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Abstract

We present a face recognition technique based on a spe-
cial type of convolutional neural network that is trained to
extract characteristic features from face images and recon-
struct the corresponding reference face images which are
chosen beforehand for each individual to recognize. The
reconstruction is realized by a so-called ”bottle-neck” neu-
ral network that learns to project face images into a low-
dimensional vector space and to reconstruct the respec-
tive reference images from the projected vectors. In con-
trast to methods based on the Principal Component Analy-
sis (PCA), the Linear Discriminant Analysis (LDA) etc., the
projection is non-linear and depends on the choice of the
reference images. Moreover, local and global processing
are closely interconnected and the respective parameters
are conjointly learnt. Having trained the neural network,
new face images can then be classified by comparing the
respective projected vectors. We experimentally show that
the choice of the reference images influences the final recog-
nition performance and that this method outperforms linear
projection methods in terms of precision and robustness.

1. Introduction
Face recognition has been of increasing interest during the
last decades due to a vast number of possible applica-
tions like biometrics, video-surveillance, advanced human-
computer interaction or image and video indexation.

Many different approaches have been proposed in the
literature [5, 17] which can roughly be divided into two
groups. The first group consists of so-called local ap-
proaches which make use of special feature extractors in
order to detect certain local characteristics. Subsequently,
a global model combines these features and their arrange-
ment in a certain way in order to classify the given face
image. Brunelli and Poggio [3] for example use geometric
models like the distances between pairs of feature points
to classify face images. A probabilistic approach based
on 2-dimensional Hidden Markov Models modeling local
variations of shape and texture has been proposed by Per-
ronninet al. [12]. A method called ”Elastic Bunch Graph

Matching” has been proposed by Wiskottet al. [16]. Here
the shape of each face is modeled by a graph where each
node contains the possible appearances of a facial feature.
Finally, methods based on Active Appearance Models in-
troduced by Cooteset al. [6] have also been used for face
recognition [7].

The second group is represented by global approaches
which all realize a form of statistical projection of the high-
dimensional image vectors into a lower-dimensional space
where the final classification is performed. The most well-
known of these methods are the ”Eigenfaces” approach [14]
using PCA and the ”Fisherfaces” approach [1] using LDA.
Many variants (e.g. [15, 4]) based on these works have fol-
lowed.

The drawback of most of theglobal approaches is their
sensitivity to illumination changes. This problem is mainly
due to thelinear processing whereas, under varying light-
ing conditions, the appearance of a face image undergoes
a non-lineartransformation. On the other hand, the draw-
back oflocal methods is that they often require an empirical
choice of parameters,e.g. number of scales and orientations
of the gabor filters or the positions where to apply the filters,
which makes their implementation cumbersome.

We propose an approach that alleviates these problems
by using a special type of convolutional neural network that
learns to reconstruct from any face image of a given face
database a reference face image that ”best” represents the
respective person and that is chosen beforehand.

The ”bottle-neck” architecture of the neural network ac-
tually learns a non-linear projection of the face images into
a sub-space of lower dimension and then reconstructs the
respective reference images from this compressed represen-
tation. By using a convolutional neural network, anempiri-
cal choice of filter parameters is not necessary. Instead, the
neural network learns these filters conjointly with the pro-
jection and reconstruction parameters while minimizing the
overall reconstruction error. After training, face imagescan
be classified by calculating the distances between projected
vectors in the intermediate layer of the network or between
the reconstructed images at the output of the network.

The remainder of this paper is organized as follows:
The architecture of the convolutional neural network is de-
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scribed in section 2. Section 3 outlines some alternatives to
automatically select the reference images and then explains
the training procedure of the neural network. In section 4
we describe how to apply the trained neural network to rec-
ognize faces and in section 5 we show some experimental
results with two public face databases. Finally, we present
our conclusions in section 6.

