight++ has a confident level of C#, .NET and LINQ, but has never
developed applications for StreamInsight before. We don’t embark on an incre-
mental development task, evolving from StreamInsight to StreamInsight++. We
consider them to be independent, separate systems, hence any common features
are measured in the corresponding metrics, for each system.

The same developer also accomplished the Startup task in SoCQ, without
having any prior knowledge about the system and the SQL-like language it
provides.

Development. StreamInsight and StreamInsight++. We implement C# so-
lutions that handle the interaction with the StreamInsight server. They contain
entities specific to StreamInsight (input and output configuration classes and
adapters, etc) and entities that model data provided by services in P-Bench
(car location, temperature notification classes, etc). To interact with
environment services, these implementations also use and enrich the Service
Manager specific to StreamInsight or StreamInsight++.

StreamInsight. Task 1 is the only task that can be fully implemented with
StreamInsight, as it doesn’t require service discovery (the URL of the car service
that represents the car to be monitored is provided). Therefore, we implement
a C# solution, which handles the interaction with the StreamInsight server, to
prepare the system for Task 1. The solution contains the following entities:

– a car location class, that models location data provided by a car service
(latitude, longitude, timestamp and car id);

– a car data source module, that is part of the Service Manager, and deliv-
ers incoming car locations (from the given service URL) to an input adapter;

– input and output configuration classes, to specify particulars of data sources
and consumers;

– input and output adapter factory classes, responsible for creating input and
output adapters;

– a typed input adapter, which receives a specific car location event from
the car data source in a push manner and enqueues this event, using
push mechanisms, into the StreamInsight server;

– an output adapter, which dequeues results from the query on the StreamIn-
sight server;

– an additional benchmark tools class, that manages application state,
computes latency, etc.

StreamInsight++. StreamInsight++ can implement all the tasks. The C# so-
lution we built to enrich StreamInsight and to communicate with the StreamIn-
sight server is much more complex than the one used with raw StreamInsight,
but there are some common features. The solution contains the following entities:



14 Surdu, Gripay, Scuturici, Petit

– apart from the car location class, we developed C# classes that model
medical containers and their temperature notifications, i.e., medical con-

tainer and temperature notification;
– we enriched the car data source module to encompass dynamic discovery,

so as to deliver car locations from dynamically discovered cars;
– we added medical containers data source modules specific to Tasks 3 and

4, respectively, i.e., medical container data source and temperature

notification data source;
– additional input adapter factory classes were developed, for the newly added

input adapters (for medical containers and medical containers temperature
notifications);

– classes that contain the input configuration, output configuration, output
adapter factory and output adapter were maintained (we chose to implement
an untyped output adapter);

– extra input adapters were developed, to handle the diversity of input events
from the pervasive environment, i.e., medical containers dynamic discovery
messages and medical containers temperature notifications;

– the benchmark tools class was extended to encompass methods specific
to Tasks 3 and 4.

SoCQ. All the tasks can be implemented with SoCQ. SoCQ already contains
the middleware required for the services in P-Bench, but to provide a fair com-
parison with the other systems, we will assess the code in SoCQ’s middleware
as well.

We provide a SoCQ schema of our scenario, written in Serena SQL. List-
ing 1 depicts the set of XD-Relations, which abstract the distributed entities
in the pervasive environment. This is the only price the application developer
needs to pay to easily develop data-centric pervasive applications with SoCQ:
gain an understanding of SoCQ and Serena SQL and model the pervasive envi-
ronment as a set of XD-Relations, yielding a relational pervasive environment.
Car, MedicalContainer and SupervisorMobile are finite XD-Relations,
extended with virtual attributes and binding patterns in order to provide ac-
cess to stream subscriptions and method invocations. Supervise is a simple
dynamic relation, with no binding patterns, yet all four relations are specified in
a consistent, unified model, in the Serena SQL. On top of the relational perva-
sive environment, the developer can subsequently write applications as continu-
ous queries, which reference data services from the distributed environment and
produce data.

