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Abstract. In this paper, we propose a new approach for automatic mu-
sic genre classification which relies on learning a feature hierarchy with
a deep learning architecture over hand-crafted feature extracted from an
audio signal. Unlike the state-of-the-art approaches, our scheme uses an
unsupervised learning algorithm based on Deep Belief Networks (DBN)
learnt on block-wise MFCC (that we treat as 2D images), followed by
a supervised learning algorithm for fine-tuning the extracted features.
Experiments performed on the GTZAN dataset show that the proposed
scheme clearly outperforms the state-of-the-art approaches.

Keywords: music genre classification, high-level hierarchy feature ex-
traction, deep learning, deep belief networks.

1 Introduction

In the last decade, automatic music genre classification has become more im-
portant as the digital entertainment industry developed. Now audio files are
distributed over the world wide web and are available as digital content with
auxiliary-data also called meta-data. In order to search proper music from huge
databases, labels in meta-data have to be assigned to each piece beforehand. The
point in using a music genre classification system, is to assign them automatically
instead of spending lots of effort in manual annotation.

Feature extraction from an acoustic music signal is a significant step in auto-
matic music genre classification. Most systems in the early years mainly relied on
timbre features extracted from a windowed short signal, such as MFCC, STFT,
LPC, Filterbank Coefficients and Autoregressive Model [1]. Other methods em-
ployed statistical models of the timbre features such as histograms, means, vari-
ances, etc. [2]. These approaches, however, extract the features frame-by-frame
and do not capture any temporal information.

As mentioned in [3], spectral transition in short term is considered to be an
important factor for musical genre classification as well as timbre features of the
frame. Meanwhile, a block-wise approach, where a feature descriptor involves
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multiple frames of a few seconds, has been gathering more attention in recent
years [4]. One example can be found in [5], where 5 different block-wise features
are obtained from 10 or 25 frames and are used for genre classification. Costa et
al. attempted to extract texture features from a spectrogram of a few seconds,
inspired by works in image processing [6]. There, the system extracts 7 statistical
texture features after calculating a Gray Level Co-occurrence Matrix (GLCM)
[7] from each spectrogram, and classifies the music signals using SVMs.

Another notable block-wise method was proposed by Tom et al. [8], where they
adopted Convolutional Neural Networks (ConvNets) for bi-dimensional feature
extraction and genre classification. In their work, the ConvNets learn music
patterns given a bi-dimensional MFCC map and corresponding genre labels in
a supervised way.

Besides, other Deep Learning approaches were used as a way to build hier-
archical representations. One of the most well-known Deep Learning models is
the Deep Belief Network (DBN) [9], which stacks multiple Restricted Boltzmann
Machine (RBM) layers hierarchically. Hamel and Eck [10] adopted the DBN to
learn high level musical features. In [11], a Sparse Encoder Symmetric Machine
(SESM) was proposed by Ranzato et al. as another extension of DBN attempt-
ing to produce better representations in terms of sparseness. Since such deep
learning methods rely on unsupervised feature extraction, it is expected that
the models automatically extract more tractable and better-separated features
for the supervised classifier.

In this work, we propose and study a deep learning approach for musical genre
classification. We fed block-wise “hand-crafted” (by opposition to “learnt”) fea-
tures of MFCCs that are respectively inspired from [6] and [8] into a deep archi-
tecture in which we learn a higher level feature hierarchy with an unsupervised
learning algorithm and use a supervised learning algorithm for fine-tuning us-
ing a set of known labels of songs. Experimental results on the well-known 10
musical genre GTZAN database show the efficiency of our approach.

