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Abstract—In this paper, we present a novel face detection approach based on a convolutional neural architecture, designed to

robustly detect highly variable face patterns, rotated up to �20 degrees in image plane and turned up to �60 degrees, in complex real

world images. The proposed system automatically synthesizes simple problem-specific feature extractors from a training set of face

and nonface patterns, without making any assumptions or using any hand-made design concerning the features to extract or the areas

of the face pattern to analyze. The face detection procedure acts like a pipeline of simple convolution and subsampling modules that

treat the raw input image as a whole. We therefore show that an efficient face detection system does not require any costly local

preprocessing before classification of image areas. The proposed scheme provides very high detection rate with a particularly low level

of false positives, demonstrated on difficult test sets, without requiring the use of multiple networks for handling difficult cases. We

present extensive experimental results illustrating the efficiency of the proposed approach on difficult test sets and including an in-

depth sensitivity analysis with respect to the degrees of variability of the face patterns.

Index Terms—Face detection, neural networks, machine learning, convolutional networks.

�

1 INTRODUCTION

FACE detection is becoming a very important research
topic, due to its wide range of possible applications, like

security access control, model-based video coding, content-
based video indexing, or advanced human and computer
interaction. It is also a required preliminary step to face
recognition and expression analysis.

Numerous approaches for face detection have been
proposed in the last decade, many of them described and
compared in two interesting recent surveys by Yang et al. [1]
and Hjelmas et al. [2]. Most face detection methods are based
on local facial feature detection and classification using
statistical and geometric models of the human face. Low level
analysis first deals with the segmentation of visual features
using image properties such as edges [3], intensity [4], color
[5], [6], motion [7], or generalized measures [8]. Other
approaches are based on template matching where several
correlation templates are used to detect local subfeatures,
considered as rigid in appearance (eigenfeatures [9]) or
deformable [10], [11]. Then, visual features are organized into
a more global concept of face through facial feature and
constellation analysis using face geometry constraints [11],
[12], [13], [14].

The main drawback of feature-based approaches is that
either little global constraints are applied on the face template
or extracted features are significantly influenced by noise,
occlusions, and changes in face expression and viewpoint. In

order to handle difficult scenarios where multiple faces of
different sizes and poses have to be detected in heavily
cluttered backgrounds, some advanced image-based pattern
recognition techniques have been developed. They avoid the
specific and possibly inaccurate face modeling by learning
underlying rules contained in highly variable face patterns
from large training sets of face examples. They have proven to
be very tolerant to noise and distortions affecting the face
patterns.

In this paper, we propose a novel image-based approach
that is designed to precisely detect face patterns of variable
size and appearance, rotated up to �20 degrees in image
plane and turned up to �60 degrees, in complex real world
images. Our system is based on a convolutional neural
network architecture, inspired from the work of LeCun et al.
[15]. It automatically derives problem-specific feature ex-
tractors, from a large training set of face and nonface patterns,
without making any assumptions about the features to extract
or the areas of the face patterns to analyze. Once trained, our
system acts like a fast pipeline of simple convolutions and
subsampling modules, that treat the raw input image as a
whole, for each analyzed scale, and does not require any
costly local preprocessing before classification. Such a
scheme provides very high detection rate with a particularly
low level of false positives, demonstrated on difficult test sets,
while maintaining an acceptable speed of approximately four
frames per second for 384� 288 pixel images, on a conven-
tional 1.6 GHz Intel Pentium IV.

There have been previous successful image-based meth-
ods for face detection, which differ on the pattern classifica-
tion techniques they apply or the constraints they consider on
the face patterns. The first advanced image-based face
detection system has been developed by Sung and Poggio
[16]. This system consists of two components, a clustering and
a distribution-based models for face/nonface patterns and a
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multilayer perceptron classifier. Each face and nonface
example (19� 19 pixels) is first preprocessed via lighting
correction, a best fit linear function being subtracted from the
original signal, followed by histogram equalization. Then, the
training patterns are classified into face and nonface clusters
using a modified k-means algorithm. A vector of appropriate
distances, computed between the tested image window and
each cluster centroid is presented as input to a multilayer
perceptron network for classification. Some other efficient
techniques are based on standard multivariate statistical
analysis. Yang et al. [17] proposed two methods which seek to
represent the manifold of human faces as a set of subclasses.
In the first method, a mixture of factor analyzers is used to
perform clustering and local dimensionality reduction within
each obtained cluster. The second method uses Kohonen’s
self-organizing maps for clustering, Fisher’s linear discrimi-
nant to find an optimal projection for pattern classification
and a Gaussian distribution to model the class-conditional
density function of the projected samples for each class.
Maximum likelihood estimates are used for the parameters of
the class-conditional density functions and the decision rule.

There are several other statistical approaches for face
detection, based on information theory or Bayes decision
rule. Colmenarez and Huang [18] proposed a system based
on Kullback relative information (Kullback divergence), to
measure the difference between joint-histograms, computed
for each pair of pixels in the face images of the training set,
for the classes of faces and nonfaces.

Garcia and Tziritas [5] proposed a face detector based on
skin color segmentation and statistical classification of the
face texture. Facial texture is described by vectors com-
posed of simple statistical measures (variances) extracted
from each subband of a discrete three-level wavelet packet
decomposition of the face intensity image. Wavelet packet
decomposition, which captures information regarding
visual attributes in space, frequency, and orientation is
found to be efficient for describing the characteristics of the
human face. They use a pair of suitably chosen conjugate
quadrature low-pass and high-pass filters that they have
also incorporated in a face recognition system [19]. The
extracted feature vectors are then classified as faces or
nonfaces, using the Bhattacharrya distance and some
prototypes of face pattern vectors derived from training.

Schneiderman and Kanade [20] proposed a face detector
also based on a locally sampled three-level wavelet
decomposition. Several sets of wavelet coefficients are
extracted from chosen subbands of the wavelet tree. The
coefficients are requantized to three levels and probabilistic
density functions are built using histograms. Bayes’ rule is
applied for classification between face and nonface patterns.

More recently, Liu [21] proposed a Bayesian Discriminat-
ing Features (BDF) method for frontal face detection. The
discriminating feature analysis combines the input image, its
1D Haar wavelet and its amplitude projections. Then,
statistical modeling estimates the conditional probability
density functions of the face and nonface classes, considering
multivariate normal distributions, in order to build a
Bayesian classifier. Other approaches, closer to the proposed
method, rely on neural networks for learning separating
surfaces between face and nonface subspaces. Osuna et al.
[22] developed a support vector machine (SVM) approach to
face detection. An SVM with a second-degree polynomial as a
kernel function is trained from a large training set of faces

with a decomposition algorithm, which guarantees global
optimality. Approximately 2,500 support vectors are ob-
tained and used for face detection. This system scans input
images over scales with a19� 19 pixel window and performs
lighting corrections of the window content before classifying
it using the support vectors.