2 Neural network architecture

The proposed neural architecture is a specific type of neu-
ral network consisting of six layers where the first layer is
the input layer, the three following layers are convolutional
and sub-sampling layers and the last two layers are stan-
dard feed-forward neuron layers. The system is trained to
transform an input face image into a reference image pre-
defined for each face image. Fig.1 gives an overview of the
architecture.

input
image

reconstructed
reference image

subsampling
convolution 7x7 convolution 5x5

feature extraction

projection / reconstruction

l1: 4x46x56

l2: 4x40x50
l3: 4x20x25

l4: 3x16x21

l5: 60 l6: 46x56

Figure 1: Architecture of the neural network

The retinal1 receives a cropped face image of 46x56
pixels, containing gray values normalized between−1 and
+1.

The second layerl2 consists of four so-called feature
maps which are all connected to the input map as fol-
lows: each unit of a feature map receives its input from
a set of neighboring units of the input map (retina) as
shown in Fig.2. This set of neighboring units is often re-
ferred to as alocal receptive field, a concept which is in-
spired by Hubel and Wiesel’s discovery of locally-sensitive,
orientation-selective neurons in the cat visual system [9].
Such local connections have been used many times in neural
models of visual learning [8, 10, 11]. They allow extract-
ing elementary visual features such as oriented edges, end-

convolution 5x5

subsampling

Figure 2: Example of a 5x5 convolution map followed by a
2x2 sub-sampling map

points or corners which are then combined by subsequent
layers in order to detect higher-order features. Clearly, the
position of particular visual features can vary considerably
in the input image because of distortions or shifts. Addition-
ally, an elementary feature detector can be useful in several
parts of the image. For this reason, each unit of a feature
map shares its weights with all other units of the same fea-
ture map so that each map has a fixed feature detector. Thus,
each feature mapy2i of layer l2 is obtained by convolving
the input mapy1 with a trainable kernelw2i:

y2i(x, y) =
∑

(u,v)∈K

w2i(u, v) y1(x + u, y + v) + b2i ,

whereK = {(u, v) | 0 ≤ u < sx and 0 ≤ v < sy} and
b2i ∈ R is a trainablebias which compensates for light-
ing variations in the input. In our system, the four feature
maps of the second layer perform each a different 7x7 con-
volution (sx = sy = 7). Note that the size of the obtained
convolutional maps inl2 is smaller to avoid border effects
in the convolution.

The third layerl3 sub-samples its input feature maps into
maps of reduced dimension by locally averaging neighbor-
ing units. Further, the average is multiplied by a trainable
weightw3j and a trainable biasb3j is added before applying
a sigmoid activation functionΦ(x) = arctan(x):

y3j(x, y) = Φ
(

w3j

∑

(u,v)∈{0,1}2

y2j(2x+u, 2y+v)+b3j

)

.

The goal of this layer is to make the system less sensitive to
small shifts, distortions and variations in scale and rotation
of the input at the cost of some precision.

Layer l4 is another convolutional layer and consists of
three feature maps each connected to two preceding maps
as illustrated in figure 1. Basically, it operates in the same
way as the second layer but performs a 5x5 instead of a
7x7 convolution. By combining the results of the low-level
feature detectors, like edges or corners, it extracts higher-
level features corresponding to more characteristic formsor
patterns of a face image. Unlike the second layer, a sigmoid
activation function is used here.
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While the previous layers act principally as local feature
extraction layers, layersl5 andl6 transform the local infor-
mation into a more global model. Layerl5 is composed of
a reduced number of neurons fully connected to layerl4.
This is the so-called ”bottle-neck” of the network where a
compact representation of the input face images is learnt.

The architecture of this part of the network is inspired by
auto-associativeneural networks which are trained to repro-
duce an input pattern at their outputs while using a hidden
layer containing much fewer neurons (bottle-neck) than the
input and output layers. It was shown in [2] that there ex-
ists a close connection between auto-associative neural net-
works and PCA when the neurons’ activation functions are
linear. Here, a so-called hetero-association is performedin
the last three layers, because the desired output in layerl6
is different from the output of layerl4. Moreover, the acti-
vation functions of the neurons inl5 are non-linear. Thus,
the operation is essentially different from that of a PCA but,
nethertheless, it performs a dimensionality reduction asl5
contains much fewer neurons thanl4 andl6.

