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ABSTRACT

We propose a graph-cut based image segmentation method
by constructing an affinity graph using `0 sparse representa-
tion. Computing first oversegmented images, we associate
with all segments, that we call superpixels, a collection of
features. We find the sparse representation of each set of
features over the dictionary of all features by solving a `0-
minimization problem. Then, the connection information be-
tween superpixels is encoded as the non-zero representation
coefficients, and the affinity of connected superpixels is de-
rived by the corresponding representation error. This provides
a `0 affinity graph that has interesting properties of long range
and sparsity, and a suitable graph cut yields a segmentation.
Experimental results on the BSD database demonstrate that
our method provides perfectly semantic regions even with a
constant segmentation number, but also that very competitive
quantitative results are achieved.

Index Terms— Image segmentation, sparse representa-
tion, `0 affinity graph, spectral clustering.

1. INTRODUCTION
Image segmentation is a fundamental low-level image pro-
cessing problem, which plays a key role in many high-level
computer vision tasks, such as scene understanding [1],
object recognition [2], etc. In the literature, unsupervised
spectral segmentation algorithms have been intensively stud-
ied [3] [4] [5], and many works focus more particularly on
constructing a reliable affinity graph [6] [7].

Clearly, the quality of the segmentation results depend
on the choice of a particular affinity graph, which depends
on the neighborhood topology and pairwise affinities be-
tween nodes, which can be pixels or superpixels (i.e. groups
of pixels or pixel features). Due to computer storage limit
and computational complexity of the eigenvalue problem, a
basic requirement for a desirable affinity graph is sparsity.
Thus, most of the existing benchmark algorithms use a prede-
fined range of local neighborhood topology, e.g., 4-connected
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Fig. 1. Illustration of the superiority of building `0 affin-
ity graphs: for each row, from left to right, original image,
ground-truth result, result of SAS [5], and result using our
method with a `0 affinity graph.

neighbors [5], or a fixed neighborhood radius [3] [4]. How-
ever, this kind of fixed local neighborhood topology fails
to capture long-range connections and usually causes over-
segmentation, see for instance the results of the method, that
will be referred to as Segmentation by Aggregating Super-
pixels (SAS) in the sequel, proposed in [5] with 4-connected
neighbors (see the third column of Fig. 1). As pointed out in
[4], a larger neighborhood topology radius usually outcomes
a better segmentation. Unfortunately, long-range affinity
graphs built with a larger neighborhood radius produce dense
graphs, thus yields a heavier computational cost.

To meet the requirements of sparsity and long range si-
multaneously, we propose in this paper a novel unsupervised
spectral segmentation algorithm by constructing an affinity
graph using `0-sparse representation, inspired by the work of
Wright et al., see [8] and [9]. The so-called `0 affinity graph
is constructed over a set of superpixels. The basic idea is to
find the sparse representation of each superpixel over a large
dictionary containing all the other superpixels by solving a `0-
minimization problem. Then, considering the superpixels as
the vertices of a graph, the edges are encoded in the non-zero
representation coefficients issued from the optimization step,
whereas the affinity between two superpixels can be derived
from the corresponding representation error. Benefiting from
the global searching and representation strategy of sparse rep-
resentation, the derived `0 affinity graph has the characteris-
tics of long range neighborhood topology and sparsity. Fur-
thermore, we propose to refine the sparse representation by
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considering the spatial location information between super-
pixels as a penalty of the global searching and representation
strategy.

To the best of our knowledge, there exists only one re-
cent paper [10] which makes use of sparse representation for
the purpose of SAR image segmentation. As compared to
that technique, the proposed method proposes to operate over
multi-scale super-pixels through `0 and makes use of both re-
fined reconstruction error and distance penalty for the con-
struction of the affinity graph. This results in an effective
method for a more general task of segmenting natural images
from a large image dataset.

To improve the discriminative power of the `0 graph, both
mean value in Lab color space (mLab) and Color Local Bi-
nary Pattern(CLBP) features [11] are used to build the graph.
The final `0 affinity graph is obtained by merging multiple `0
graphs built over different features and different superpixel
scales. Then, it is used to build a bipartite graph for final im-
age segmentation as introduced in SAS [5].