Rowley et al. [23] proposed the first advanced neural
approach which reported results on a large and difficult
data set. Their system incorporates face knowledge in a
retinally connected neural network, looking at windows of
20� 20 pixels. In their single neural network implementa-
tion (referred to as system 5), there are two copies of a
hidden layer with 26 units, where four units look at
10� 10 pixel subregions, 16 look at 5� 5 subregions, and
six look at 20� 5 pixels overlapping horizontal stripes. A
large number of adjustable weights (2,905) are learned
through standard back-propagation. The input window is
preprocessed via lighting correction like in the system of
Sung and Poggio [16]. The image is scanned with a moving
20� 20 pixel window at every possible position and for
scales obtained with a subsampling factor of 1.2. To reduce
the false alarm rate, they combine multiple neural networks
with an arbitration strategy, which, however, increases the
computational cost. They also proposed a faster version,
based on a two-stage scheme, where a simple network is
used to quickly discard nonface like areas and a more
complex network is used to perform final classification on
the image areas that passed the first stage successfully. A
significant gain in speed is observed, but at the cost of a
reduced detection rate.

Roth et al. [24] proposed a face detector based on a
learning architecture called SNoW (Sparse Network of
Winnows), which consists of two linear threshold units,
representing the classes of faces and nonfaces, that operate
on an input space of Boolean features. Features like
intensity mean, intensity, and variance are first extracted
from a series of subwindows from the face window and
then discretized into a predefined number of classes to give
Boolean features in a 135,424-dimensional feature space.
The system is trained with a simple learning rule, which
promotes and demotes weights in cases of misclassification,
in order to classify face and nonface Boolean features. Like
in the aforementioned methods, images are preprocessed
using the technique of Sung and Poggio.

Féraud et al. [6] proposed another neural approach, based
on constrained generative models (CGM), which are auto-
associative fully connected MLPs with three large layers of
weights, trained to perform a nonlinear PCA. Classification is
obtained by considering the reconstruction errors of the
CGMs. The best results are reported using a combination of
CGMs via a conditional mixture and an MLP gate network.
As the computational cost of this method is high, some
prefiltering operations are required, such as skin color and
motion segmentation. Like in the previous neural-based
approaches, every tested subwindow is preprocessed using
the approach of Sung and Poggio.

Most of these methods are based on a costly exhaustive
multiresolution window scanning technique. The input
image is successively subsampled by a factor of 1.2, giving a
pyramid of images. In each subsampled image, a window is
scanned at all positions, and its content is preprocessed via
lighting correction and histogram equalization, before being
processed by the neural architecture.
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Lately, very fast approaches based on coarse-to-fine search
mechanisms and focus of attention have been proposed [25],
[26], [27]. The main philosophy of these approaches is to
combine classifiers in a cascade, which allows background
regions of the image to be quickly discarded while spending
more computation on promising face-like regions. The
detectors in the early stages are simpler so as to reject a vast
number of nonface regions, whereas those at latter stages are
more complex and take more time.

Fleuret and Geman [25] proposed a face detection
technique which relies on a chain of binary tests applied
on particular arrangements or disjunctions of fine scale
edges. The cascade of tests is learned by density estimation
and density discrimination. Fast processing is obtained but
the false positive rate appears to be higher than for other
state-of-the-art approaches.

Recently, Viola and Jones [26] proposed the first real-
time frontal face detection system (running at 15 frames per
second on conventional desktop), providing good detection
results with an acceptable false alarm rate. They present a
scheme for constructing weak classifiers by selecting a small
number of simple features using a variant of the Adaboost
algorithm. The simple features, which they use, are
reminiscent of Haar basis functions, as they correspond to
differences between the sums of pixels within adjacent
rectangular regions of the image. Different features are
obtained by considering different arrangements of adjacent
rectangles of the same size and shape, and computed in a
very fast way by using an “integral” representation of the
original image. Weak classifiers are then boosted into
stronger classifiers using a linear combination derived
during the learning process. Finally, strong classifiers are
organized into a cascade structure of increasing complexity,
similar to a degenerated decision tree. Each image area to
inspect is variance normalized before classification to
minimize the effect of different lighting conditions.

Inspired by the work of Viola and Jones [26], Li et al. [27]
proposed a real-time system for multiview face detection,
using a new boosting algorithm, called FloatBoost, designed
to overcome the problem of monotonicity of the sequential
Adaboost training. The system also uses a coarse-to-fine,
simple-to-complex architecture that demonstrated good
performances in detecting nonfrontal faces.

Most of these techniques rely on image preprocessing for
reducing the variability of the face patterns before the training
and classification stages. Our system provides high detection
rate with a particularly low level of false positives, while
avoiding local preprocessing to ensure that no unrealistic
assumption is made about the data and that the richness of the
original signals is preserved. In addition, it does not require
the use of independently trained multiple networks for
handling difficult cases or reducing false alarm rates.

In Section 2, we describe the design of our architecture
and the training methodology in detail. Then, we present
the process of face detection using this architecture. In
Section 3, we intend to assess the robustness of our method
with respect to the degrees of variability of the face patterns.
We also examine the performance of our face detector on
different test sets of images, including the CMU test set [23],
that we use to compare our method with state-of-the-art
approaches. Finally, we conclude this paper with comments
and description of future work in Section 4.

2 THE PROPOSED APPROACH

Our face detector is designed to locate multiple faces of
20� 20 pixel minimum size, rotated up to �20 degrees in
image plane and turned up to �60 degrees. It consists of a
pipeline of convolutions and subsampling operations,
applied at various scaled versions of the original image, to
handle faces of different sizes. This pipeline performs
automatic feature extraction and classification of the extracted
features, in a single integrated scheme. The full process is
implemented via a convolutional neural network architec-
ture, which offers the advantage of being trained to
automatically derive all parameters, governing feature
extraction and classification.

Convolutional Neural Networks (CNN), introduced and
successfully used by LeCun et al. [15], [28], [29], are powerful
bioinspired hierarchical multilayered neural networks that
combine three architectural ideas to ensure some degree of
shift, scale, and distortion invariance: local receptive fields,
shared weights, and spatial subsampling. Different architectures
of convolutional networks have been used successfully in
many difficult applications such as handwriting recognition
[29], [30], machine-printed character recognition [31], and
face recognition [32].

