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Abstract

In this paper, we present a new distinctive feature for tex-

ture classification, the fan-shaped patch local binary pat-

terns (FP-LBP). The proposed FP-LBP operator extends

the traditional LBP operator by encoding the difference be-

tween each central pixel with the average value of its neigh-

boring fan-shaped patches, instead of only using its neigh-

boring pixels. By this way, FP-LBP not only preserves

more information of local structures than the traditional

LBP, but also keeps relatively lower dimensionality, espe-

cially when larger radius and more neighboring pixels are

considered. Moreover, the “uniform” and rotation invari-

ant FP-LBP are also defined similarly to the traditional

LBP. The proposed descriptors are evaluated on two pop-

ular texture databases: CUReT and KTH-TIPS, and the ex-

perimental results show that FP-LBP outperforms the tra-

ditional LBP descriptor with a smaller feature dimension.

Moreover, the proposed method achieves higher classifica-

tion accuracy than most of the state-of-the-art methods on

both databases.

1 Introduction

Textures provide significant characteristics for the inter-

pretation and identification of real-world visual patterns.

Analysis of texture is important in a wide range of applica-

tions and has been an intense research subject in the fields

of image processing and pattern recognition. Four major

application domains related to texture analysis are texture

classification, texture segmentation, texture synthesis, and

shape from texture. Among them, texture classification has

become a topic of extensive research in the past decades,

because of its variety of potential applications such as tex-

tile inspection [2], medical imaging [12] and remote sensing

[7].

The process of texture classification is often divided into

three phases: (1) feature extraction; (2) learning; (3) recog-

nition. In the feature extraction phase, the texture content

of all images is captured with the chosen texture analysis

approach. The target of the learning phase is to model the

texture content of the training images with ground truth la-

bels. In the recognition phase, the texture content of the

unknown test sample is represented with the same texture

analysis approach, and the test sample is then assigned to

the class which has the best match by comparing its tex-

ture content with those of the training images by a certain

classification mechanism. The major challenge lies in that

the real-world textures are usually not uniform due to large

variations in illumination, spatial scale, rotation or other vi-

sual appearance. Therefore, this paper will focus on the first

phase of texture classification by presenting a new texture

descriptor.

A large number of texture representations have been

proposed in the literature. The representative approaches

include: (1) statistical methods, such as generalized co-

occurrence matrices [5] and gray level differences [21];

(2) model based methods, such as Markov random fields

(MRFs) [1] and fractal analysis [18]; (3) signal processing

methods, such as Gabor filtering [11] and wavelet transform

[13]. These approaches have been extended later to produce

rotation invariant features [17, 19, 15, 20].

Specifically, the local binary pattern (LBP) operator

[16, 17] has attracted massive attention because of its dis-

criminative power for texture description and computational

efficiency. The original LBP [16] works by comparing the

gray value of a central pixel with each value of its 3 × 3
neighborhood, and by encoding their differences into a bi-

nary pattern. The occurrences of the different patterns are

then compacted into a histogram as a texture descriptor. The

most prominent restriction of the original LBP lies in its

small spatial support area, since the features calculated from

a local 3 × 3 window fail to catch large scale structures

which might be the determinative information of certain

features. Therefore, the LBP operator was later extended to

LBPR,P [17], which probes P circularly symmetric neigh-

boring samples on a circle of radius R, instead of a local

3×3 neighborhood. With larger sampling radius and more

neighboring samples considered, the operator is able to cap-

ture information from a larger spatial area. In addition, op-



erators with varying (R,P ) configurations can be brought

together to form a multi-scale operator to better describe

the texture. Fig. 1 shows three LBP operators with different

(R,P ) parameters. Although broader range of information

can be obtained by considering more neighboring pixels,

it also produces feature vectors of higher dimensionality.

However, increasing feature vector dimensionality increase

the overall computation time more than linearly. For exam-

ple, LBP4,32 and LBP5,40 produce histograms of size 232

and 240 respectively, which would be a disaster for compu-

tation. To address this problem, Ojala et al. improved LBP

with “uniform” patterns [17]. Other dimensionality reduc-

tion methods for LBP include the center-symmetric local

binary patterns (CS-LBP) [10] and the orthogonal combi-

nation of local binary patterns (OC-LBP) [23].

Figure 1. Circularly symmetric neighbor sets

for different (R,P) values of LBP.