2 The Proposed Approach

The deep learning method that we propose rely on Deep Belief Networks. Our
architecture is based on the following functional blocks:
Hand-crafted features extraction: from the raw audio-file, we extract several
block-wise hand-crafted MFCC features;
High-level learnt features extraction: from these features, we extract a hierarchy
of high-level learnt features with an unsupervised learning algorithm;
High-level learnt features fine-tuning : we fine-tune these high-level “learnt” fea-
tures to adapt them to our classification task with a supervised learning algo-
rithm;
Classification: from this fine-tuned high-level hierarchy of features, we train a
classifier such that each of the blocks votes for a certain genre;
Voting scheme: we collect the votes in a given voting space (binary, probabilistic
scoring etc.) and output a genre associated to the whole music.
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Fig. 1. Examples of block-wise MFCC extracted from the GTZAN database

2.1 Hand-Crafted Feature Extraction with Block-Wise MFCC

The idea behind using hand-crafted features on the “raw” music signal is to
process it in a form that will be meaningful for the feature extractor we want to
learn in a next step. These hand-crafted features, like Mel-Frequency Cepstral
Coefficients (MFCCs) [12], capture a lot of engineering knowledge that has been
developed over the years to extract relevant information in audio frames.

We therefore built our block-wise MFCC by computing the cepstrum coef-
ficients over non-overlapping audio frames of 28 milliseconds. The quantized
values on the mel-scale (in 40 bins) obtained for a MFCC are concatenated in
a block with others computed in the next frame so that it constitutes a time-
MFCC domain that we can regard as a bi-dimensional structure (an image). In
our experiments, we chose to use 50 blocks so that the block-wise MFCC lasts
1.4 second. By using such block-wise MFCC, we aim at capturing temporal in-
formation (in the limit of the block size times the frame length) and timbral
information thanks to the MFCC transformation [13]. Some examples of the
MFCC blocks we obtain on audio files of the GTZAN database are shown in
Figure 1.

2.2 Learnt High-Level Hierarchy Feature Extraction

One of the originalities of this work resides in the way we extract our block-
wise features that can both capture timbre and temporal information. These
two pieces of information are represented on 2D maps and can be regarded as
“images” with a strong bi-dimensional structure. However, we do not directly
classify these features with any supervised learning algorithm like in [14] because
we know they extract relevant information but which is probably still “drown”
and highly hidden in these features. Our idea is to “capture the regularities”
in the music genre by first applying a powerful unsupervised learning algorithm
which can statistically find a hierarchical structure in the input data. Moreover,
one should see the design of these “hand-crafted” features as limited by the
complexity human people can possibly put in it and by what they think is
interpretable. This is legitimate to try to extract more from these features and
combine the resulting objects in a way human would not be able to. Contrary
to our method, other recent contributions directly worked on the audio signal
by learning Deep Belief Net on raw audio files or on spectrum [10]. Our strategy
that learns a hierarchy of features on the top of hand-crafted features performs
better than these methods also probably thanks to the use of these hand-crafted
features that consists in a first “rough-extraction” in the raw audio data.
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In conventional learning methods for neural networks like back-propagation,
problems arise when building deep architectures with many layers. If for certain
applications a few layers can be sufficient to learn patterns from data, this is
clearly not the case in audio especially in a genre classification task where the
intra-class variability is very high. The fundamental hope in the proposed deep
architecture is to better fit the underlying data with less hidden variables in
each layer, more layers allowing to learn intricate “correlation” between these
variables. Learning a good set of features, that is able to capture the main regu-
larities of the model without capturing too much noise or “irregularities” make
the parametrization of deep learning machines really challenging and subtle.
However, they proved in many applications to be able to learn extremely inter-
esting structures in features. In this work, we use an instance of deep learning
strategies: the Restricted Boltzmann Machines as a building block for unsuper-
vised learning stacked in Deep Belief Networks we then fine-tune in a supervised
fashion.

The Restricted Boltzmann Machine. A Restricted Boltzmann Machine
(RBM) is a type of Boltzmann Machine which is an instance of a probabilistic
graphical model with interesting properties making inference tractable. The sim-
plified connections result in a bidirectional bipartite graph composed of binary
(that can be extended to real valued) stochastic units. On one side, a set of
visible units v = {vi}V receive the sensory input data (our block-wise MFFC),
while, on the other side, hidden units h = {hj}H can be regarded as holding an
internal model representation. They are connected together by a set of weights
W = {wij}V×H under the assumption that the weights can be used symmet-
rically wij = wji ∀(i, j) ∈ V × H . Pairwise energies can be defined over the
so-formed network and result as an energy for the configuration of the different
units: E(v,h) = vTWh. This energy codes the correlation for any combination
of two given binary units (in this case) to be “on” or “off” together. Then, a
probability to be in a certain energy state (joint probability of the visible units)
can be derived using the Boltzmann-Gibbs Distribution and as an analogy to
statistical mechanics: p(v,h) = 1

Z e
− 1

T E(v,h) where Z stands for the partition
function and T is an arbitrary temperature.