Vaillant et al. [33] used convolutional networks for image-
based object detection and considered the case of face
detection. The key contribution of this approach was to show
that a 2-layer CNN architecture outperformed fully con-
nected multilayer perceptrons and that a good classification
between reduced sets of face and nonface patterns could be
obtained. The paper focuses mainly on the analysis and the
comparison of training results. Faces used for training are
obtained in a controlled environment with only two
different lighting conditions (light source behind the camera
and diffuse lighting). Partially occluded faces and faces
wearing glasses are excluded from the training and testing
sets. Nonface patterns are extracted randomly from se-
quences taken in the same indoor environment. Experi-
mental results mainly focus on the problem of classification
between faces and a fixed set of nonfaces. The application of
the CNN architecture to face detection is proposed by
considering differently trained versions of the same archi-
tecture for complete, rough, and fine localization. Each
image is preprocessed by applying a zero-mean Laplacian
filter, and normalized to have a mean of zero and a standard
deviation of one. Results concerning the classification of face
and nonface sets with this simple 2-layer architecture were
promising, in comparison with traditional MLPs, but
unfortunately no quantitative results have been reported
on real world test images.

Hereafter, we present in detail the proposed architecture,
the methodology to train it and, finally, the way it can be
efficiently applied for multiscale face detection.

2.1 Convolutional Neural Network Architecture

The Convolutional Neural Network used in our experiments,
which we called CFF (Convolutional Face Finder), is shown in
Fig. 1a. It consists of six layers, excepting the input plane
(retina) that receives an image area of size 32� 36pixels to be
classified as face or nonface. Layers C1 through S2 contain a
series of planes where successive convolutions and subsam-
pling operations are performed. These planes are called
feature maps as they are in charge of extracting and combining
a set of appropriate features. Layer N1 contains a number of
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partially connected sigmoid neurons and layer N2 contains
the output unit of the network. These last two layers carry out
the classification task using the features extracted in the
previous layers.

Each unit in a layer receives input from a set of units
located in a small neighborhood in the previous layer as
shown in Fig. 1b. The idea of connecting units to local
receptive fields on the input was largely inspired by Hubel
and Wiesel’s discovery of locally-sensitive, orientation-
selective neurons in the cat visual system [34] and local
connections have been used many times in neural models of
visual learning [28], [35], [36]. With local receptive fields,
neurons can extract elementary visual features such as
oriented edges, end-points, or corners. These features are
then combined by the subsequent layers in order to detect
high-order features.

Distortions or shifts of the input can cause the position of
salient features to vary. In addition, elementary feature
detectors that are useful for one part of the image are likely to
be useful for the entire image. This knowledge is applied by
forcing a set of units, whose receptive fields are located at
different locations in the image, to have identical weight
vectors [28]. Units in a layer are organized in planes within
which all the units share the same set of weights. Therefore,
each feature map has a fixed feature detector that corresponds
to a convolution with a trainable kernel, applied over the
planes in the previous layer. Several feature maps (with
different weight vectors) are used in each layer so that
multiple features can be detected at each location. These
feature maps form convolutional layers Ci.

Once a feature has been detected, its exact location is less
important. Only its approximate position relative to other
features is relevant, as absolute positions are likely to vary
in the different instances of face patterns. A simple way of
reducing the precision with which the positions of different

features are encoded in a feature map is to reduce the
spatial resolution of the feature map. Hence, each convolu-
tional layer Ci is typically followed by a subsampling layer,
Si, that performs local averaging and subsampling opera-
tions, reducing the resolution of the feature maps and,
therefore, reducing the sensitivity of the output to shifts,
distortions and variations in scale and rotation.

We precisely describe hereafter the components forming
the proposed architecture. The different parameters govern-
ing the proposed architecture, i.e., the number of layers, the
number of planes and their connectivity, as well as the size of
the receptive fields, have been experimentally chosen.
Practically, different architectures have been iteratively built,
trained, and tested over large training sets. We retained the
architecture that performed efficiently in terms of good
detection rates and especially in terms of false alarm
rejection, while still containing an acceptable number of free
parameters.

Layer C1 is composed of four feature maps. Each unit in
eachfeaturemap is connectedto a5� 5neighborhoodinto the
input retina. The receptive fields of contiguous units in a
feature map are centered on corresponding contiguous units
in the retina. The size of the feature maps is 28� 32 pixels,
which prevents connections from falling off the boundary.
Each feature map unit computes a weighted sum of its input
by 25 (5� 5) trainable coefficients, and adds a trainable bias.
The implementation corresponds to a convolution by a
5� 5 trainable kernel, followed by the addition of a trainable
bias.Therefore, layer C1has 104(4� 26) trainableparameters.

Layer S1 is composed of four feature maps, one for each
feature map in C1. The receptive field of each unit is a
2� 2 area in the previous layer’s corresponding feature map.
Each unit computes the average of its four inputs, multiplies
it by a trainable coefficient, adds a trainable bias, and passes
the results through a hyperbolic tangent function, used as an
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activation function. Contiguous units have nonoverlapping
contiguous receptive fields. The weight sharing technique,
described above, is also used here. Thus, a feature map in the
subsampling layer has half the number of rows and columns
of the feature maps in the previous layer. Therefore, layer S1
has four feature maps of size 14� 16 and eight trainable
parameters.

Successive layers of convolution and subsampling are
typically alternated resulting in a “bipyramid”: at each
layer, the number of feature maps is increased as the
resolution is decreased. This convolution/subsampling
combination is inspired by Hubel and Wiesel’s notions of
“simple” and “complex” cells.

Layer C2 is a convolutional layer with 14 feature maps.
Each unit in each feature map is connected to a 3� 3
neighborhood at identical locations in a subset of the feature
maps of S1. The implementation corresponds to convolu-
tions by 3� 3 trainable kernels, followed by the addition of
trainable biases. Here, outputs of different feature maps are
fused in order to help in combining different features, thus
in extracting more complex information. Each of the four
subsampled feature maps of S1 provides inputs to two
different feature maps of C2. This results in the first eight
feature maps of C2. Each of the other six feature maps of C2
takes input from one of the possible pairs of different
feature maps of S1. Therefore, layer C2 has 14 feature maps
of size 12� 14 and 194 trainable parameters.

Layer S2 is a subsampling layer with 14 feature maps. The
receptive field of each unit is a 2� 2 area in the previous
layer’s corresponding feature map in C2, like for S1 and C1.
Therefore, layer S2 has 14 feature maps of size 6� 7 and
28 trainable parameters.