Deployment. StreamInsight and StreamInsight++. To attain this task with
StreamInsight and StreamInsight++, one requires .NET, a C# compiler, SQL
Server Compact Edition, a Windows operating system and the StreamInsight
server. This minimum setting is necessary for Tasks 1 to 4, with some additional
task-dependent prerequisites.

SoCQ. The deployment machine must have the SoCQ Server and a Java
Virtual Machine. Any operating system can support this task.

Evolution. The Startup task prepares the system to handle a pervasive
environment, based on entities from the scenario we proposed. If we change the



P-Bench: Benchmarking in Pervasive Application Development 15

CREATE RELATION Car (carID STRING PRIMARY KEY, carService

SERVICE, latitude STRING VIRTUAL,
longitude STRING VIRTUAL, locDate DATE VIRTUAL)

USING BINDING PATTERNS (
locationNotification[carService] () : (latitude,

longitude, locDate) STREAMING);

CREATE RELATION MedicalContainer (mcID STRING PRIMARY KEY,

mcService SERVICE, temperatureDate DATE VIRTUAL,
temperatureValue REAL VIRTUAL, locDate DATE VIRTUAL,

latitude STRING VIRTUAL, longitude STRING VIRTUAL,
timeDate DATE VIRTUAL, timeout REAL VIRTUAL)

USING BINDING PATTERNS (

temperatureNotification[mcService] () : (temperatureDate,
temperatureValue) STREAMING,

getTemperature[mcService] () : (temperatureDate,
temperatureValue),

getLocation[mcService] () : (locDate , latitude, longitude),

getTimeout[mcService] () : (timeDate , timeout) );

CREATE RELATION SupervisorMobile (mobileID STRING PRIMARY KEY,
phone STRING, alertService SERVICE, alertDate DATE VIRTUAL,

alertMessage STRING VIRTUAL, alertSent BOOLEAN VIRTUAL)
USING BINDING PATTERNS (

sendSMS [alertService] (phone, alertDate, alertMessage) :

(alertSent) );

CREATE RELATION Supervise (mobileID STRING, mcID STRING,
temperatureThreshold REAL,

fromLatitude STRING, fromLongitude STRING, fromDate DATE,
toLatitude STRING, toLongitude STRING, toDate DATE,
PRIMARY KEY (mobileID, mcID) );

Listing 1: SoCQ schema for the motivating scenario

pervasive environment, we must rebuild the Startup task in order to handle
different services, which expose different types of data and / or use different
service wrappers.

StreamInsight and StreamInsight++. We must redevelop the C# solutions if
the service wrappers change. If the service access mechanisms don’t change, the
middleware can remain unmodified, i.e., ChangedImperativeCode won’t consider
the ∼3700 lines of code that compose the middleware implemented for StreamIn-
sight and StreamInsight++. Other classes might be kept if some data provided
by services from the initial environment are preserved.

SoCQ. In SoCQ, we need to build a different schema, in Serena SQL, for the
new pervasive environment. If the service wrappers change, then the imperative
code for the middleware must be reimplemented. If the middleware remains
unmodified, no line of imperative code is impacted in the evolution stage, i.e.,
ChangedImperativeCode will be 0.

Task discussion. The time and effort devoted to self-training and imple-
menting Task 0 are considerably higher in the StreamInsight-based implementa-
tions than in SoCQ (see Table 1). The former can only be deployed on Windows
machines. SoCQ needs a smaller number of system dependencies and can be de-
ployed on any operating system. If we switch to a different scenario, Task 0 needs
to be reimplemented, which translates to a significant amount of changed lines
of imperative code in all the systems, if the service access mechanisms change. If
the middleware doesn’t change, the exact amount of changed code depends on



16 Surdu, Gripay, Scuturici, Petit

the preservation of some services from the initial environment; in StreamInsight
and StreamInsight++ we need to modify imperative code, whereas SoCQ requires
changing only declarative elements. Table 1 shows figures for the worst-case sit-
uation, where all services and their access mechanisms are changed.