Comparing to the existing benchmark spectral segmenta-
tion algorithms, the proposed method has the following two
advantages:

1. Benefiting of the characteristics of the `0 graph, our al-
gorithm outcomes semantic segmentation results. As shown
in the last column of Fig.1, the proposed algorithm can pro-
vide meaningful segmentation results, in particular, the whole
object can be segmented correctly even when there are signif-
icant color variations within the object (e.g., the cow image).

2. Most of the existing algorithms require, for each im-
age, a careful and manual tuning of the number of segments
K (usually from 2 to 40 [6]) in order to obtain a desirable
result. In contrast, our algorithm can produce meaningful re-
sults with K = 2 for most images in the Berkeley Segmenta-
tion Database (BSD) [12], which is more realistic in practical
applications.

The organization of the paper is as follows: in Section
2 we introduce the proposed method and the construction of
the `0 affinity graph, and we present in Section 3 comparison
experiments with SAS and other methods on the BSD.

2. CONSTRUCTION OF THE GRAPH AND
SEGMENTATION

2.1. Extracting multi-features over multi-scale superpix-
els

As pointed in [5], superpixels generated by different meth-
ods with varying parameters can capture various and multi-
scale visual contents of a natural image. By superpixel, we
mean here a connected maximal region in a segmented im-
age. As shown in Fig. 2, we first oversegment the input
image into multiscale superpixels with either the Mean Shift
algorithm (MS) [13] or the Felzenszwalb-Huttenlocher (FH)
graph-based method [14], and using the same parameters as

in the SAS algorithm [5]. Then, to obtain a discriminative
affinity graph, we compute for each superpixel different fea-
tures. Actually, any kind of region-based feature can be used.
In this paper, we consider two types of features: mean value
in Lab color space (mLab), and CLBP. Color is a very basic
yet powerful cue to distinguish objects, whereas LBP is ro-
bust to monotonic light changes and can be used to capture
texture characteristics. The parameters of these features will
be introduced in section 3.1.

C-LBP mLAB 

Fig. 2. Illustration of extracting multi-features over multi-
scale superpixels.

2.2. Construction of the `0 affinity graph

Let I denote an oversegmented image obtained from the ini-
tial image at the previous step, either by Mean Shift (MS)
or Felzenszwalb-Huttenlocher (FH) approach. We denote
as S = {si}N

i=1 the collection of its superpixels, i.e. in-
dividual regions. For each superpixel si, xmLab

i ∈ R3 and
xCLBP

i ∈ R256 are single feature normalized vectors ex-
tracted from si and associated with mLab and CLBP, re-
spectively. Therefore, if N denotes the number of regions
in the oversegmented image, we get two feature vectors
{xmLab

1 , · · · ,xmLab
N } and {xCLBP

1 , · · · ,xCLBP
N }. For each fea-

ture vector {x1, · · · ,xN}, we define the sparse representation
dictionary D = [x1, · · · ,xN ] ∈ Rm×N (m = 3 for mLab and
m = 256×3 for CLBP, or possibly less by dimension reduc-
tion, see Section 3). For each i ∈ {1, · · · ,N}, we consider the
following `0-minimization problem

α̂ i = argminα

{
‖xi−Dα‖2

2, α ∈RN , ‖α‖0≤ L, αi = 0
}

(1)

where α ∈RN runs over all sparse representation vectors, the
`0 norm ‖α‖0 is the number of non-zero coefficients in α , and
the parameter L controls the sparsity of the representation. In
other words, the vector α̂ i is associated with the best represen-
tation of xi, in the `2 nom, as a linear combination of at most
L elements among x1, · · · ,xi−1,xi+1, · · · ,xN . This vector can
be computed with the Orthogonal Matching Pursuit (OMP)
algorithm [15], and it provides a link between the superpixel
si (associated with the feature xi) and the other superpixels.

Clearly, this representation is only feature-based and does
not really incorporate spatial constraints, which may be a
drawback for segmentation purposes where objects are sup-
posed to be connected. We therefore consider an additional
step where we discard, in the representation above, the far-
thest superpixels (i.e., far from a spatial viewpoint).

