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Abstract

We present a technique for robustly and automatically
detect a set of user-selected facial features in images, like
the eye pupils, the tip of the nose, the mouth centre, etc.
Based on a specific architecture of heterogeneous neural
layers, the proposed system automatically synthesises sim-
ple problem-specific feature extractors and classifiers from
a training set of faces with annotated facial features. Af-
ter training, the facial feature detection system acts like a
pipeline of simple filters that treats the raw input face im-
age as a whole and builds global facial feature maps, where
facial feature positions can easily be retrieved by a simple
search for global maxima. We experimentally show that our
method is very robust to lighting and pose variations as well
as noise and partial occlusions.

1. Introduction

Automatic facial feature detection is becoming a very
important task in applications such as model-based video
coding, facial image animation, face recognition, facial
emotion recognition, visual speech understanding, and in-
telligent human-computer interaction.

Numerous approaches for facial feature detection have
been proposed in the last decade. Most of them use indepen-
dent facial feature detectors. These detectors generally rely
on hand-designed filters that aim at segmenting visual fea-
tures using image properties such as edges, intensity, colour,
motion, or generalised measures [16, 15]. Other approaches
are based on statistical template matching or MLP-based
classifiers where several correlation templates are used to
detect potential facial features (eigenfeatures [11]). The de-
tected visual features are then selected using a global con-
cept of face through constellation analysis using face ge-
ometry constraints [7, 9]. Active Appearance Models [3]
(AAMs) have also been recently used to predict facial fea-
ture locations, by attempting to match a face model to an
unseen face through adaptation of the parameters of a lin-
ear model which combines shape and texture. Compared

to most previous approaches, AAMs have the advantage
of embedding learnt geometrical (shape) constraints during
facial feature detection, but they rely on an unstable opti-
misation procedure which depends on hundreds of parame-
ters encoding shape and texture variations. The main draw-
back of these approaches is that the performance of inde-
pendent feature detection or linear face model matching is
significantly influenced by noise, occlusions, and especially
changes in illumination conditions.

In this paper, we propose a novel neural-based facial fea-
ture detection scheme that is designed to precisely locate
facial features in faces of variable size and appearance, ro-
tated up to ±30 degrees in image plane and turned up to
±60 degrees, in complex real world images. The proposed
system processes face images automatically extracted by a
face detector [6], i.e. faces that are not perfectly centred
and undergo slight scale and pose variations. It consists of
several neural network components forming a pipeline of
image transformations. As all components are sequentially
connected, the system can be trained by simply presenting
input image and desired output, i.e. true feature positions.
Global constraints encoding the face model are automati-
cally learnt and implicitly used in the detection process.

The remainder of the paper is organised as follows. In
section 2, we describe the architecture of the proposed fa-
cial feature detector. In sections 3 and 4, we explain the way
we train and apply the facial feature detector. In section 5,
we assess the efficiency of our approach by analysing its
precision and its sensitivity with respect to noise and level
of occlusion. Some experimental results obtained on differ-
ent international data sets are also presented to demonstrate
the effectiveness and robustness of the proposed approach.
Finally, conclusions are drawn in section 6.

2. Architecture of the facial feature detector

The proposed neural architecture is a specific type of
neural network consisting of six layers where the first layer
is the input layer, the three following layers are convo-
lutional layers and the last two layers are standard feed-
forward neuron layers. The aim of the system is to learn



Figure 1. Some input images and desired output feature

maps (right and left eye, nose tip and mouth centre).

how to transform a raw input face image into desired out-
put feature maps where facial features are highlighted (see
Fig.1). Fig.2 gives an overview of the architecture.
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Figure 2. Architecture of the facial feature detector

The retina l1 receives a cropped face image of 46x56
pixels, containing grey values normalised between −1 and
+1. No further pre-processing like contrast enhancement,
noise reduction or any other kind of filtering is performed.

The second layer l2 consists of four so-called feature
maps which are all connected to the input map as fol-
lows: each unit of a feature map receives its input from
a set of neighbouring units of the input map (retina) as
shown in Fig.3. This set of neighbouring units is often re-
ferred to as a local receptive field, a concept which is in-
spired by Hubel and Wiesel’s discovery of locally-sensitive,
orientation-selective neurons in the cat visual system [8].
Such local connections have been used many times in neural
models of visual learning [5, 10, 12]. They allow extract-
ing elementary visual features such as oriented edges, end-
points or corners which are then combined by subsequent
layers in order to detect higher-order features. Clearly, the
position of particular visual features can vary considerably
in the input image because of distortions or shifts. Addition-
ally, an elementary feature detector can be useful in several

convolution 5x5

subsampling

Figure 3. Example of a 5x5 convolution map followed by

a 2x2 subsampling map

parts of the image. For this reason, each unit of a feature
map shares its weights with all other units of the same fea-
ture map so that each map has a fixed feature detector. Thus,
each feature map y2i of layer l2 is obtained by convolving
the input map y1 with a trainable kernel w2i:

y2i(x, y) =
∑

(u,v)∈K

w2i(u, v) y1(x + u, y + v) + b2i ,

where K = {(u, v) | 0 ≤ u < sx and 0 ≤ v < sy} and
b2i ∈ R is a trainable bias which compensates for light-
ing variations in the input. In our system, the four feature
maps of the second layer perform each a different 7x7 con-
volution (sx = sy = 7). Note that the size of the obtained
convolutional maps in l2 is smaller to avoid border effects
in the convolution.