Table 1. Task 0 metrics

Stage Metric SI SI++ SoCQ

Development LinesOfImperativeCode 4323 5186 265005

NoOfDeclarativeElements 0 0 13
NoOfQueries 0 0 4

NoOfLanguages 1 1 2
DevelopmentTime 120 160 16

Deployment NoOfServers 1 1 1
NoOfSystemDependencies 3 3 1

IsOSIndependent No No Yes

Evolution ChangedImperativeCode ∼4323 ∼5186 ∼11000
ChangedDeclarativeElements 0 0 ∼13

5.3 Task 1: Localized, Single Stream Supervision

Task 1 tracks one moving car. Its input is a car service URL and a stream
of locations from the monitored car. The output of the task is a stream that
contains the LocationTimestamp, Latitude, Longitude and CarId of the
car, i.e., the user is provided with the car’s stream of reported locations. The
task’s objective is to monitor a data stream provided by a car service that had
been localized in advance, i.e., dynamic service discovery is not required.

Development. StreamInsight and StreamInsight++. We require one LINQ
query in order to track a given car (Listing 2a). We need additional C# code
to create a query template that represents the business logic executed on the
server, instantiate adapters, bind a data source and a data consumer to the
query, register the query on the server and start and stop the continuous query.
Dynamic discovery is not required for this task.

SoCQ. In SoCQ, the developer writes a car tracking query in Serena SQL
(Listing 2b). It subscribes to a stream of location data from the car XD-
Relation, based on a car service URL. No imperative code is needed.

5 The SoCQ engine source code contains about 26500 lines of Java code. It encom-
passes the UbiWare generic implementation (client-side and server-side, about 11000
lines of code), the core of the SoCQ engine (data management and query processing,
about 13200 lines), and some interfaces to control and access the SoCQ engine (2
Swing GUI and a DataService Interface, about 2300 lines). For StreamInsight and
StreamInsight++, LinesOfImperativeCode assesses only the task application and Ser-
vice Manager code (we don’t have access to StreamInsight’s engine implementation).



P-Bench: Benchmarking in Pervasive Application Development 17

FROM Car IN CarSupervision

SELECT Car.CarID, Car.Latitude, Car.Longitude,
Car.LocationTimestamp;

(a) Car supervision query in LINQ

CREATE VIEW STREAM carSupervision (carID STRING, locDate
DATE, locLatitude STRING, locLongitude STRING)

AS SELECT c.carID, c.locDate, c.latitude, c.longitude
STREAMING UPON insertion
FROM Car c

WHERE c.carService = "http://127.0.0.1:21000/Car"
USING c.locationNotification [1];

(b) Car supervision query in SoCQ’s Serena SQL

Listing 2: Car supervision queries

Deployment. StreamInsight, StreamInsight++ and SoCQ. For this task, the
same prerequisites as for Task 0 are required, for all the implementations.

Performance. StreamInsight, StreamInsight++ and SoCQ. For this task we
assess metrics MaxDataRate, NoOfEvents and AvgLatency, since we track one
car.

Evolution. StreamInsight, StreamInsight++ and SoCQ. The user may want
to track a different car, which means changing the car service URL. In our
StreamInsight-based approaches, this requires changing and recompiling the im-
perative code, to provide the new URL. The LINQ query remains unchanged.
In SoCQ, we supply a different car service URL in the declarative query code.

Task discussion. The effort required to develop and update the task is
more intense in the StreamInsight-based implementations, which can be deployed
only on Windows machines and require 2 languages, LINQ and C#, and more
dependencies (see Table 2). The SoCQ implementation uses 1 language (Serena
SQL), needs 1 dependency and no imperative code, and can be deployed on any
operating system, but it yields a higher average latency. All the systems achieved
a MaxDataRate of 10.000 events/second under specified latency requirements.

5.4 Task 2: Multiple Streams Supervision

Task 2 tracks all the moving cars. The input of this task is represented by
notification messages sent by services in the environment when they appear or
disappear and by streams of interest emitted by services monitored in the task,
i.e., car location streams from monitored cars. The output of this task is a stream
that provides the LocationTimestamp, Latitude, Longitude and CarId of
the monitored cars. The user is hence provided with the reported locations of
each car. Task 2’s objective is to monitor multiple data streams provided by
dynamically discovered car services.