In practice, for the case L = 3 that appeared in our exper-
iments to yield good results, if more than two superpixels are
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selected by Eq. (1) to represent si, we find the farthest one
from si according to the distance between centroids, and we
remove it from the sparse representation. In the case L > 3,
other methods can be used, for instance thresholding above
the average distance or a fraction of it. If k1, · · · ,kh denote the
indices of the removed superpixels, we recompute the sparse
representation in Eq. (1) in a very constrained way, i.e. by
restricting to all α such that α j = 0 whenever α̂ i

j = 0 and, in
addition, αk1 = · · · = αkh = 0. We denote as α̊ i the updated
sparse representation vector, and we define

ri j = ‖xi− α̊
i
jx j‖2

2 (2)

Finally, the similarity coefficient wi j between superpixel si
and superpixel s j is defined as

wi j =

{
1 if i = j
1− (ri j + r ji)/2 if i 6= j. (3)

and we denote as W = (wi j) the similarity matrix.
All steps above are applied to both feature vectors

{xmLab
1 , · · · ,xmLab

N } and {xCLBP
1 , · · · ,xCLBP

N }, and yield two ma-
trices W mLab and WCLBP, and therefore two `0 graphs GmLab =
{S,W mLab} and GCLBP = {S,WCLBP}. These two graphs can
be merged into a single graph G = {S,W} where W = (wi j)
is defined by

wi j =
√
(wmLab

i j )2 +(wCLBP
i j )2. (4)

So far, we dealt with a single oversegmented image only.
In order to benefit of the advantages of using various overseg-
mented images, as in the SAS method, the same procedure
can be applied to each oversegmented image Ik, k = 1, · · · ,M
and yields the graphs Gk = {S,Wk}M

k=1. The final `0-affinity
graph G = {S,W} is obtained by a simple concatenation, i.e.
W = diag(W1,W2, · · · ,WM).

2.3. Transfer cuts and image segmentation

To perform image segmentation, we use the Transfer Cuts
method (Tcuts) [5], that has proven to be fast and efficient.
First, we build a bipartite graph over the input image I and
its superpixel set S. Recall that our final fused `0 affinity
graph G = {S,W} is constructed over the superpixel set S.
The bipartite graph also incorporates the relationship infor-
mation between pixels and superpixels, and is defined as

GB = {U,V,B}, where U = I ∪ S, V = S, and B =

[
WIS
WSS

]
,

with WIS = (bi j)|I|×|V |, and bi j = a positive constant b if pixel
i belongs to superpixel j, 0 otherwise (in our experiments, we
set b = 10−3). WSS is the affinity graph between superpixels
computed in section 2.2. The Tcuts method yields a parti-
tion of the bipartite graph into K clusters. More precisely, it
provides the bottom K eigenpairs {λi, fi}K

i=1 of the following
generalized eigenvalue problem over superpixels only:

LV f = λDV f, (5)

where LV = DV −WV , DV = diag(B>1), and WV = B>D−1
U B,

DU = diag(B1).

3. EXPERIMENTAL RESULTS

3.1. Database and parameter settings

We evaluate our method on a standard benchmark image seg-
mentation database, the BSD [12]. The BSD contains 300
images, each one provided with at least 4 or 5 ground truth
segments labeled by several people. Four measurements are
used for quantitative evaluation: Probabilistic Rand Index
(PRI) [16], Variation of Information (VoI) [17], Global Con-
sistency Error (GCE) [18], and Boundary Displacement Error
(BDE) [19]. A segmentation result is better if PRI is higher
and the other three ones are lower.

For feature extraction, we use the LBP(1,8) operator in the
RGB color space, and the feature dimension is reduced from
256× 3 to 64 by PCA. For building the `0 graph, we use the
Orthogonal Matching Pursuit (OMP) algorithm [15] to solve
Eq. (1), in which the sparsity number L = 3 is used for all the
experiments.

We organize our experimental results as follows: first, we
show some visual comparison results with SAS; then, quan-
titative comparison with SAS and other algorithms are listed;
finally, we show more visual examples of our method with a
fixed segment number K = 2.

3.2. Visual comparison with SAS

Our work follows a similar, yet not identical, strategy as the
SAS algorithm, i.e., building a bipartite graph over multiple
superpixels and pixels, then use Tcuts for image segmenta-
tion. The main difference between the two methods is the
affinity graph construction. In SAS, 4-connected neighbor-
hoods of superpixels are used, and the pairwise superpixel
similarity is computed by the Gaussian weighted Euclidean
distance in the color feature space. In our method, we build
a `0 affinity graph using sparse representation over multiple
types of features and multi-scale superpixels, making the con-
structed graph having the characteristics of long range neigh-
borhood topology, yet with sparsity and high discriminative
power.

