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Abstract. In this paper, we present a connectionist approach for de-
tecting and precisely localizing transparent logos in TV programs. Our
system automatically synthesizes simple problem-specific feature extrac-
tors from a training set of logo images, without making any assumptions
or using any hand-made design concerning the features to extract or the
areas of the logo pattern to analyze. We present in detail the design of
our architecture, our learning strategy and the resulting process of logo
detection. We also provide experimental results to illustrate the robust-
ness of our approach, that does not require any local preprocessing and
leads to a straightforward real time implementation.

1 Introduction

In the last decade, we have entered the digital era, with the convergence of
telecommunication, video and informatics. Our society (press agencies, television
channels, customers) is producing daily extremely large and increasing amounts
of digital images and videos, making it more and more difficult to track and ac-
cess this content, with traditional database search engines, requiring tedious
manual annotation of keywords or comments. Therefore, automatic content-
based indexing has become one of the most important and challenging issues for
the years to come, in order to face the limitations of traditional information sys-
tems. Some expected applications are [6, 7, 9]: Information and entertainment,
video production and distribution, professional video archive management in-
cluding legacy footages, teaching, training, enterprise or institutional commu-
nication, TV program monitoring, self-produced content management, internet
search engines and video conference archiving and management.

The recent progresses in the field of object detection and recognition tend
to make possible a large range of applications that require accessing the seman-
tic content and identifying high-level indices, regardless of the global context
of the image, in order to ease automatic indexing and provide more intuitive
formulation of user requests. For instance, human face detection can now be
considered as a very mature tool, even though progresses have still to be made
for full-profile view detection and accurate facial feature detection, for allowing
robust face recognition. Recently, Garcia and Delakis [2] proposed a near-real



time neural-based face detection scheme, named ”Convolutional Face Finder”
(CFF) that has been designed to precisely locate multiple faces of minimum
size 20x20 pixels and variable appearance, rotated up to 30 degrees in image
plane and turned up to 60 degrees, in complex real world images. A detection
rate of 90.3% with 8 false positives have been reported on the CMU test set,
which are the best results published so far on this test set. Locating a face and
recognizing it [10] tend to appear as a required functionality in state-of-the-art
systems, working with professional videos or personal digital image collections.
Another important expected functionality is superimposed text detection and
recognition.

Even though lots of progresses have been recently made in the field of object
detection and recognition, most approaches have focused on image of objects
variable in scale and orientation, but with small variation in shape or global gray
level appearance. There is a still a lot to be done in the case of deformable 3D
object detection but also in the case of very variable object texture appearance.

In this paper, we will focus on the specific case of transparent object de-
tection in images, which is a very challenging problem. We propose a general
solution that will be evaluated on the problem of transparent logo detection in
video programs. For illustration purposes, we will focus on the detection of the
logo of the France 2 television channel (FR2 logo), as shown in Fig. 1. Note
that the proposed method is very generic and can be applied to other logos
in a straightforward way. Most logo detection approach consider opaque logos
superimposed on video frames. In that case, pixels inside the logo boundaries
keep approximately the same values from one frame to the next, with a certain
amount of noise due to video coding. Only pixels outside the logo boundaries
are variable. In the case of transparent logo, pixels inside the logo boundaries
also change depending on the video underneath. If temporal constancy of pixel
inside opaque logo can ease the detection process, by temporal gradient analysis
[4] or low level based pattern matching techniques [4, 1, 11], this is not the case
for transparent logos, where all pixels strongly vary at the same time depending
on the background.