Different from the above mentioned approaches, in this

paper we propose a new distinctive LBP-based feature, de-

noted as the fan-shaped patch local binary patterns (FP-

LBP), for texture classification. The basic idea of FP-LBP

is to extend the traditional LBP operator by encoding the

difference between the central pixel value and the average

value of the fan-shaped patches of its neighbors, instead of

only using its neighboring pixels. The same binary encod-

ing strategy as in LBP is applied to the fan-shaped patches.

The proposed FP-LBP operator is able to capture much

more significant neighborhood information by considering,

for each central pixel’s neighbor, larger regions of pixels

than LBP. Moreover, for a fixed value of R, dimensionality

reduction is achieved by partitioning the neighboring pix-

els into fewer fan-shaped regions than the usual P number

of pixels used for LBP. Similar to LBP, the proposed FP-

LBP can also be extended to “uniform” and rotation invari-

ant forms. Multi-scale FP-LBP can be easily realized by

concatenating the histograms produced by multiple opera-

tors using varying (R,P ) parameters.

The rest of the paper is organized as follows. Section

2 reviews the traditional LBP method. In section 3, we

present the proposed FP-LBP in detail. In section 4, the

proposed feature is experimentally evaluated on two popu-

lar texture databases. Section 5 concludes the paper.

2 Brief review of local binary patterns

The local binary pattern (LBP) operator introduced by

Ojala et al. [17] is a computationally efficient yet powerful

means of texture description. It probes an image by com-

paring, for each pixel of the image, its gray value with each

gray value of its neighboring pixels in a sequential, clock-

wise way. Then, the differences between the central pixel

value and its neighboring values are encoded into a binary

pattern. Formally,

LBPR,P =

P−1
∑

p=0

u(gp − gc) · 2
p, u(x) =

{

1, x ≥ 0

0, x < 0
(1)

where gc is the gray value of the central pixel, gp is the

value of its pth neighbor, P is the total number of neighbors

equally located on a circle of radius R. On this circle, if a

neighbor position does not perfectly fit with the center of a

pixel – as it often occurs, as shown in Fig. 1 – its gray value

is calculated by using bi-linear interpolation. The resulting

patterns are then accumulated into a histogram to represent

statistically the texture content of an image.

The LBP approach has several desirable properties:

gray-scale invariance, computational simplicity, and im-

pressive discriminant power. However, the LBP operator

produces fairly high dimensional feature vectors (2P dis-

tinct values). This high dimensionality makes it in practice

intractable to be used by a classifier for a “large” (> 16)

value of P . One solution is to only consider the “uniform”

patterns [17]. The U value of LBP is defined as the number

of spatial transitions (bitwise 0/1 changes):

U(LBPR,P ) = |u(gP−1 − gc)− u(g0 − gc)|+

P−1
∑

p=1

|u(gp − gc)− u(gp−1 − gc)| (2)

The patterns which have an U value of at most 2 are defined

as “uniform” patterns. Thus, the histogram dimension is

reduced to P (P − 1) + 3.

Furthermore, the rotation invariant uniform LBP is

achieved by the following formulas:

LBP riu2
R,P =

{

∑P−1

p=0
u(gp − gc), if U(LBPR,P ) ≤ 2

P + 1, otherwise

(3)

Therefore, mapping from LBPu2
R,P to LBP riu2

R,P further

reduces the length of the feature vector to P + 2, leading to

a more compact image representation.

3 The fan-shaped patch LBP descriptor

As we explained in section 2, the traditional LBP op-

erator, when it considers a large number of neighbors, can





Table 1. Classification accuracy (%) of the proposed descriptors compared with LBP on CUReT.
N 46 23 12 6 Bins 46 23 12 6 Bins

(R, P) (1, 8) (2, 12)

LBPR,P 89.84 85.03 75.27 65.12 256 91.27 85.99 75.65 66.03 4 096

LBPu2
R,P 88.95 82.88 72.58 62.82 59 89.71 82.97 74.11 63.72 135

LBP riu2
R,P /V AR 93.87 88.76 81.59 71.03 160 94.14 89.59 82.17 72.85 224

(R, PN) (1, 8) (2, 8)

FP -LBPR,PN 90.97 84.90 77.60 68.25 256 92.06 86.39 79.60 69.34 256

FP -LBPu2
R,PN 90.36 84.51 77.04 67.31 59 90.66 84.60 77.11 67.41 59

FP -LBPR,PN/DCI 94.55 90.18 83.78 74.53 512 95.17 90.71 84.25 74.77 512

FP -LBP riu2
R,PN/DCI 91.38 86.63 80.04 70.81 20 88.48 83.50 76.97 67.93 20

(R, P) (3, 16) (4, 24)