Development. StreamInsight++. This implementation is similar to the one
from Task 1, but the car data source receives events from all the streams
the application subscribed to. It delivers them in a push manner to the input
adapter. Hence, the LINQ query for this task is identical to the one described
in Listing 2a.



18 Surdu, Gripay, Scuturici, Petit

Table 2. Task 1 metrics

Stage Metric SI SI++ SoCQ

Development LinesOfImperativeCode 33 33 0
NoOfDeclarativeElements 2 2 6

NoOfQueries 1 1 1
NoOfLanguages 2 2 1

DevelopmentTime 4 4 1

Deployment NoOfServers 1 1 1
NoOfSystemDependencies 3 3 1

IsOSIndependent No No Yes

Performance MaxDataRate 10000 10000 10000
NoOfEvents 350652 350652 360261
AvgLatency 0.5 0.5 1.34

Evolution ChangedImperativeCode 1 1 0
ChangedDeclarativeElements 0 0 1

SoCQ. The SoCQ implementation is similar to the one described for Task 1.
The only requirement is to write the car tracking query. The query for this task
is identical with the one depicted in Listing 2b, except it doesn’t encompass a
filter condition, since we are tracking all the cars.

Deployment. StreamInsight++ and SoCQ. The prerequisites for deployment
are identical with those mentioned in Task 0.

Performance. StreamInsight++ and SoCQ. We evaluate all the metrics from
the performance stage. We compute MaxDataRate, NoOfEvents and AvgLatency
across events coming in from all data sources, for a constant number of 10 data
sources.

Evolution. StreamInsight++ and SoCQ. A new requirement for this task can
be to track a subgroup of moving cars. In StreamInsight++ we need to change the
imperative code, to check the URL of the data source discovered by the system.
In SoCQ, we need to add a filter predicate in the continuous query.

Task discussion. SoCQ provides a convenient approach to development,
deployment and evolution, without imperative code, obtaining better results for
metrics NoOfLanguages, NoOfSystemDependencies and IsOSIndependent (Ta-
ble 3). StreamInsight++ achieves superior performance when assessing MaxNo-
DataSources and MaxDataRate. We believe this implementation could do better,
but in our hardware setting we noticed a limit of 18.000 events that are received
by the StreamInsight engine each second; hence this is not a limitation imposed
by StreamInsight. For our scenario, the performance values obtained by SoCQ
are very good as well. We have multiple threads in our StreamInsight++ ap-
plication to subscribe to multiple streams, so the thread corresponding to the
StreamInsight++ output adapter is competing with existing in-process threads.
Therefore, the average latency we observe from the adapters is higher than the
StreamInsight’s engine pure latency and than the average latency measured for



P-Bench: Benchmarking in Pervasive Application Development 19

SoCQ. This task cannot be implemented in StreamInsight, due to lack of dy-
namic service discovery.

Table 3. Task 2 metrics

Stage Metric SI SI++ SoCQ

Development LinesOfImperativeCode NA 31 0
NoOfDeclarativeElements NA 2 5

NoOfQueries NA 1 1
NoOfLanguages NA 2 1

DevelopmentTime NA 4 1

Deployment NoOfServers NA 1 1
NoOfSystemDependencies NA 3 1

IsOSIndependent NA No Yes

Performance MaxNoDataSources NA 5000 2500
MaxDataRate NA 1700 750
NoOfEvents NA 976404 443391
AvgLatency NA 13.53 0.79

Evolution ChangedImperativeCode NA 1 0
ChangedDeclarativeElements NA 0 1

5.5 Task 3: Method Invocation

Task 3 provides the location of a medical container. The input of this task is
represented by a medical container identifier and notification messages sent by
services in the environment when they appear or disappear. Its output is the
current location of the container, i.e., the LocationTimestamp, Latitude

and Longitude. The objective of this task is to invoke a method provided by
a dynamically discovered medical container service.