To face this challenge, we propose an image-based approach that is designed
to precisely detect transparent patterns of variable size, in complex real world
video images. Our system is based on a convolutional neural network architec-
ture [3], directly inspired from our face detector, the Convolutional Face Finder
(CFF) described in [2]. It automatically derives problem-specific feature extrac-
tors, from a large training set of logo and non-logo patterns, without making any
assumptions about the features to extract or the areas of the logo patterns to
analyze. Once trained, our system acts like a fast pipeline of simple convolutions
and subsampling modules, that treat the raw input image as a whole, for each
analyzed scale, and does not require any costly local preprocessing before clas-
sification. Such a scheme provides very high detection rate with a particularly
low level of false positives, demonstrated on difficult videos, maintaining a near
real time processing speed.
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Fig. 1. The convolutional architecture

The remainder of the paper is organized as follows. In section 2, we describe
the architecture of the proposed transparent logo detection system. In sections
3 and 4, we explain in detail the way we train and apply the built detector.
In section 5, we assess the performance of our approach by analyzing its preci-
sion. Some experimental results obtained on images of complex scenes are also
presented to demonstrate the effectiveness and the robustness of the proposed
approach. Finally, conclusions are drawn.

2 System Architecture

The convolutional neural network, shown in Fig. 1, consists of a set of three
different kinds of layers. Layers Ci are called convolutional layers, which contain a
certain number of planes. Layer C1 is connected to the retina, receiving the image
area to classify as logo or non-logo. Each unit in a plane receives input from a
small neighborhood (biological local receptive field) in the planes of the previous
layer. The trainable weights (convolutional mask) forming the receptive field for
a plane are forced to be equal at all points in the plane (weight sharing). Each
plane can be considered as a feature map that has a fixed feature detector that
corresponds to a pure convolution with a trainable mask, applied over the planes
in the previous layer. A trainable bias is added to the results of each convolutional



mask. Multiple planes are used in each layer so that multiple features can be
detected.

Once a feature has been detected, its exact location is less important. Hence,
each convolutional layer Ci is typically followed by another layer Si that performs
local averaging and subsampling operations. More precisely, a local averaging
over a neighborhood of four inputs is performed followed by a multiplication by
a trainable coefficient and the addition of a trainable bias. This subsampling op-
eration reduces by two the dimensionality of the input and increases the degrees
of invariance to translation, scale, and deformation of the learnt patterns.

The different parameters governing the proposed architecture, i.e., the num-
ber of layers, the number of planes and their connectivity, as well as the size of
the receptive fields, have been experimentally chosen. Practically, different ar-
chitectures have been iteratively built, trained, and tested over training sets. We
retained the architecture that performed efficiently in terms of good detection
rates and especially in terms of false alarm rejection, while still containing an
acceptable number of free parameters.

Layers C1 and C2 perform convolutions with trainable masks of dimension
5x5 and 3x3 respectively. Layer C1 contains four feature maps and therefore
performs four convolutions on the input image. Layers S1 and C2 are partially
connected. Mixing the outputs of feature maps helps in combining different fea-
tures, thus in extracting more complex information. In our system, layer C2 has
14 feature maps. Each of the four subsampled feature maps of S1 is convolved by
two different trainable masks 3x3, providing eight feature maps in C2. The other
six feature maps of C2 are obtained by fusing the results of two convolutions on
each possible pair of feature maps of S1. Layers N1 and N2 contain simple sig-
moid neurons. The role of these layers is to perform classification, after feature
extraction and input dimensionality reduction are performed. In layer N1, each
neuron is fully connected to exactly one feature map of layer S2. The unique
neuron of layer N2 is fully connected to all the neurons of the layer N1. The
output of this neuron is used to classify the input image as logo or non-logo.
For training the network, we used the classical backpropagation algorithm with
momentum modified for being used in convolutional networks as described in
[3]. Desired responses are set to -1 for non-logo and to +1 for logo.

In our system, the dimension of the retina is 38x46. Because of weight sharing,
the network has only 1147 trainable parameters. Local receptive fields, weight
sharing and subsampling provide many advantages to solve two important prob-
lems at the same time: the problem of robustness and the problem of good
generalization, which is critical given the impossibility of gathering in one finite-
sized training set all the possible variations of the logo pattern. This topology
has another decisive advantage. In order to search for a specific pattern, the
network must be replicated (or scanned) at all locations in the input image, as
classically done in detection approaches [5, 8]. In our approach, since each layer
essentially performs a convolution with a small-size kernel, a very large part of
the computation is in common between two neighboring logo window locations
in the input images. This redundancy is naturally eliminated by performing



Fig. 2. Some samples of the training set. The last row shows initial negative examples.

the convolutions corresponding to each layer on the entire input image at once.
The overall computation amounts to a succession of convolutions and non-linear
transformations over the entire images.