For RBMs, it is easy to analytically compute p(h|v) and p(v|h).
Two phases can be distinguished in the learning process: 1) a positive phase:

when the visible data is clamped to the visible units and produces the activation
of hidden units 2) a negative phase: with free visible units for which the hidden
units produce a reconstructed visible data (an hallucination of the model). One
possible learning procedure uses unsupervised learning and tries to minimize the
reconstruction error between its own input and the reconstruction fantasized
by the model. We use the so-called contrastive divergence: a simili negative-
log likelihood learning procedure, for which the weights update is Δwij = ε(<
vihj >+ − < vihj >−) where ε is the chosen learning rate and < · > is the
expectation — the frequency of having vi and hj ”on” together — computed
respectively during the positive (+) and negative (−) phase.
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Fig. 2. From right to left : randomly selected features in each layer 1-3 of the hierarchy
learnt on block-wise MFCC

Deep Architecture Used in the Experiment Set-up. We build a DBN
with three RBM layers stacked on the top of each other and a single layer Per-
ceptron. We clamp the block-wise MFCC on the 2000 units input layer and use
10 Perceptrons as outputs for classification. Concerning the hidden layer archi-
tecture we achieve dimensionality reduction by using two layers of 600 units in a
row, with a high sparse penalty so that it helps to converge towards interpretable
features with condensed information. The last hidden layer contains 2000 units
to help the Perceptrons with linear separability. We used Gaussian visible units
in the first RBM layer because we intend to use the real values provided by our
block-wise MFCC. Gaussian units have shown to be good at learning real val-
ued data and seem much better at properly modeling our problem than binary
ones. A corollary is that it then takes much more time to learn such units. Using
Gaussian units makes the learning signal theoretically unbounded; therefore the
whole learning procedure might diverge very fast. That is why we use a low
learning rate of 0.01 with a L2 regularizer through weight decay to prevent an
explosion in the weight values.

In Figure 2, we present some randomly selected features from the three layers
of the Deep Belief Network learnt on our block-wise MFCC. To be visualized the
feature intensities are shifted and scaled by a normalization process (centered
on zero and scaled by their dynamic). Features in the second and third layers
are back-projected in the first layer in order to be displayed.

2.3 High Level Learnt Feature Fine-Tuning and Voting Scheme

The fine-tuning step consists in using a supervised learning algorithm with the
labels to help the high-level features we extracted previously to converge toward
features specific to our classifier. The unsupervised learning procedure we run for
RBM, namely ”Contrastive-Divergence 1”, does not make use of any label. This
is a strength because it can be run over big-data for which labels have not been
set. In this step, there is no need that the whole data we used previously to be
labeled, as we might want to use only a fraction of it to fine-tune the classifier.
As we target a 10-genre classification, we use a single layer of 10 Perceptrons on
top of our high level feature hierarchy, each of them being set with a hyperbolic
tangent activation function which outputs a confidence between -1 (not confident
at all) and 1 (almost sure) for the associated audio genre.
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2.4 Voting Scheme

The final step in our music-genre classification pipeline is to collect the confidence
outputs of the Perceptrons for a single song given the different classification
scores for each of the high-level features we extracted from each of the block-
wise MFCC. We propose two very simple voting schemes.

One-shot Voting Strategy: In the first case, for each frame from which we
extract our features, we perform a max operation over the classifiers (Per-
ceptrons). The classifier with the most confident output for a certain genre
casts a (+1) in a voting space consisting of the various genres, the other
ones do not impact the vote. The genre which received the highest number
of votes is declared the “winner” for the song.