Development. StreamInsight++. We create a SQL Server database and dy-
namically update a table in the database with available medical container

services. An input adapter delivers medical container services discovered by
Service Manager to a simple LINQ continuous query, whose results are used to
update the medical container services table in SQL Server. Based on the
input container identifier (an mcID field), the application looks up the medical
container URL in the SQL Server table. From imperative code, it calls the get-
Location method exposed by the medical container service, which outputs
the current location of the container.

SoCQ. We write a simple Serena one-shot query that uses the Medical-

Container XD-Relation, defined in the SoCQ schema (Listing 3). We manually
submit this query using SoCQ’s interface.

Deployment. StreamInsight++. Apart from the prerequisites described in
Task 0, to implement Task 3 we also need an installed instance of SQL Server.



20 Surdu, Gripay, Scuturici, Petit

SELECT latitude, longitude, locDate

FROM MedicalContainer
WHERE mcID="12345"
USING getLocation;

Listing 3: Locating medical container query in SoCQ

SoCQ. Task 0 prerequisites hold for this task implemented in SoCQ.
Performance. StreamInsight++ and SoCQ. We don’t assess performance

metrics for this task, as it encompasses a one-shot query. Assessing service dis-
covery performance is out of the scope of this evaluation.

Evolution. StreamInsight++ and SoCQ. The user may want to locate a dif-
ferent medical container. In StreamInsight++ we need to supply a different con-
tainer identifier in the imperative application. In SoCQ we supply a different
medical container identifier in the Serena query.

Task discussion. For this task as well development time and effort are
minimal in the SoCQ implementation, which doesn’t need imperative code (see
Table 4). In StreamInsight++ we also need an additional instance of SQL Server.
If SoCQ requires only Serena SQL, StreamInsight++ requires C#, LINQ and
Transact-SQL (to interact with SQL Server).6 Metrics NoOfSystemDependen-
cies and IsOSIndependent yield better values for SoCQ. This task cannot be
implemented in StreamInsight, because it requires dynamic service discovery.

Table 4. Task 3 metrics

Stage Metric SI SI++ SoCQ

Development LinesOfImperativeCode NA 102 0
NoOfDeclarativeElements NA 11 4

NoOfQueries NA 4 1
NoOfLanguages NA 3 1

DevelopmentTime NA 8 1

Deployment NoOfServers NA 2 1
NoOfSystemDependencies NA 3 1

IsOSIndependent NA No Yes

Evolution ChangedImperativeCode NA 1 0
ChangedDeclarativeElements NA 0 1

5.6 Task 4: Composite Data Supervision

Task 4 monitors the temperatures of medical containers and sends alert mes-
sages when the supervised medical containers exceed established temperature
thresholds. The input of this task is represented by notification messages sent

6 We will replace Transact-SQL with LINQ to SQL.



P-Bench: Benchmarking in Pervasive Application Development 21

by services from the environment when they appear or disappear, and by streams
of temperature notifications from the medical containers of interest. The output
of this task is a stream of calls to methods from alert services. Task 4’s objec-
tive is to combine in a monitoring activity static data (temperature thresholds
and supervision related data), and method invocations (send alert messages)
and data streams (temperature notifications) provided by dynamically discov-
ered alert and medical container services.

Development. StreamInsight++. This implementation integrates the StreamIn-
sight Server, as well as SQL Server, LINQ and C#. We need SQL Server to hold
supervision related data (which supervisors monitor which medical containers)
and dynamically discovered alert services. For the incoming medical con-
tainers temperature notifications we receive, if the temperature of a medical
container is greater than its temperature threshold, we search the corresponding
supervisor and the alert service he or she uses in the SQL Server database.
We issue a call, from imperative code, to the sendSMS method from the alert

service. The implementation comprises an entire application. The LINQ contin-
uous query selects temperature notifications from medical containers that exceed
temperature thresholds and calls the sendSMS method of the alert service of
the corresponding supervisor. One insert and one delete Transact-SQL queries
are used to update the SQL Server table holding dynamically discovered alert

services. A cache is used to speed up the retrieval of temperature thresholds
and container supervisors.

SoCQ. The development of this task in SoCQ contains one Serena query
(Listing 4) that combines static data (temperature thresholds), method invoca-
tions (sendSMS method from SupervisorMobile) and data streams (temper-
atureNotification streams from supervised medical containers).