The third layer l3 subsamples its input feature maps into
maps of reduced dimension by locally averaging neigh-
bouring units. In fact, it performs a convolution of the
preceding feature maps y2j with a 2x2 kernel with iden-
tical weights w3j (Fig.3). A trainable bias b3j is added
and, unlike the second layer, a sigmoid activation function
Φ(x) = arctan(x) is applied:

y3j(x, y) = Φ
(

w3j

∑

(u,v)∈{0,1}2

y2j(2x+u, 2y+v)+b3j

)

.

The goal of this layer is to make the system less sensitive to
small shifts, distortions and variations in scale and rotation
of the input at the cost of some precision.

Layer l4 is another convolutional layer and consists of
only one feature map. Basically, it works in the same way
as the second layer but performs 5x5 instead of a 7x7 convo-
lutions. Furthermore, it combines the convolution results of
the four preceding subsampling maps into one feature map;
it extracts higher-level features by fusing the results of the
low-level feature detectors.

While the previous layers act principally as feature ex-
traction layers, layers l5 and l6 transform the local informa-
tion into a more global model. Layer l5 is composed of a
reduced number of neurons fully connected to layer l4 and is
dedicated to learn models (or constellations) of features and
to activate the targeted positions in the output feature maps.
This part of the network was inspired by auto-associative
neural networks which are trained to reproduce an input
(pattern) by means of a hidden layer containing much less



Figure 4. Virtual images created by applying various ge-

ometric transformations

neurons than the input dimension. It has been shown that
auto-associative neural networks effectively perform a di-
mensionality reduction equivalent to the one produced by a
Principal Component Analysis (PCA). In our case, we do
not want to reproduce the input but instead to associate the
output of the feature map in layer l4 with the desired out-
put of layer l6. In that way, we only allow the activation
of certain constellations of features in layer l6. This global
processing step makes the system less sensitive to partial oc-
clusions and noise, e.g. if one eye is not visible, its position
is inferred by the positions of other visible local features by
activating the most likely constellation.

Layer l5 contains 100 neurons and the output layer l6 is
composed of four feature maps, one for each feature that is
to be detected. These maps have the same dimensions as
the image at the input layer (46x56) and are fully connected
to the preceding neurons. Sigmoid activation functions are
used for both layers.

3. Training the facial feature detector

The training data set we used consists of extracted faces
from the following face databases: FERET [13] (744 im-
ages), PIE [14] (1,216 images), the Yale face database [2]
(165 images), BioID [4] (1,521 images), the Stirling face
database [1] (185 images) as well as some face images
downloaded from the internet (167 images). In total, it com-
prises 2,972 training and 1,026 validation face images, cen-
tred and normalised in scale. In order to make the system
more robust to translation, rotation and scale, we created
virtual samples of the extracted images by applying small
translations (−2 and +2 pixels), rotation (from −20 to +20
degrees) and scaling (by a factor of 0.9 and 1.1). Figure 4
shows one of the training images and the respective trans-
formed images. This procedure results in 56,468 training
and 19,494 validation examples in total. The respective de-
sired output maps are supposed to contain the value +1 at
the feature positions and −1 everywhere else. However, in
order to improve convergence, we assume that output val-
ues decrease smoothly in the neighbourhood of the feature
position, thus the desired output maps are created using 2-
dimensional Gaussian functions centred at the feature posi-
tion and normalised between −1 and +1. For a particular
feature map o having its desired feature at position (µx, µy),
the desired function is as follows:

o(x, y) = 2e
− 1

2

(

(x−µx)2

σ2
x

+
(y−µy )2

σ2
y

)

− 1

In our experiments, we set the variances σ2
x = σ2

y = 2.
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Figure 5. Principal steps of facial feature detection

The training phase was performed using the backprop-
agation algorithm which has been adapted in order to ac-
count for weight sharing in the convolution layers (l2 and
l4). Additionally, a momentum term was used in the neuron
layers (l5 and l6). At each iteration, every face image of
the training set is presented to the system and the weights
are updated accordingly (stochastic training). Classically,
in order to avoid overfitting, after each training iteration, a
validation phase is performed using the validation set. A
minimal error on the validation set is supposed to give the
best generalisation and the corresponding weight configu-
ration is stored. We tried two alternative error criteria:

• the mean-squared error (MSE) between the values of
the output maps and the respective values of the de-
sired output maps, i.e. the error is calculated neuron
by neuron,

• the mean-squared Euclidian distance between the four
output features and the four respective desired output
features.