Scoring Strategy: In the second scheme, each classifier votes according to its
confidence in a genre. The confidence is scored by the output of the Percep-
trons. Analogously the genre receiving the highest confidence is chosen to be
the winner for the analyzed song. In our system, as the final Perceptrons are
set with hyperbolic tangent activation functions, their scores range between
-1 and 1 for each genre.

3 Experiments and Results

We conducted 10-musical-genre-classification experiments using the GTZAN
dataset [1], which is widely used in this task. The dataset contains 100 songs for
each of the following musical genres: Blues, Classical, Country, Disco, Hiphop,
Jazz, Metal, Pop, Reggae and Rock (1000 songs in total). Some of them, —and
we will experience it— are rather easily identifiable: it is usually the case of Reg-
gae, Classical and Hard-rock. They usually do not give a lot of false negatives
and have therefore a high recall rate. However, other genres are difficult to clas-
sify. For instance, the inter-class variability between rock and hard-rock is likely
to be small against their intra-class variability and many false-positives of rock
are recognized as hard-rock leading to a low precision. In GTZAN, each song
is recorded during 30 seconds with a sampling rate of 22050 Hz using 16 bits
quantization. We use a 10-fold cross validation for evaluating our method. For a
fold, we select 90 songs from each genre for the training set (in total 900 songs)
and the rest is used for the validation (100 songs). In order that all the songs are
once used for training and validation, we proceed in such a manner 10 times and
we average our results over the 10 trials. In table 1, we present the results of the
classification after the fine-tuning step and after the voting scheme. The results
clearly show that applying such a classification scheme provides very high classi-
fication rates: 96.0% of average recall rate on block-wise MFCC (before voting)
and 99.8% on entire songs after voting with the score voting strategy. Table 2
clearly shows the superiority of the proposed approach when compared to the
state-of-the-art approaches, with an important gap of 7.1% with the second best
method.
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Table 1. Per class statistics: Recall, Precision and F1-measure on the block-wise MFCC
after high-level features fine-tuning and Recall for the final voting scheme (2 strategies)
using the fused high-level features from block-wise MFCC

.
.
. Block-wise MFCC Fused features

Genres Recall Precision F1-measure One-shot Voting: Recall Score Voting: Recall

Blues 0.97 0.97 0.98 1.00 1.00
Classical 0.98 0.97 0.98 1.00 1.00
Country 0.96 0.94 0.95 1.00 1.00
Disco 0.96 0.97 0.96 0.99 1.00

HipHop 0.95 0.96 0.96 0.98 0.98
Jazz 0.97 0.97 0.97 1.00 1.00
Metal 0.97 0.96 0.96 0.99 0.99
Pop 0.93 0.97 0.95 1.00 1.00

Reggae 0.96 0.95 0.95 1.00 1.00
Rock 0.95 0.94 0.95 1.00 0.99

Avg. (%) 96.0 99.7 99.8

Table 2. Overall results: recall rates (%) on the GTZAN music-genre classification
problem, from [17] and completed with our results (in bold)

No Classifier Type of features Recall

1 Perceptrons Learnt using DBN on MFCC 99.8
2 CSC [15] Many features 92.70
3 SRC [16] Auditory cortical features 92
4 RBF-SVM [10] Learnt using DBN on spectrum 84.3
5 Linear SVM [17] Learnt using PSD on octaves 83.4
6 AdaBoost [4] Many features 83
7 Linear SVM [17] Learnt using PSD on frames 79.4
8 SVM [18] Daubechies-Wavelets 78.5
9 Log. Reg. [19] Spectral Covariance 77
10 LDA [14] MFCC + other 71
11 Linear SVM [16] Auditory cortical features 70
12 GMM [20] MFCC + other 61

4 Conclusion

In this paper, we have proposed a new approach for musical genre classification
which relies on learning a feature hierarchy over block-wise MFCC and outper-
forms the experiments that have been conducted until now. There are several
reasons that may explain such an improvement of the state-of-the-art results.
First, our strategy is based on MFCC that we tuned and customized to achieve
temporal and timbral extraction. We then produce a set of different features
which are of high-level and task specific thanks to the fine-tuning step. We also
make use of sparsity because it is probably a privileged process to be able to
learn such a number of features via the so called over-complete sparse represen-
tations. Concerning our classifier, we use a simple Single Layer Perceptron which
could be “compared” to a linear-SVM used in most methods but that can refine
the features previously found when fine-tuning with the back-propagation super-
vised learning. Unlike most approaches where each component may be trained
(or fixed) “independently”, our system is trained in a holistic way: each mod-
ule influences the other ones during the different learning phases, leading to a
powerful solution.