CREATE VIEW STREAM temperatureSupervision (mcID STRING,
temperatureDate DATE, temperatureValue REAL,

temperatureThreshold REAL, temperatureSent BOOLEAN)
AS SELECT mc.mcID, mc.temperatureDate, mc.temperatureValue,

s.temperatureThreshold, mob.alertSent
STREAMING UPON insertion

FROM MedicalContainer mc, Supervise s, SupervisorMobile mob
WITH mob.alertDate := mc.temperatureDate,

mob.alertMessage := concat("Temperature error : ",

toString(mc.temperatureValue) )
WHERE mc.mcID = s.mcID

AND mob.mobileID = s.mobileID
AND s.temperatureThreshold < mc.temperatureValue

USING mc.temperatureNotification [1], mob.sendSMS;

Listing 4: Temperature supervision query in SoCQ

Deployment. StreamInsight++. This task requires the prerequisites from
Task 0, as well as an instance of SQL Server.

SoCQ. Only the prerequisites from Task 0 are required.

Performance. StreamInsight++ and SoCQ. We evaluate all the metrics from
the performance stage.



22 Surdu, Gripay, Scuturici, Petit

Evolution. StreamInsight++ and SoCQ. The user may ask to send notifica-
tions for a subgroup of the supervised medical containers. In both approaches,
filters need to be added, to the imperative application, for StreamInsight++ or
the Serena SQL query, for SoCQ.

Task discussion. StreamInsight++ outperforms SoCQ on the AvgLatency
and MaxNoDataSources performance metrics (Table 5), which is not surprising,
since the former is an ad hoc framework based on a commercial product, whereas
SoCQ is a research prototype. As the service data rate increases, SoCQ outper-
forms our StreamInsight++ implementation when assessing MaxDataRate, due
to the high number of alert service calls per second the query has to perform,
for which SoCQ has a built-in asynchronous call mechanism. Development, de-
ployment and evolution are easier with SoCQ, which requires no imperative code,
decreased development time and a smaller number of servers and dependencies.
Unlike SoCQ, StreamInsight++ does not offer an operating system independent
solution. This task cannot be implemented with StreamInsight because it needs
dynamic service discovery capabilities.

Table 5. Task 4 metrics

Stage Metric SI SI++ SoCQ

Development LinesOfImperativeCode NA 175 0
NoOfDeclarativeElements NA 13 7

NoOfQueries NA 4 1
NoOfLanguages NA 3 1

DevelopmentTime NA 10 3

Deployment NoOfServers NA 2 1
NoOfSystemDependencies NA 3 1

IsOSIndependent NA No Yes

Performance MaxNoDataSources NA 3000 2500
MaxDataRate NA 275 400
NoOfEvents NA 13170 23812
AvgLatency NA 6.25 34.37

Evolution ChangedImperativeCode NA 1 0
ChangedDeclarativeElements NA 0 1

We described the SoCQ queries from Listings 1, 2b, 3 and 4, with some
modifications, in the ColisTrack paper as well [8].

6 Discussion

The StreamInsight approach revealed the shortcomings encountered when devel-
oping pervasive applications with a DSMS. Such systems don’t consider services
as first-class citizens, nor provide dynamic service discovery. External functions



P-Bench: Benchmarking in Pervasive Application Development 23

can be developed to emulate this integration in DSMSs, requiring ad hoc pro-
gramming and sometimes intricate interactions with the query optimizer. With
StreamInsight we were able to fully implement only Task 0 and Task 1.

StreamInsight++ was our proposed ad hoc solution for pervasive application
development. The integration of different programming paradigms (imperative,
declarative and network protocols) was tedious. Developing pervasive applica-
tions turned out to be a difficult and time-consuming process, which required
either expert developers with more than one core area of expertise or using teams
of developers. Either way, the development costs increase. Ad hoc programming
led to StreamInsight++, which could be considered as a PEMS, since it handles
data and services providing streams and functionalities in a pervasive environ-
ment. However, apart from the cost issues, this system carries another problem:
it is specific to the pervasive environment it was designed for. A replacement of
this environment automatically triggers severe changes in the implementation of
the system. Moreover, although there are DSMSs which offer ways of homoge-
neously interacting with classical data relations and streams, in StreamInsight++
we needed a separate repository to hold static data, i.e., an instance of SQL
Server.