In layer S2, a series of hopefully disjoint and steady
features of low-dimensionality are extracted and used for
classification by a simple MLP. Layers N1 and N2 contain
classical neural units. These layers act as a classifier, the
previous ones acting as feature extractors. In layer N1, each of
the 14 neurons is fully connected to all units of only one
corresponding feature map of S2. The single neuron of layer
N2 is fully connected to all the neurons of layer N1. The units
in layers N1 and N2 perform the classical dot product
between their input vector and their weight vector, to which a
bias is added. This weighted sum is then passed through a
hyperbolic tangent function to produce the state of the unit, in
between -1.0 and 1.0. The output of neuron N2 is used to
classify the input image as a nonface, if its value is negative, or
as a face, if its value is positive. Layers N1 and N2 have,
respectively, 602 and 15 trainable parameters.

As a comparison, in the approach of Vaillant et al. [33],
input images of size 20� 20 are preprocessed with a
Laplacian filter, normalized and passed to an architecture
composed of one convolutional layer of four feature maps
of size 16� 16, followed by a subsampling layer of four
feature maps. The units of the four subsampled feature
maps of size 8� 8 are fully connected to an MLP with one
hidden layer of four neurons and one output neuron. In this
design, convolutional paths cannot be fused before the
classification layer, and the system is not able to extract
higher order features. The preprocessing stage has been
designed to reduce the variability of the input patterns,
with the risk of introducing a certain bias in the learning
and classification processes. Because of the full connectivity
of the MLP, this simpler system has, however, 1,157 free

parameters to learn, most of them used in the last layer for
the classification of the extracted features.

Concerning our learning strategy, all weights are
computed through gradient-based learning, using a mod-
ified version of the backpropagation algorithm with
momentum. The main change here is the computation of
the local gradient of the backpropagated error signal with
respect to the shared weights. Considering that every
feature map contains in fact a single neuron with multiple
instances, the local gradient for this neuron is simply the
summation of the local gradients over all instances of it [15].
During training, desired network output responses are set
to -1.0 for nonfaces and to +1.0 for faces.

Since all weights are learned, the system can be seen as
synthesizing its own set of problem specific feature extrac-
tors. The proposed network has only 951 trainable para-
meters, despite the 124,741 connections it uses. Weight
sharing offers the advantage of reducing the number of
parameters, thus reducing the capacity of the machine,
allowing a better generalization and, therefore, reducing the
gap between training and testing errors [15]. Local receptive
fields, weight sharing, and subsampling provide many
advantages to solve two important problems at the same
time: the problem of robustness and the problem of good
generalization, which is critical given the impossibility of
capturing all the possible variations of the face pattern in a
training set of finite size.

The proposed topology has another interesting property.
In most image-based approaches ([6], [16], [22], [23], [24]), in
order to search for faces at a given scale, the network must be
replicated (or scanned) at all locations in the input image. All
these approaches follow the preprocessing stage proposed by
Sung and Poggio [16], which consists in locally normalizing
the face window pixels before feeding the network retina for
classification, therefore treating every neighbor separately and
overlapping face windows. In our approach, no preproces-
sing local to subwindows is performed and arrays of raw
pixels are fed directly to the retina. Since each layer essentially
performs parallel convolutions of small size kernels, for each
convolution, a very large part of the computation is in
common between two neighboring retina windows in the
input images. This redundancy is naturally eliminated by
performing the convolutions corresponding to each layer on
the entire input image at once. The overall computation
consists in a pipeline of convolutions and nonlinear trans-
formations over the entire images, as shown in Fig. 2. At every
level of the pipeline, full image convolutions and nonlinear
transformations of small size kernels can be easily performed
in parallel. These standard operations can be implemented
directly on standard image-processing hardware boards,
allowing low-cost near real-time applications.

2.2 Training Methodology

We built a training set by manually cropping 3; 702 highly
variable face areas in a large collection of images collected
from various sources over the Internet or from scanned
images of newspapers. The collected images are chosen to
effectively capture the variability and the richness of natural
data in order to train our system for operating in
uncontrolled environments.

Using manually labeled eye and mouth positions, face
images are cropped and normalized to the size of
32� 36 pixels, after derotation and rescaling. The aim of
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this procedure is to position the two eyes approximately at
the same locations inside the retina, while the distance
from the mouth point to the eye-line is used to roughly
preserve the original aspect ratio of the faces. More
precisely, the eye-line is roughly 16 pixels wide while its
distance from the mouth is close to 18 pixels.

Most of the image-based approaches in the literature ([6],
[16], [22], [23], [24]) use a face window of about 20� 20pixels,
reported as being the smallest window one can use without
loosing critical information. Usually, this window contains
the very central part of the face, excluding its borders and any
parts of background, by masking border pixels. We have
chosen approximately the same size for the central part of the
face but centered in a 32� 36 pixel window where borders of
the face are included. The reason for this is twofold. First, the
network is fed with some additional information about the
face shape, which will help in reducing the number of false
alarms produced that are more likely to appear when only the
very central part of the face is considered. Second, some
border effects that may arise in the convolutions are canceled.
The rough manual labeling of the facial points introduces a
physical error in the cropping process, which in turn affects
the positions of the training examples inside the retina. As
mentioned earlier, our system is quite robust against
variations in scale and position, and small errors in the
manual labeling reinforce this ability by providing examples
that are not precisely normalized. Moreover, the task of
gathering training examples is less tedious if no strict
alignment of the face patterns is required.

No intensity normalization is performed on the cropped
faces, such as overall brightness correction and histogram
equalizationthatareappliedin[6], [16], [22], [23], [24]. Inorder
to create more examples and to enhance the tolerance to small
inplane rotations and variations in intensity, a series of
transformations are applied to the initial set of face examples.
At first, someexamplesaremirroredandthenall theexamples
are rotated by �20 degrees. As a final step, some of the
examples are smoothed, while contrast reduction is applied to
others. The last two transformations help in teaching the
systemhowtocopewithsituationswheretheretina is fedwith

a weak, oversmoothed, or poorly-contrasted signal. In
general, highly variable examples are essential for the
performance of the system because neither histogram equal-
ization nor lighting correction is applied to the signal before
feeding the network. Finally, the training set reached the
number of 25; 212 face patterns, partially occluded (glasses,
hair, etc...), unequally lighted, turned up to �60 degrees,
rotated up to �20 degrees and with average intensity values
varying from dark to light. Some examples of the collected
training patterns are shown in the three first rows of Fig. 3.