LBPR,P 93.09 87.24 78.65 68.87 65 536 – – – – 16 777 216

LBPu2
R,P 91.81 85.95 76.70 68.31 243 93.98 87.85 79.08 69.16 555

LBP riu2
R,P /V AR 94.20 89.12 81.64 71.81 288 94.84 89.72 81.95 72.14 416

(R, PN) (3, 8) (4, 8)

FP -LBPR,PN 93.77 88.63 81.23 72.03 256 95.11 90.48 83.64 74.52 256

FP -LBPu2
R,PN 92.17 86.45 79.20 69.56 59 93.51 88.35 81.62 72.29 59

FP -LBPR,PN/DCI 95.49 91.29 85.24 76.12 512 95.75 91.69 85.65 76.49 512

FP -LBP riu2
R,PN/DCI 88.78 83.74 77.24 68.34 20 87.69 81.99 74.84 65.44 20

defined in Eq. (1). The joint descriptor is denoted as FP-

LBP/DCI. It can be compared with LBP/VAR [17] which

also completes the LBP descriptor with global information.

4.2 Dissimilarity metric and classification
principle

After feature extraction, each image in the database is

represented as a feature vector. For classification, a classi-

fier associated with certain dissimilarity metric is needed to

measure the dissimilarity of the images according to their

feature vectors and classify them based on these measure-

ments. As the emphasis of the experiments is to evaluate

the discriminative power of the proposed descriptor, a non-

parametric classifier is preferred. Here, the chi-square (χ2)

metric as Eq. (6) is utilized to measure the distance be-

tween two histograms H and J , and the k nearest neigh-

bor (k-NN) classifier is applied to perform the classifica-

tion. Specifically, we adopt 1-NN classifier in the following

experiments.

χ2(H, J) =
1

2

K
∑

i=1

(Hi − Ji)
2

Hi + Ji
(6)

where Hi and Ji are, respectively, the values of the ith bin

of the histogram H and J , and K is the length of both his-

tograms.

4.3 Results on the CUReT database

The Columbia-Utrecht Reflectance and Texture

(CUReT) database [4] is very challenging for texture

classification because of its large intra-class variations and

inter-class similarities. It contains images of 61 real-world

texture classes (e.g. pebbles, rabbit fur, ribbed paper) pho-

tographed under varying illumination and viewing angles.

Of the 205 images in each class, 118 images are with the

viewing angle less than 60 degree. Following the study of

[9], a collection of 92 images are selected from these 118

images for each category. Therefore, the cropped CUReT

dataset contains a total number of 5612 (61 × 92) texture

images. Varying number of images (N = 6, 12, 23, 46)

for each category are randomly selected as training set and

the rest (92 − N ) as test set. To avoid bias, 100 random

partitions of the dataset are implemented independently.

The average classification accuracies over 100 random

splits are presented in Table 1.

As shown in the table, FP -LBPR,PN performs almost

always better than LBPR,P while producing a constant vec-

tor dimension of 256 where those of LBPR,P dramatically

increase. By comparing “uniform” patterns operators, FP -

LBPu2
R,PN always outperforms LBPu2

R,P while producing

even smaller vector dimension. Moreover, it can be noticed

that FP -LBPR,PN steadily performs better than LBPu2
R,P .

It can also be observed that the joint descriptor FP -

LBP riu2
R,PN/DCI achieves lower classification accuracy

than LBP riu2
R,P /V AR, but with a vector dimension 8 to

20 times smaller. Maybe those comparisons are there-

fore not so relevant. On the other hand, to compare

LBP riu2
R,P /V AR with a joint FP-LBP/DCI based descrip-

tor of comparable vector dimension, the results of FP -

LBPR,PN/DCI are provided. The latter consistently out-

performs LBP riu2
R,P /V AR. Moreover, FP-LBP/DCI de-

scriptor is training-free, while LBP/VAR needs pre-training

to quantize the continuous-valued output produced by VAR.

In all the cases above, the proposed descriptors obtain

significant improvements compared to the classical LBP



Table 2. Best classification accuracy (%)
comparison of the proposed descriptors and

other state-of-the-art methods on CUReT.

N 46 23 12 6

LBP riu2
R,P /V AR[17] 96.04 74.50 – –

VZ MR8 [19] 97.43 95.03 90.48 82.90

VZ Joint [20] 98.03 94.58 89.40 81.06

CLBP [9] 97.39 94.19 88.72 79.98

Ex-LBP [14] 97.29 – – –

disCLBP [8] 98.30 96.50 91.90 83.00

FP -LBPR,PN/DCI 97.86 95.31 90.90 85.51

schemes, especially when the number of training samples

is relatively insufficient.