The SoCQ PEMS solved the complex interactions between various data
sources, by providing an integrated management of distributed services and a
declarative definition of continuous interactions. In SoCQ we wrote declarative
queries against dynamically discovered, distributed data services, the system
being able to handle pervasive environments, without modifications in its imple-
mentation, as long as the services access mechanisms don’t change. The price to
pay was represented by the training time dedicated to the SoCQ system and the
Serena SQL-like language (almost negligible for SQL developers), the description
of a scenario-specific schema in Serena and the service wrappers development.
Once Task 0 was accomplished, application development became straightfor-
ward. Writing SoCQ SQL-like queries was easy for someone who knew how to
write SQL queries in a classical context. By comparison, the time required to
study the StreamInsight platform, even if the developer had a confident level of
C# and LINQ, was considerably higher. SoCQ led to concise code for Tasks 1 -
4, outperforming StreamInsight and StreamInsight++ in this respect.

The StreamInsight-based systems generally yielded better scalability and per-
formance than SoCQ when evaluating average latency, the maximum number of
data sources, or the maximum data rate. One case when SoCQ did better than
the StreamInsight++ ad hoc framework, was in Task 4, when the engine had to
call external services’ methods at a high data rate. When assessing performance
for StreamInsight and StreamInsight++, we considered the StreamInsight engine
together with the adapter framework and middleware we implemented, and not
the pure performance of the StreamInsight engine.

SoCQ required only one SQL-like language to write complex continuous
queries over data, streams and functionalities provided by services. In the StreamIn-
sight and StreamInsight++ implementations, an application was developed in
imperative code, to execute continuous queries on the server. The only host lan-



24 Surdu, Gripay, Scuturici, Petit

guage allowed in the release we used (StreamInsight V1.2) is C#. SoCQ did
not burden the developer with such requirements. One SoCQ server and a Java
Virtual Machine were required in the SoCQ implementation and the solution
could be deployed on any operating system. The StreamInsight++ solution also
required more system-specific dependencies and it could only be deployed on
Windows machines.

Task evolution was straightforward with SoCQ. Entities of type XD-Relation
could be created to represent new service types in the pervasive environment and
changes to continuous or one-shot queries had a minimal impact on the declar-
ative code. With StreamInsight and StreamInsight++, task evolution became
cumbersome, impacting imperative code. For the StreamInsight-based imple-
mentations, task evolution had an associated redeployment cost, since the code
had to be recompiled.

SoCQ allows the developer to write code that appears to be more concise
and somewhat elegant than the code written using the two other systems. De-
velopers can fully implement Tasks 1 - 4 using only declarative queries. The
StreamInsight and StreamInsight++ systems require imperative code as well for
the same tasks, which need to be coded using an editor like Visual Studio. The
imperative paradigm also adds an extra compilation step.

7 Conclusion and Future Directions

In this paper we have tackled the difficult problem of evaluating the easiness
of data-centric pervasive application development. We introduced P-Bench, a
benchmark that assesses easiness in the development, deployment and evolution
process, and also examines performance aspects. To the best of our knowledge,
this is the first study of its kind. We assessed the following approaches to build-
ing data-centric pervasive applications: (1) the StreamInsight platform, as a
DSMS, (2) ad hoc programming, using StreamInsight++, an enriched version
of StreamInsight and (3) SoCQ, a PEMS. We defined a set of five benchmark
tasks, oriented towards commonly encountered requirements in data-centric per-
vasive applications. The scenario we chose can easily be changed, and the task’s
objectives are defined in a generic, scenario-independent manner.