Collecting a representative set of nonfaces is more difficult.
Practically, any randomly cropped image can serve as a
nonface example; the space of nonfaces can be seen as “the
rest of the world.” Because of the impossibility of training the
network with every possible nonface example, nonface
patterns were collected via a new iterative bootstrapping
procedure, inspired by the algorithm proposed by Sung and
Poggio in [16]. This method consists in iteratively retraining
the system with an updated training set containing false
alarms produced after face detection has been performed on a
set of scenery images that do not contain faces. In the
proposed approach, we improved this strategy in some
points. Before proceeding with the bootstrapping, an initial
training set of 6; 422 nonface patterns is built by selectively
cropping images. Most of these images contain parts of faces
as we noticed that this kind of image is a serious source of false
alarms. The training-bootstrapping algorithm that we im-
plemented proceeds as follows:

1. Create a validation set of 400 face patterns and
400 nonface patterns randomly extracted and ex-
cluded from the initial training set. This set is used to
select the best performing weight configuration in
Steps 3 and 8.

2. Set BootsIter ¼ 0, ThrFa ¼ 0:8.
3. Train the network for 60 learning epochs. Use an

equal number of positive and negative examples in
each epoch.
Set BootsIter ¼ BootsIterþ 1.

GARCIA AND DELAKIS: CONVOLUTIONAL FACE FINDER: A NEURAL ARCHITECTURE FOR FAST AND ROBUST FACE DETECTION 1413

Fig. 2. The images produced at each stage of the pipeline, for a given scale. For illustration purposes, the retina window is displayed over the face in
the images of the second row. The image at the bottom contains the outputs of the neural architecture.



4. Gather false alarms from a set of 692 scenery images
(containing no face) with network answers above
ThrFa. Collect a maximum number of 5,000 new
examples.

5. Concatenate the newly created examples to the
nonface training set.

6. If ThrFa � 0:2, set ThrFa ¼ ThrFa� 0:2.
7. If BootsIter < 6, go to Step 3.
8. Train the network for 60 more learning epochs using

the full training set and exit.

In Step 1, a validation set is built and used for testing the
generalization ability of the network during learning and,
finally, selecting the weight configuration that performs best
on it. This validation set is kept constant throughout all the
bootstrapping iterations, in contrast with the training set that
is updated.

In Step 3, stochastic learning using backpropagation is
performed withthe addition ofamomentumtermfor neurons
belonging to the N1 and N2 layers. At each bootstrapping
iteration, the network is trained for 60 epochs using the
updated training set, which contains an increasing number of
negative examples. For every learning epoch, an equal
number of randomly selected examples from both classes
are presented to the network, so that no bias is introduced.

The selection of the new patterns that are to be added to the
set of nonface examples is carried out by Step 4. The false
alarms produced in this step force the network, in the next
iteration, to revise its modeling of the face class and to refine
the decision boundaries between face and nonface patterns.
At each iteration, the false alarms, giving network answers
greater than ThrFa are selected. In the first iteration, false
positives inside the current face class boundaries (i.e., giving
network answers greater than ThrFa ¼ 0:8) are selected.
Then, as the network generalizes from these examples,ThrFa
is gradually reduced by 0:2 in each subsequent iteration, until
reaching 0:0. The learning process is stopped after six
iterations, when the number of false alarms is low and
remains roughly constant. This procedure helps in correcting
problems arising in the original algorithm proposed by Sung
and Poggio where false alarms were grabbed regardless of the
strength of the network answers. By doing so, a very large
number of false alarms were eventually grabbed during the
first iterations, with relatively low network answers. This
high number of possibly redundant patterns included in the
training set significantly slows down the learning speed as
the interesting negative examples with high scores are
presented fewer times to the network. With a selection of
the strongest negative examples, our scheme provides faster
training, especially in the first iterations where the network is
still a weak classifier. As the network updates quickly its

parameters from these early negative examples, ThrFa can
be then reduced until reaching 0:0, in a safer way, gathering a
balanced set of false alarms. Finally, 18; 665 false alarms are
grabbed during this bootstrapping process. Therefore, the
final set of nonface examples contains 25; 087 examples. Some
of them are shown in the last row of Fig. 3.

Some other trials have also been conducted in order to
further accelerate the learning scheme by pruning the
training set after each iteration, and excluding some of the
negative examples correctly classified with strong negative
responses and, therefore, distant from the decision bound-
aries. Our preliminary experiments showed that such a
pruning scheme may be efficient, but further experiments
are still to be conducted to reach equivalent training results.

The performance of the proposed training-bootstrapping
procedure is depicted in Fig. 4. In particular, one can
observe how the network was boosted in terms of false
alarm rejection. Fig. 4a presents the volume of the grabbed
false alarms with respect to the training-bootstrapping
iterations. This metric characterizes the strength of the false
alarms. It corresponds to the sum of the positive network
answers for all the nonface examples grabbed at each
iteration. This curve shows that the process grabs fewer and
fewer strong false alarms as learning takes place. One can
notice that the first iteration produces very strong false
alarms, as expected for the first run of the network over the
scenery images. During the following iterations, the net-
work quickly learns how not to produce strong false alarms,
as illustrated by the sharp decrease of the volume in
iteration 3. Thereafter, the behavior remains roughly
constant, which indicates that the bootstrapping procedure
can safely terminate. Fig. 4b shows the evolution of the
average output value of the network for the face and
grabbed nonface examples of the training set. It can be
noticed that the average output value for the face patterns
increases after the first iteration and stays roughly constant,
around 0.85, after the second iteration, while an increasing
number of nonface patterns are presented to the network. It
also illustrates how the average output value to nonface
patterns is significantly decreasing as learning progresses,
showing how the class boundaries are adapting.

2.3 Face Localization

Fig. 5 depicts the process of face localization in a gray-scale
image, containing three faces of different sizes. In order to
detect faces of different sizes, the input image is repeatedly
subsampled by a factor of 1.2, resulting in a pyramid of
images (Step 1). Each image of the pyramid is then filtered by
our convolutional network CFF (Step 2). In [6], [16], [22], [23],
neural filters are applied at every pixel of each image of the
pyramid, after some operations of lighting correction. Thus,
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Fig. 3. Some patterns used for training. The first three rows present some highly variable face patterns. The last row contains some examples of
nonface patterns produced by the bootstrapping procedure.



every image subwindow has to be cropped, processed for
lighting correction and histogram equalization before being
passed to the retina of the neural classifier. In our approach,
as mentioned earlier, each image of the pyramid is entirely
convolved at once by the network. For each image of the
pyramid, an image containing the network results is
obtained. Because of the successive convolutions and
subsampling operations, this image is approximately four
times smaller than the original one. This fast procedure may
be seen as corresponding to the application of the network
retina at every location of the input image with a step of four

pixels in both axis directions, without computational
redundancy.