3 Training Methodology

The FR2 logo examples used to train the network were collected from various
video segments, during a 12 hour broadcast of the FR2 TV channel. Some of the
1, 993 collected FR2 logo images are shown in the first row of Fig. 2. Collecting
a representative set of non-logos is more difficult as virtually any random image
could belong to it. A practical solution to this problem consists in a bootstrap-
ping strategy [8], in which the system is iteratively re-trained with false alarms
produced when applied to a set of video images, that do not contain the targeted
logo. In the proposed approach, we improved this strategy. Before proceeding
with the bootstrapping, an initial training set of 2, 313 non-logo patterns was
built by randomly cropping images from video frames. Some non-logo patterns
(negative examples) are shown in Fig. 2. The proposed bootstrapping procedure
is presented in table 1. In step 1, a validation set is built and used for testing the

1. Create a validation set of 400 logo images and 400 non-logo images randomly
extracted and excluded from the initial training set. It will be used to choose the
best performing weight configuration during steps 3 and 8.

2. Set BIter = 0, ThrFa = 0.8.
3. Train the network for 60 learning epochs. Use an equal number of positive and

negative examples in each epoch. Set BIter = BIter + 1.
4. Gather false alarms from a set of 300 video frames with network answers above

ThrFa. Collect at maximum 5, 000 new examples.
5. Concatenate the newly created examples to the non-logo training set.
6. If ThrFa ≥ 0.2 set ThrFa = ThrFa − 0.2.
7. If BIter < 6 go to step 3.
8. Train the network for 60 more learning epochs and exit.

Table 1. The proposed bootstrapping scheme.

generalization ability of the network during learning and, finally, selecting the



weight configuration that performs best on it. This validation set is kept constant
through all the bootstrapping iterations, in contrast with the training set which
is updated. In step 3, the backpropagation algorithm is used with the addition
of a momentum term for neurons belonging to the N1 and N2 layers. Stochastic
learning was preferred versus batch learning. For each learning epoch, an equal
number of examples from both classes are presented to the network giving no
bias toward one of the two classes.

The generation of the new patterns that will be added to the non-logo training
set is carried out by step 4. The false alarms produced in this step force the
network, in the next iteration, to refine its current decision boundary for the FR2
logo class. At each iteration, the false alarms, giving network answers greater
than ThrFa, and therefore strongly misclassified, are selected. As the network
generalizes from these examples, ThrFa is gradually reduced until reaching 0. In
this way, some redundancy is avoided in the training set. The learning process is
stopped after six iterations, when convergence is noticed, i.e. when the number
of false alarms remains roughly constant. This procedure helps in correcting
problems arising in the original algorithm proposed in [8] where false alarms
were grabbed regardless of the strength of the network answers. Finally, the
controlled bootstrapping process added around 21, 000 non FR2 logo examples
to the training set.

4 Logo Localization

Fig. 3. depicts the process of logo localization. In order to detect FR2 logo
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Fig. 3. Multi-scale logo localization



patterns of different sizes, the input image is repeatedly subsampled via a factor
of 1.2, resulting in a pyramid of images.

As mentioned earlier, each image of the pyramid is entirely convolved at once
by the network. For each image of the pyramid, an image containing the network
results is obtained. Because of the successive convolutions and subsampling op-
erations, this image is approximately four times smaller than the original one.
This fast procedure may be seen as corresponding to the application of the net-
work retina at every location of the input image with a step of four pixels in
both axis directions, without computational redundancy.