In this section, we show some visual comparison results
with SAS. As shown in Fig.3, four groups of visual exam-
ples are reported: the first two columns display the results of
SAS and the last two columns show our results. Notice that
the results of SAS are the best results reported by the authors,
where the segmentation number K for the owl, leopard, peo-
ple, and landscape are 5, 4, 40, and 9 respectively. For our
method, all the results are obtained by setting K = 2.

For the first example, although the owl is in a highly clus-
tered background and has itself strong color variations, our
method segments it correctly while the segmentation provided
by SAS is not meaningful. For the second example, the leop-
ard texture is very similar to the background. The SAS algo-
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Fig. 3. Four examples of visual comparison with SAS: first
two columns: results of SAS, last two columns: results with
our method.
rithm oversegments the leopard into three parts. In contrast,
our method provides the whole body of the leopard. Similar
results are achieved for the third example: in contrast with
SAS where K has been carefully tuned at K = 40, our method
can segment correctly the main object (i.e., the people) by set-
ting K = 2. In the last example as well, SAS over-segments
the hill into several parts.

3.3. Quantitative comparison with SAS and other algo-
rithms

In this section, we report quantitative comparison with SAS
and other standard benchmarks: Ncut [3], JSEG [20], MN-
cut [4], NTP [21], SDTV [22], LFPA [6] and SAS [5]. The
results are shown in Table 1, where we highlight the best re-
sult of each measurement in bold. The average scores of the
benchmark methods are collected from [5] and [6]. We can
see that our method ranks in the first place with PRI and BDE,
and is competitive with others in terms of VoI and GCE. How-
ever, all these scores are collected by tuning K manually for
each image and choosing the best results, which is unrealis-
tic in practical applications (for our method, we set K from
2 to 40). Thus, to demonstrate the obvious advantage of our
method related to K, we compare the average scores of SAS
and our method by fixing K = 2 for all images on the BSD.
We can see that in this case, our method outperforms SAS
with PRI, GCE and BDE (the gain being really significant for
BDE).

3.4. More visual examples

To demonstrate the advantage of our algorithm in practical
applications, we show more visual segmentation results of our
method with K = 2. As can be seen in Fig. 4, all the objects
are correctly segmented even in the following cases where:
1) The detected object is quite tiny (as seen in the first two
rows); 2) Multiple objects are needed to segment in the same
image (as in both middle rows); 3) The colors of background
and object are quite similar (as in both last rows).

Table 1. Quantitative comparison of our method with other
state-of-the-art methods over BSD.

Methods PRI↑ VoI↓ GCE↓ BDE↓
NCut 0.7242 2.9061 0.2232 17.15
JSEG 0.7756 2.3217 0.1989 14.40

MNCut 0.7559 2.4701 0.1925 15.10
NTP 0.7521 2.4954 0.2373 16.30

SDTV 0.7758 1.8165 0.1768 16.24
LFPA 0.8146 1.8545 0.1809 12.21
SAS 0.8319 1.6849 0.1779 11.29
Ours 0.8355 1.9935 0.2297 11.1955

SAS (K=2) 0.6197 2.0119 0.1106 42.2877
Ours (K=2) 0.6270 2.0299 0.1050 23.1298

Fig. 4. More visual results of our method with K = 2.
4. CONCLUSION

We proposed a graph-cut method for unsupervised image
segmentation based on a `0 affinity graph using sparse repre-
sentation. By solving several `0 minimization problems, the
neighborhood topology structures and the affinities among
superpixels can be derived simultaneously. In addition, the
`0 affinity graph has nice properties of sparsity and long
range neighborhood topology. The `0 graph is then refined by
slightly forcing the spatial locality of the representation. The
discriminative power of the `0 affinity graph is then enhanced
by fusing mLab and CLBP features over multi-scale super-
pixels. Experimental results on the BSD database show that
our method yields very competitive qualitative and quantita-
tive segmentation results compared to other state-of-the-art
methods.
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