After processing by this detection pipeline, face candidates
(pixels with positive values in the result image) in each scale
are mapped back to the input image scale (Step 3). They are
then grouped according to their proximity in image and scale
spaces. Each group of face candidates is fused in a
representative face whose center and size are computed as
the centroids of the centers and sizes of the grouped faces,
weighted by their individual network responses. After
applying this grouping algorithm, the set of remaining
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Fig. 4. The evolution of our training-bootstrapping process. (a) The volume of grabbed false alarms quickly decreases during the iterative learning.
(b) The average output value for face patterns increases after the first iteration and then stays roughly constant, around 0:85, while an increasing
number of nonface patterns are presented to the network. Meanwhile, the average output value for grabbed false alarms used as nonface patterns
is quickly decreasing.

Fig. 5. The different steps of the process of face localization. (1) Creation of amultiscale pyramid from the original image. (2) Convolution of each image

of the pyramid by the neural filter CFF. (3) Projection of face candidates to the original scale and fusion of overlapping face candidates. (4) Application

of the neural filter in a fine pyramid centered at each face candidate position. (5) Classification of each face candidate according to the volume of

positive answers in the corresponding fine pyramid.



representative face candidates serve as a basis for the next
stage of the algorithm, in charge of fine face localization and
eventually false alarm dismissal.

To do so, a local search procedure is performed in an area
around each face candidate center in image scale-space
(Step 4). A reduced search space centered at the face candidate
position is defined in image scale-space for precise localiza-
tion of the face candidate. It corresponds to a small pyramid
centered at the face candidate center position covering
10 equally distant scales varying from 0.8 to 1.5 times the
scale of the face candidate. For every scale, the presence of a
face is evaluated on a rescaled grid of 16� 16 pixels around
the corresponding face candidate center position. We ob-
served that true faces usually give a significant number of
high positive responses in consecutive scales, which is not
often the case for nonfaces. In the preliminary approach that
we presented in [37], we proposed a solution in which the
number of positive answers nok in the local pyramid was
considered in order to take the classification decision. A face
candidate was classified as face if nok was greater than a
certain number. In order to discriminate true faces from false
alarms, it resulted more efficient to take into account both
number and values of positive answers. We therefore
consider the volume of positive answers (the sum of positive
answer values) in the local pyramid in order to take the
classification decision. Based on the experiments described in
the next section, a face candidate is classified as face if its
corresponding volume is greater than a given threshold
ThrV ol (Step 5). The bottom-right image of Fig. 5 shows the
positions and sizes of the faces detected after local search. One
can notice that the false alarm (up right in the image),
previously detected in Step 4, with a low volume after local
search, has been removed using the volume threshold
criterion.

3 EXPERIMENTAL RESULTS

In this section, we aim at presenting the accuracy and the
robustness of the Convolutional Face Finder. First, we
analyze the sensitivity of the method with respect to the
degrees of variability of the face patterns. Finally, we
examine the performance of our face detector on different
test sets of images, including the CMU Test Set [23], used for
comparison with other state-of-the-art techniques.

3.1 Sensitivity Analysis

Experimental results reporting detection and false alarm
rates are usually presented, but little information is given
about the influence of the face pattern variations on the
classification results. Rowley et al. [23] present an analysis
of the network output variations with respect to localized
noise affecting the face patterns. Féraud et al. [6] analyze the
sensitivity of their face detector with respect to shift of the
face patterns. We propose a deeper study, by considering
the sensitivity analysis of our method with respect to shift,
rotation in image plane, blurring, contrast modification, and
addition of Gaussian white noise. We also consider
tolerance to variations in facial pose and expression.

We selected a set of 20 images, each of them having been
cropped around a single face. They can be seen in the first
two rows of Fig. 6. One can notice that these faces are
approximately frontal and nonrotated. We conducted the
sensitivity analysis by applying some transformations to the

input images and studying their influence on the average
output values produced by our face detector on the set of
faces. From the third to the seventh row of Fig. 6, we
present some examples of these transformations for one of
the images of the set. The transformations are shift, rotation
in image plane, blurring, contrast modification, and addi-
tion of Gaussian white noise.

For analyzing the sensitivity to shift, we first rescaled each
image so that the contained face has the size of the retina, i.e.,
32� 36. Then, we cropped image areas around the face
location in each image, by successively translating the face
center by an amount varying from -8 to +8 pixels in both x and
y directions. We fed the retina of the neural network by each
image and recorded the corresponding output value. In
Fig. 7a, we display the average network output among all
cropped faces with respect to the shift vector. A horizontal
plane shows the zero value on the z-axis, the axis of the
average network outputs. One can notice that the average
network output is a function which has a peak for the centered
face and decreases monotonically as the shift increases. This
property illustrates the behavior of our face detector with
respect to shift of the face pattern in the retina.

For studying the sensitivity of the proposed face detector
to the remaining selected transformations that affect the
face appearance, we apply the complete CFF system to each
transformed image of the set. For various transformation
parameter values, we record the detection rate over the set
of images, the number of eventual false alarms, and for all
detected true faces, the average volume of positive answers
(AVPA) after fine search.

As mentioned earlier, we generated some training exam-
ples, in order to give to our system the ability of detecting
faces rotated up to�20degrees. For readers interested in fully
rotation invariant face detection, an interesting approach has
been presented by Rowley et al. in [38]. In order to analyze the
robustness of our approach, we successively rotate the
images by an angle varying from -25 to +25 degrees with a
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Fig. 6. Original images and some transformed images used for sensitivity
analysis. From top to bottom, transformations are shift, rotation, blurring,
contrast modification, and addition of Gaussian white noise.



step of one degree. Each of these rotated images is then
processed by the face detector and the resulting AVPA is
recorded over the set of images for each rotation angle. Fig. 7b
shows the detection rate and theAVPA values with respect to
angles of rotation. It can be observed that the detection rate is
close to 100 percent for rotation angles comprised in between
�20 and þ20 degrees and decreases significantly for larger
rotations. One false alarm has been detected with a small
volume of 1:8. The curve corresponding toAVPAvalues has a

bell shape and decreases slowly from the maximum value,
corresponding to the nonrotated images. The face detector
produces AVPA values greater than 20:0 for faces rotated up
to �20 degrees.

In order to analyze the influence of blurring on the
performance of the face detector, a Gaussian smoothing filter
with standard deviation ranging from 0 to 2.5 is applied to
each image. Fig. 7c presents the detection rate and the AVPA
values with respect to the standard deviation of the Gaussian

GARCIA AND DELAKIS: CONVOLUTIONAL FACE FINDER: A NEURAL ARCHITECTURE FOR FAST AND ROBUST FACE DETECTION 1417

Fig. 7. Sensitivity analysis of the proposed face detector, with respect to (a) shift, (b) rotation, (c) blurring, (d) contrast modification, and (e) addition of
Gaussian white noise.



filter. One can observe that the detection rate is still
100 percent for a standard deviation of 1.5 and decreases
slowly after. No false alarm has been produced. The face
detector returns AVPA values, which decrease gently as the
image is increasingly blurred. Note that the AVPA value is
still greater than 20:0 for a standard deviation of 2.0.