404 J. Martel et al.

References

1. Tzanetakis, G.: Musical genre classification of audio signals. IEEE Transactions on
Speech and Audio Processing 10(5), 293–302 (2002)

2. Lidy, T., Rauber, A.: Evaluation of feature extractors and psycho-acoustic trans-
formations for music genre classification. In: International Society for Music Infor-
mation Retrieval Conference, pp. 34–41 (2005)

3. Tsuji, Y., Akahori, K., Nishikata, A.: The estimation of music genre using neu-
ral network and its educational use. In: International Conference on Computer-
Assisted Instruction, pp. 158–162 (2000)

4. Bergstra, J., Kgl, B.: Aggregate features and adaboost for music classification.
Machine Learning 2(65), 473–484 (2006)

5. Seyerlehner, K., Schedl, M., Pohle, T., Knees, P.: Using block-level features for
genre classification, tag, classification and music similarity estimation. In: IMEX
(2010)

6. Costa, Y., Oliveira, L., Koerich, A., Gouyon, F.: Music genre recognition using
spectograms. In: WSSIP 2010, pp. 151–154 (2010)

7. Hua, B., Fu-long, M., Li-cheng, J.: Research on computation of glcm of image
texture (2006)

8. Li, T.L., Chan, A., Chun, A.: Automatic musical pattern feature extraction using
convolutional neural network. In: IMECS 2010 (2010)

9. Hinton, G.: To recognize shapes, first learn to generate images. Progress in Brain
Research 165, 535–547 (2006)

10. Hamel, P., Eck, D.: Learning features from music audio with deep belief networks.
In: International Society for Music Information Retrieval, pp. 339–344 (2010)

11. Ranzato, M., Boureau, Y.-L., Chopra, S., Lecun, Y.: A unified energy-based frame-
work for unsupervised learning. Journal of Machine Learning Research 2, 371–379
(2007)

12. Bridle, J., Brown, M.: An experimental word recognition system, jsru report no
1003. Joint Speech Research Unit, Ruislip, England, Tech. Rep. (1974)

13. Li, T.L., Chan, A.: Genre classification and the invariance of mfcc features to key
and tempo. In: International Conference on MultiMedia Modeling (2011)

14. Li, T.L., Tzanetakis, G.: Factors in automatic musical genre classification. In: IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (2003)

15. Chang, K., Jang, J., Ilioupoulos, C.: Music genre classification via compressive
sampling. In: International Society for Music Information Retrieval, pp. 387–392
(2010)

16. Panagakis, Y., Kotropoulos, C., Arce, G.: Music genre classification using locality
preserving non-negative tensor factorization and sparse representations. In: Inter-
national Society for Music Information Retrieval, pp. 249–254 (2009)

17. Henaff, M., Jarett, K., Kavukcuoglu, K., LeCun, Y.: Unsupervised learning of
sparse features for scalable audio classification. In: International Society for Music
Information Retrieval (2011)

18. Li, T.L., Ogihara, M., Li, Q.: A comparative study on content-based music genre
classification. In: ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (2003)

19. Bergstra, J., Mandel, M., Eck, D.: Scalable genre and tag prediction using spectral
covariance. In: International Society for Music Information Retrieval (2010)

20. Smith, E., Lewicki, M.: Efficient auditory coding. Nature (2006)


	A Combination of Hand-Crafted and Hierarchical High-Level Learnt Feature Extraction for Music Genre Classification
	Introduction
	The Proposed Approach
	Hand-Crafted Feature Extraction with Block-Wise MFCC
	Learnt High-Level Hierarchy Feature Extraction
	High Level Learnt Feature Fine-Tuning and Voting Scheme
	Voting Scheme

	Experiments and Results
	Conclusion