In our experiments, we noticed that the latter leads to
slightly better results.
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Figure 6. Detection rate of the four features versus me
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Figure 7. Detection rate of each facial feature versus mei
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Figure 8. Sensitivity analysis: Gaussian noise
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Figure 9. Sensitivity analysis: occlusion

4. Searching for facial features

Figure 5 illustrates the principal phases of the feature de-
tection system. As mentioned before, we made use of the
”Convolutional Face Finder” by C. Garcia and M. Delakis
[6] to detect faces and find the respective face bounding
boxes in the input images. The extracted faces are resized
to the retina size and passed to the trained feature detector.
The feature positions in the resized face image can directly
be inferred by simply searching the maxima in the four out-
put maps.

As the face bounding boxes may be imprecise, the last
steps are repeated for slightly translated and scaled face im-
age regions. In our experiments, we achieved good results
with translations by −4,−2, 0, +2, +4 pixels and scale fac-
tors of 0.9, 1.0 and 1.1. Then, for each face image region,
the sum of the maxima of each output map is taken as a con-
fidence measure and the solution having the maximal sum
is adopted. Finally, the feature positions are backprojected
onto the original image.

5. Experimental Results

In order to measure the performance of the proposed fa-
cial feature detector, we created several test sets with anno-

tated face images that are not contained in the training or
in the validation set. They were extracted from PIE (1,226
images), FERET (1058 images) and from images from the
internet (384 images). As for the training and validation
sets, the test sets were augmented by small transformations
of the original images, i.e. translation, rotation and scaling,
leading to three sets: PIE subset (23,294 images), FERET
subset (20,102 images) and Google images (7,296 images).

The test images were presented to the facial feature de-
tector and, for each face image, the mean Euclidian distance
me between the four detected feature positions and the true
feature positions, normalised with respect to the inter-ocular
distance deyes, was calculated:

me =
1

4

4
∑

i=1

mei ,

with

mei =
1

deyes

√

(xoi − xdi)2 + (yoi − ydi)2 ,

where (xoi, yoi) is the output position and (xdi, ydi) is the
true position of feature i.

Fig.6 shows the proportion of faces with successfully de-
tected features varying the allowed me. The FERET test
set clearly gave the best detection results because there are



Figure 10. Some results of combined face and facial feature detection



practically no pose and lighting variations as opposed to the
PIE test set. The Google test set additionally contains im-
ages of low quality, with noise, extreme lighting variations
and partial occlusions.

Fig.7 shows, for the PIE subset, the proportion of suc-
cessfully detected features for each of the four features sep-
arately while varying mei. Obviously, the detection of the
eyes is more precise than the detection of the tip of the nose
and the mouth. Clearly, this is due to the fact that the local
appearance of the eyes varies less under different poses and
lighting conditions. The detection results of the tip of the
nose are the least reliable. This seems plausible because the
PIE test set shows considerable variations in pose and light-
ing and thus considerable variation in the appearance of the
nose. The mouth is also subject to strong variations due to
facial expressions (e.g. smile, open/closed mouth).

Further, we conducted two experiments showing the ro-
bustness of the facial feature detector with respect to noise
and occlusion. In the first experiment, we added Gaussian
noise with varying standard deviation σ to the normalised
face images. Fig.8 shows the mean feature error me with σ

varying from 0 to 70. We can notice that the proposed fea-
ture detector is very robust to noise as the error me remains
rather low while adding a considerable amount of noise. For
the worst of the three test sets (PIE subset) me stays below
0.2 for σ = 50.

The second experiment consists in occluding a certain
percentage of the face images by a black zone in the lower
part. Fig.9 shows the mean feature error me with an oc-
clusion from 0 to 60%. For occlusions smaller than 50%,
the only invisible feature, in most of the cases, is the mouth
and the error me remains almost constant. Larger occlu-
sions cover both mouth and nose, which explains the abrupt
increase of me in all of the three test sets.

Finally, we tested the performance of the whole feature
detection system as described in section 4. Fig.10 shows
some results obtained on various images. The images of this
test set contain neither training nor validation face images
used for the training of the facial feature detector. Some
of them are of rather low quality or show faces in difficult
poses and under difficult lighting conditions and with partial
occlusions (sunglasses, bottle etc.).

6. Conclusion

We have presented a novel method for the detection of
facial features in face images based on a specific type of
neural network. The proposed architecture closely connects
local and global transformations and allows a straightfor-
ward training by simply presenting raw input face images
and desired facial feature positions. The trained system has
proven to be very robust with respect to noise and partial
occlusions as well as to variations in lighting and pose. We
further conducted experiments combining a face detector
with the proposed facial feature detector and we obtained
robust results.

As future extensions, several such facial feature detec-

tors may be combined in a hierarchical way, in order to al-
low more precise feature detection and/or the detection of
finer facial features, like eye or mouth corners. This means
that each feature position detected by the proposed facial
feature detector could be passed to a finer (more specialised)
feature detector which focuses on a smaller region around a
specific feature.
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