We evaluated how hard it is to code a pervasive application using a set of
metrics thoroughly defined. As expected, our experiments showed that pervasive
applications are easier to develop, deploy and update with a PEMS. On the other
hand, the DSMS- and ad hoc-based approaches exhibited superior performance
for most of the tasks and metrics. However, for pervasive applications like the
ones in our scenario, the PEMS implementation of the benchmark tasks achieved
very good performance indicators as well. This is noteworthy, as the SoCQ PEMS
is a research prototype developed in a lab, whereas StreamInsight is a giant
company’s product.

Future research directions include finalizing our accuracy checking frame-
work, considering error management and resilience, data coherency, and includ-



P-Bench: Benchmarking in Pervasive Application Development 25

ing additional metrics like application design effort, software modularity and
collaborative development.

References

1. Abiteboul, S., Manolescu, I., Taropa, E.: A Framework for Distributed XML Data
Management. In: EDBT’06, pp. 1049–1058 (2006)

2. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I.,
Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford Stream
Data Manager. IEEE Data Eng. Bull. 26(1), 19–26 (2003)

3. Arasu, A., Cherniack, M., Galvez, E. F., Maier, D., Maskey, A., Ryvkina, E., Stone-
braker, M., Tibbetts, R.: Linear Road: A Stream Data Management Benchmark.
In: VLDB’04, pp. 480–491 (2004)

4. Creus Tomàs, J., Amann, B., Travers, N., Vodislav, D.: RoSeS: A Continuous Query
Processor for Large-Scale RSS Filtering and Aggregation. In: CIKM’11, pp. 2549–
2552 (2011)

5. Cuevas-Vicentt́ın, V., Vargas-Solar, G., Collet, C.: Evaluating Hybrid Queries
through Service Coordination in HYPATIA (demo). In: EDBT’12, pp. 602–605
(2012)

6. Fenton, N. E., Pfleeger, S. L.: Software Metrics: A Rigorous and Practical Approach.
PWS Publishing Co., Boston (1998)

7. Gray, J.: Benchmark Handbook: For Database and Transaction Processing Systems,
Morgan Kaufmann Publishers Inc., San Francisco (1992)

8. Gripay, Y., Laforest, F., Lesueur, F., Lumineau, N., Petit, J.-M., Scuturici, V.-M.,
Sebahi, S., Surdu, S.: ColisTrack: Testbed for a Pervasive Environment Management
System (demo). In: EDBT’12, pp. 574–577 (2012)

9. Gripay, Y., Laforest, F., Petit, J.-M.: A Simple (yet Powerful) Algebra for Pervasive
Environments. In: EDBT’10, pp. 359–370 (2010)

10. Kazemitabar, S. J., Demiryurek, U., Ali, M. H., Akdogan, A., Shahabi, C.: Geospa-
tial Stream Query Processing using Microsoft SQL Server StreamInsight. PVLDB.
3(2), 1537–1540 (2010)

11. Meijer, E.: The World According to LINQ. Commun. ACM. 54(10), 45–51 (2011)
12. Pugh, W.: Technical Perspective: A Methodology for Evaluating Computer System

Performance. Commun. ACM. 51(8), 82–82 (2008)
13. Rys, M.: Scalable SQL. Commun. ACM. 54(6), 48–53 (2011)
14. Scuturici, V.-M., Surdu, S., Gripay, Y., Petit, J.-M.: UbiWare: Web-Based Dynamic

Data & Service Management Platform for AmI. In: Middleware’12, pp. 11:1-11:2
(2012)

15. International Telecommunication Union: ITU Internet Reports. The Internet of
Things. International Telecommunication Union (2005)

16. Weiser, M.: The Computer for the 21st Century. Scientific American. 265(3), 94–
104 (1991)

17. Xue, W., Luo, Q.: Action-Oriented Query Processing for Pervasive Computing. In:
CIDR’05, pp. 305–316, (2005)

18. StreamBase, http://www.streambase.com/
19. Microsoft StreamInsight 1.2, http://technet.microsoft.com/en-us/library/

hh849326(v=sql.10).aspx
20. Transaction Processing Performance Council, http://www.tpc.org
21. Wheeler, D., Counting Source Lines of Code (SLOC), http://www.dwheeler.com/

sloc/