Tolerance to contrast variation is studied by applying
contrast modification. For each image, each pixel intensity Ip
is changed according to Ip ¼ �Im þ ð1� �ÞIp, where Im is the
mean intensity of the image and� is a parameter varying from
-2.0 to 1.0. Contrast enhancement is performed when � is
negative and contrast reduction is performed otherwise.
Fig. 7d shows the detection rate and the AVPA values with
respect to the parameter�. It can be seen that theAVPAvalues
decrease very slowly for increasing contrast enhancement
(� < 0) and decrease faster as we reach noncontrasted
(� > 0), and finally the image of constant gray level (� ¼ 1),
as shown in the sixth row of Fig. 6. Two false alarms have been
produced with AVPA values below 2:9. The detection rate
stays close to 100 percent until the contrast is reduced by
75 percent. Note that AVPA is still high (more than 40:0) for
this percentage of contrast reduction.

To study the influence of noise, a Gaussian white noise of
standard deviation ranging from 0 to 0.025 is applied to each
image. Fig. 7e presents the detection rate and the AVPA
values with respect to the standard deviation of the Gaussian
white noise. Two false alarms have been detected withAVPA
values lower than 3.0, for high levels of noise. It can be seen
that detection rate and AVPA values decrease slowly as the
noise increases, which illustrates the robustness of our face
detector in handling very noisy face patterns.

Another interesting aspect is tolerance to changes in facial
expressions and poses. To illustrate the tolerance of our
detector to pose variations, we processed the well-known
Foreman MPEG sequence. This sequence contains 250 frames
of size 352� 288, where the speaker face undergoes many
changes in expression and pose. Fig. 8a shows some of the
processed frames while Fig. 8b shows the volume of positive
answers for the true face detected in each frame. The curve
evolves as pose and facial expressions changes. One can
noticed that the output of the face detector is greater than
20:0 for most of the frames, except for three subsequences of
frames (around frame 110, 188, and 231) where the speaker’s
pose is close to full profile. In these cases, the face was missed
or detected with a low and therefore unreliable output. We
obtained an overall detection rate of 96.8 percent (eight
missed faces) with six false alarms of volume smaller than
10.2. By selecting candidate faces with volumes greater than
20:0, we obtained a detection rate of 94.0 percent (15 missed
faces) with no false alarm.

3.2 Results on Test Data Sets

The level of performance of our method has been evaluated
using three test sets of images, collected by Rowley et al.
[23], Sung and Poggio [16], and ourselves. Most of the
images in these data sets have complex backgrounds with
faces taking up only a variable but small amount of the total
image area. Faces in these data sets present a large
variability in size, illumination, facial expression, pose,
and may be partially occluded.

We use the CMU test set [23], which is, so far, the most
widely used data set in the literature. It consists of 130 images
with a total of 507 faces. This data set includes 23 images of the

second data set used by Sung and Poggio [16], referred to as
MIT. A subset of the entire CMU test set, referred to as CMU-
125, has been used by many researchers. It excludes hand-
drawn and cartoon faces and contains 483 faces. A subset of
the MIT set, excluding three images containing hand-drawn
and cartoon faces is referred to as MIT-20.

To test our method further, we collected two other sets of
images. The first one, referred to as Web test set, is a
randomly chosen subset of 215 images from the large set of
images that have been submitted to the interactive demon-
stration of the proposed system, available on the Web at
www.csd.uoc.gr/~cgarcia/FaceDetectDemo.html, allowing
anyone to submit images and to directly see the detection
results. This test set contains a great variety of examples and
it has not been biased by a specific selection of images. It
contains 499 faces. The second test set that we collected,
referred to as Cinema, consists of 162 images extracted from
various movies, containing 276 faces. This test set is
considered as very challenging, as the images have been
specifically chosen to test the limits of our face detector. It
contains a high number of faces with extreme facial
expressions as well as faces, which are partially occluded
or heavily shadowed, surrounded by very complex back-
grounds.

Only a few papers, including [17], address the definition of
what is a correctly detected face [2]. In our experiments, a
detected face is considered as valid if the face window is not
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Fig. 8. Performance of the face detector applied to the Foreman MPEG
sequence. (a) Some processed frames. (b) The volume of positive
answers for each true face in each frame.



20 percent bigger that the real face area and contains both eyes
and mouth. In some papers, reported results of selected
methods on the face databases are difficult to interpret. For a
given approach, some results correspond to the maximal
detection rate with a high number of false alarms and others to
a lower detection rate with a smaller number of false alarms.
Indeed, most face detectors can adjust parameters (usually a
threshold) depending on how conservative one needs the
system to be. These adjustments influence detection and false
alarm rates. The detection rate is the ratio between the number
of successful detections and the number of labeled faces in the
test set. The false alarm rate is the ratio between the number of
false positive detection and the number of scanned windows.
This can be reported in terms of an ROC curve to show the
detection rate versus the false alarm rate for various values of
the threshold. Fig. 9a reports the ROC curves that we obtained
for theCMU, theWeb, and theCinema test sets. Each point on a
curve corresponds to a given threshold ThrV ol applied to the
volume of positive answers in order to classify an image area
into face or nonface. One can notice that these curves have
similar shapes. For small threshold values (extreme right part
of the curves), high detection and false alarm rates are
obtained. As the threshold value increases (toward the left),
the detection rate decreases slowly while the false alarm rate
decreases more quickly. The extreme left points of the curves
correspond to false alarm rates of zero. In that case, only true
faces are detected. Note that we obtain quite high detection
rates with no false alarm, which are 88.8 percent, 90.5 percent,
and 80.4 percent for the CMU, the Web, and the Cinema test
sets, respectively. On the other hand, the maximum detection
rates are 93.3 percent with 197 false alarms, 98.0 percent with
108 false alarms, and 95.3 percent with 104 false alarms, for the
CMU, the Web, and the Cinema test sets, respectively. These
results are reported in Table 1. Figs. 9b and 9c show the
detection and false alarm rates versusThrV ol for the different
test sets. It can be noticed that false alarm rates decrease much
faster than detection rates, that decrease linearly, for increas-
ing values of ThrV ol. For all three test sets, false alarm rates
have a very similar behavior and values of ThrV ol greater
than 20:0 give very low false alarm rate.