After processing by this detection pipeline, logo candidates (pixels with pos-
itive values in the result image) in each scale are mapped back to the input
image scale (step 3). They are then grouped according to their proximity in
image and scale spaces. Each group of logo candidates is fused in a represen-
tative logo whose center and size are computed as the centroids of the centers
and sizes of the grouped logos, weighted by their individual network responses.
After applying this grouping algorithm, the set of remaining representative logo
candidates serve as a basis for the next stage of the algorithm, in charge of fine
logo localization and eventually false alarm dismissal.

To do so, a local search procedure is performed in an area around each logo
candidate center in image scale-space (step 4). A reduced search space centered at
the logo candidate position is defined in image scale-space for precise localization
of the logo candidate. It corresponds to a small pyramid centered at the logo
candidate center position covering ten equally distant scales varying from 0.8 to
1.5 times the scale of the logo candidate. For every scale, the presence of a logo
is evaluated on a rescaled grid of 16 × 16 pixels around the corresponding logo
candidate center position. We observed that true logos usually give a significant
number of high positive responses in consecutive scales, which is not often the
case for non logos. In order to discriminate true logos from false alarms, it
resulted efficient to take into account both number and values of positive answers.
We therefore consider the volume of positive answers (the sum of positive answer
values) in the local pyramid in order to take the classification decision. Based on
the experiments described in the next section, a logo candidate is classified as
logo if its corresponding volume is greater than a given threshold ThrVol (step
5). The bottom-right image of Fig.3 shows the position and size of the detected
logo after local search.

5 Experimental Results

We tested the trained logo detection system on two sets containing images ex-
tracted from TV programs. The first set consists of 800 images each containing
one FR2 logo. The other consists of 257 images not containing any FR2 logo.
Fig. 4 shows a ROC curve for the first set. This curve presents the detection rate
as a function of the number of false alarms while varying the volume threshold
ThrVol. One can clearly notice that, for a low number of false alarms, the detec-
tor attains a high detection rate. For example, if we allow 10 false alarms (for
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Fig. 4. Detection rate on the first test
set versus the number of false alarms for
varying volume threshold ThrVol.
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Fig. 5. Number of false alarms on the
second test set versus the volume thresh-
old ThrVol.

the 800 images) the system detects about 85% of the logos, which seems to be
the maximal detection rate that can be reached on these test images, with the
proposed architecture. An important point is that we obtain a good detection
rate of 82% with no false alarm, for values of ThrVol above 1.5. Note that for
13 test images (≈ 1.6%), we judged the logo invisible to the human eye, but we
still counted these examples as undetected. Fig. 6 shows some images with false
alarms for a very low ThrVol.

In the second experiment, we applied the FR2 logo detector on the second
test set that does not contain any image displaying the logo. The curve in Fig. 5
shows the number of false alarms as a function of the volume threshold ThrVol.
One can notice that this number of false alarm decreases very quickly as ThrVol
increases, and that no false alarm are produced for ThrVol above 1.5. For

Fig. 6. Some results with false alarms.

illustration purposes, Fig. 7 shows some images of the first test set with detected
transparent logos. There are examples containing logos of very low contrast due
to light background. Other examples show logos over a high contrasted non-
uniform background which considerably falsifies the logo contours in the image
region. There are also some examples of FR2 logos of different sizes at different
positions in the image.



Fig. 7. Some results of logo detection on ”France 2” TV programs.



6 Conclusion

Our experiments have shown that a multi-resolution scheme based on convolu-
tional neural networks is very powerful for transparent logo detection. Indeed,
this approach does not require any heuristic regarding image preprocessing, low
level measures to extract or segmented shape analysis. The detection rate is
very high even in cases where the transparent logo is very poorly contrasted
because of the video background. Due to its convolutional nature and the use
of a single network, our approach is very fast and can be easily embedded in
real time on various platforms. Moreover, recent experimental results tend to
show that multiple transparent logos can be handled through the use of a single
light convolutional architecture. As an extension of this work, we are currently
considering the detection of animated deformable transparent logos.
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