Table 2 presents the best classification accuracy of the

proposed method and several state-of-the-art approaches on

the CUReT database. The best results of FP-LBP/DCI are

obtained by using multi-scale FP -LBPR,PN/DCI with

(R,PN) = (1, 8) + (2, 8) + (3, 8) + (4, 8) + (5, 8). Re-

sults show that the proposed method outperforms all but one

of the state-of-the-art approaches. Indeed, disCLBP [8] al-

ways achieves better results but for N = 6 where the pro-

posed method is always better.

4.4 Results on the KTH-TIPS database

The KTH-TIPS (Textures under varying Illumination,

Pose and Scale) database [6] supplements the CUReT

database in a couple of directions, both of which concern

extending textual classification algorithms to work in real-

world conditions. While the CUReT database contains im-

ages of 61 texture classes (over various illumination and

pose, but at permanent viewing distance), the objectives of

KTH-TIPS are to provide variations in scale, as well as il-

lumination and pose, and to provide images of other sam-

ples of a subset of CUReT materials taken under various

settings. There are 10 texture classes (e.g. cotton, orange

peel, sponge) in KTH-TIPS, each containing 81 images

(size 200 × 200). Hence, the KTH-TIPS dataset contains

a total number of 810 (10 × 81) texture images. Similar to

the experimental setup of CUReT, we randomly select 100

different training and test splits, and report the average clas-

sification accuracy. The experimental results are presented

in Table 3, for training with N images (N = 5, 10, 20, 40)

and testing with the rest (81−N ) per class.

It can be obtained from the table that the mean clas-

sification accuracy of FP -LBP1,8 just 0.24% lower than

that of LBP1,8, but FP -LBP2,8 consistently outperforms

LBP2,12 by 3.86% higher. Results of LBP3,16 and

LBP4,24 are not provided because of the huge size of their

feature vectors. Different from CUReT, the comparisons

of “uniform” patterns operators show that FP -LBPu2
R,PN

Table 4. Best classification accuracy (%)

comparison of the proposed descriptors and

other state-of-the-art methods on KTH-TIPS.

M 40 20 10 5

VZ Joint [22] 92.40 – – –

Hayman et al. [22] 94.80 – – –

Lazebnik et al.[22] 91.30 – – –

Zhang et al.[22] 95.50 – – –

Multi-scale BIF [3] 98.50 – – –

FP -LBPR,PN/DCI 97.44 92.53 85.03 75.55

is inferior to LBPu2
R,P , but for LBPu2

1,8 where FP -LBPu2
1,8

performs better.

As for CUReT, the results of FP -LBP riu2
R,PN/DCI are

slightly worse than those of LBP riu2
R,P /V AR, it is prob-

ably because of the really tiny size of its vector. How-

ever, the results of FP -LBPR,PN/DCI consistently out-

perform those of LBP riu2
R,P /V AR for comparable vector di-

mensions.

Table 4 presents the best classification accuracy of the

proposed method and several state-of-the-art approaches on

the KTH-TIPS database. The best results of FP-LBP/DCI

are obtained by using multi-scale FP -LBPR,PN/DCI
with (R,PN) = (1, 8)+ (3, 8)+ (5, 8). It can be seen that

our method outperforms all the state-of-the-art approaches

but the multi-scale BIF.

5 Conclusion

This paper presents a distinctive fan-shaped patch lo-

cal binary pattern (FP-LBP) descriptor for texture classi-

fication. The experimental results prove that the proposed

feature can effectively describe local texture structures and

preserve more significant information than the traditional

LBP. Another advantage of the proposed feature is its rel-

atively lower dimensionality, especially when larger radius

with more neighboring pixels are taken into consideration.

Moreover, the FP-LBP approach is computationally effi-

cient and training-free.

The proposed FP-LBP descriptor is a first study of the

use of fan-shaped patch applied to local binary pattern. This

work will be extended into several directions including a

better representation of neighboring pixels in FP-LBP com-

putation with even smaller feature dimension. It will be also

tested on larger scope of applications.
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features for texture description. Pattern Recognition,

45(10):3834 – 3843, 2012.

[9] Z. Guo, L. Zhang, and D. Zhang. A completed modeling of

local binary pattern operator for texture classification. IEEE

Trans. Image Process., 19(6):1657 –1663, June 2010.
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