Table 1 shows the results obtained by our face detector
CFF on these three test sets, for different points on the ROC
curves. This table intends to show how the choice of ThrV ol
influences detection and false alarm rates for each test set. It
can be observed that, for instance, a value of ThrV ol ¼ 17:0,
derived after some trials performed on another subset of
images submitted to our online demo Web site, gives high
detection rate with a very low number of false alarms for all
three test sets. This suggests that the proposed system
processes most images in a stable and efficient way. The
best results are obtained for the Web test set, on images
which cannot be considered as biased by a specific
selection. This set contains a large variety of images
covering most of the face appearance classes. Results
obtained on the Cinema test set are still very good although
this test set is more challenging, as the images have been
chosen for testing the limits of our detector. One can notice
that, for zero false alarms, the detection rate for this test is
the lowest, i.e., 80.4 percent. It appeared that a very strong
false alarm, in a background area of an image of this test set,
was locally very similar to a face and, thus, required a high
ThrV ol value to be rejected, which in turn rejected true
faces and lowered the overall detection rate. Results
concerning the CMU test set are very similar to the ones

obtained on the Cinema test set. However, the false alarms
for the CMU test set are rejected for a lower threshold,
giving a high detection rate for zero false alarms.

In order to compare our approach with other methods,
we consider reported results on the CMU and MIT test sets.
Most previous published results on these test sets have only
included a single operating regime, which corresponds to a
single point on the ROC curve. As mentioned earlier, these
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Fig. 9. (a) The ROC curves obtained for the CMU, the Web, and the
Cinema test sets. Every point on a curve correspond to a given
threshold value ThrV ol of the volume of positive answers produced by
our face detector. (b) and (c), respectively, show the detection and false
alarm rates versus ThrV ol.



results are difficult to interpret. For a given approach, some

results correspond to high detection rate with a high

number of false alarms and others to a lower detection rate

but with a smaller number of false alarms. To make a

comparison with our detector easier, we have listed our
detection rate for the same false alarm numbers reported by
other systems, as in Viola and Jones [26] and Li et al. [27].

Table 2 lists the detection rates for various numbers of
false detections for our system as well as for other
published systems as reported in [26], [27]. It can be
observed that our method compares favorably with the
others, especially for low numbers of false alarms. This
shows that our approach separates face and nonface space
in a robust and balanced way. For larger number of false
alarms, our results are equivalent to the ones reported for
the other methods. It suggests that all these detectors reach
very similar maximal detection limits.

As mentioned earlier, most of the state-of-the-art pub-
lished methods report only a single operating regime. In
Table 3, we summarize these published results on the CMU
and MIT test sets. Our results are given for ThrV ol ¼ 17:0,
which provides balanced detection and false alarm rates on
different test sets. It can be noticed that these results are stable,
with detection rates greater than 90 percent in all test sets,
with a maximum of eight false alarms. For the entireCMU test
set, we report here, to our knowledge, the best published
results with a detection rate of 90.3 percent for only eight false
alarms. We also report, as seen in Table 1, a detection rate of
88.8 percent with no false alarm. This detection rate is still
equivalent to or higher than the ones reported by Viola and
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TABLE 1
Results of CFF on the CMU, WEB, and CINEMA Test Sets

for Different Points on the ROC Curves

TABLE 2
Comparison of Selected Methods for Various Numbers of False Alarms on the CMU Test Set

TABLE 3
Results Reported in Terms of Percentage of Good Detection/Number of False Alarms, on the CMU and MIT Test Sets

The results obtained with our approach are reported for all test sets for ThrV ol ¼ 17:0.



Jones, Rowley et al., and Féraud et al., but with false alarms.

Although detection rates with no false alarms are not
classically reported, we found this information interesting,

showing the discriminative power of the proposed approach.
For the CMU-125 test set, we obtain a detection rate slightly
inferior than the ones reported by other methods which do

not handle cartoon-like faces, but we obtain a much smaller
number of false alarms. For the MIT test set, we report

equivalent or better results than the ones reported for the
other systems.

Regarding processing speed, our current implementation,

running at four frames per second for 384� 288 pixel images

on a conventional 1.6 GHz Intel Pentium IV, is approxi-

mately four times faster than the fast version of Rowley et al.,
referred to as System 17, two times slower than the method of

Li et al., and roughly eight times slower than the method of

Viola and Jones. However, our approach provides robust

detection results, especially if low false alarm rate is

expected. On the CMU test set, we obtained a detection rate

of 90.3 percent with eight false alarms, which compares
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Fig. 10. Some results obtained on the (a) CMU, (b) the Web, and (c) the Cinema test sets.



favorably with the detection rates of 76.9 percent with eight
false alarms for the Rowley’s System 17 [23], 76.1 percent
with 10 false alarms for Viola and Jones, and 83.6 percent
with 10 false alarms for Li et al.

In Fig. 10, we present some results of the proposed face
detection scheme on the CMU, Web, and Cinema test sets, for
ThrV ol ¼ 17:0. These examples include complex images
with multiple highly variable faces of different sizes. False
alarms and false dismissals are presented as well. The
images contained in the Web and Cinema test sets are
available online in our face detector demo web page.
Ground truth of face localizations is also provided, hoping
that these data will serve the face detection community for
future evaluations and comparisons.

4 CONCLUSION

We have presented a framework for robust face detection
based on an efficient convolutional neural network architec-
ture, designed in order to detect highly variable face patterns,
rotated up to �20 degrees in image plane and turned up to
�60 degrees, in complex real world images. This system
automatically synthesizes simple feature extractors and
classifiers from a very large training set of face and nonface
patterns, without making any assumptions concerning the
features to extract or the areas of the face pattern to analyze.
Once trained, the system acts like a pipeline of simple
convolution and subsampling modules that treat the raw
input image as a whole, without requiring any local
preprocessing in the input image.

The robustness of our system to varying poses and facial
expressions as well as lighting variations and noise was
evaluated by considering its sensitivity with respect to
various transformations of the face patterns and using real
sets of difficult images. Experiments have shown high
detection rates with a particularly low number of false alarms,
on difficult test sets, without requiring the use of multiple
networks for handling difficult cases. These results illustrate
the high discriminant power of our convolutional architec-
ture where local receptive fields and weight sharing provide
appropriate high level feature extraction and allow efficient
generalization. Our results also suggest that performing local
intensity normalization before classifying image areas is not
mandatory to build an efficient face detection system.

From a more general perspective, the full scheme of the
CFF method can be a good candidate to a large number of
computer vision detection or recognition tasks, where
patterns to detect undergo distortions difficult to model
empirically. As a direct extension of this work, we are
currently considering the detection of full profile faces via the
proposed architecture. Current experiments dealing with
full-profile faces, using additional feature maps are very
encouraging.
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