In our proposed architecture, Layerl5 contains 60 neu-
rons with sigmoid activation function and the output layer
l6 is composed of an array of neurons of size 46x56 repre-
senting a gray-scale image normalized between−1 and+1.
The neurons are fully connected to the preceding neurons
and use a linear activation function.

3 Training Procedure

The neural network is trained using a face database with
a fixed numberN of individuals (closed world). For each
individual several images with varying pose, illumination
and facial expressions are necessary. The training procedure
consists of 3 succesive steps: division of the face database
into training and test set, selection of the reference images
and the actual training of the neural network.

The first step one image per individual chosen randomly
and used for later testing (leave-one-outvalidation). The
rest of the images constitute the training set. Steps two and
three are detailed in the following:

3.1 Choosing the reference images

Let us denoteimij thej-th example of individuali = 1..N

in the face database (j = 1..Mi). For eachimij a reference
imageri among the face images in the training set has to
be chosen. The neural network is then trained to respond
for any input image of a given individual with the respec-
tive reference image for that individual. In this way, it will
learn to extract features invariant to the intra-class varia-
tions present in the training images,e.g. pose, illumination
or facial expressions.

We experimented with two different strategies for choos-
ing the reference images. They are both based on a Eu-
clidean distance measure between the image vectorsim+

ij

which are the one-dimensional vectors obtained by concate-
nating the rows of the respective imagesimij . The strate-
gies are the following:

1. Choose most representative image:the face image of
the individuali that is closest to the mean imageim+

i

of i is chosen:

ri = argmin
im

+

ij

‖im+

ij − im+

i ‖ ∀ i ∈ 1..N, j ∈ 1..Mi . (1)

2. Choose most distant image:the face image of the indi-
viduali that has the greatest distance to the face images
of all the other individuals is chosen.

ri = argmax
im

+

ij

‖im+

ij − im
+

kl‖

∀ i, k ∈ 1..N, j ∈ 1..Mi, l ∈ 1..Mk, k 6= i . (2)

We will call these strategies MEAN and DIST in the fol-
lowing.

3.2 Training the neural network

In order to construct the training set for the neural network
the face images are normalized in the following way. First,
each image is cropped in such a way that the face is centered
and that the eyes and the mouth are roughly at predefined
positions while keeping the aspect ratio. Then, each image
is histogram-equalized and resized to the dimensions of the
retina l1 (46x56). Training is performed using the back-
propagation algorithm which has been slightly adapted to
account for the shared weights in layersl2 to l4. For a given
exampleimij the objective function is the following:

Ei =
1

WH

W
X

x=1

H
X

y=1

(di(x, y) − y6(x, y))2 , (3)

which is the mean squared error (MSE) between the com-
puted outputsy6(x, y) and the desired outputsdi(x, y),
wheredi represents the respective reference image normal-
ized between−1 and+1. Before the actual training, the
weights are initialized at random. Then, they are updated
after each presentation of a training example (online train-
ing). Training is stopped after 8000 iterations.

Note that by training the neural network,i.e. by mini-
mizing the objective function, all parameters are learnt con-
jointly: the convolution filters, the projection and the re-
construction parameters. In other words, the proposed ar-
chitecture optimizes the filters and, at the same time, the
projection parameters in order to reconstruct best the re-
spective reference images. This is a clear advantage com-
pared to most other projection methods where separate pre-
processing and projection steps necessitate a ”manual” in-
tegration and parameter determination.

3



4 Recognizing Faces

Once the neural network is trained with a certain number
of individuals, it can be applied to previously unseen face
images of the same individuals in order to recognize them.
To this end, a given face image is cropped and normalized
in the same way as the training images (cf. section 3.2) and
presented to the neural network. The neural network then
reconstructs the reference image corresponding to the re-
spective individual. Finally, a simple nearest neighbor clas-
sification based on the Euclidean distance between the neu-
ral network’s output and all the reference images identifies
the individual shown on the input face image.

More formally,

I = argmin
i

‖y6 − di‖ ∀ i ∈ 1..N , (4)

whereI is the resulting identity,y6 is the output of the
neural network anddi is the reference image of individual
i, normalized between−1 and+1.

In our experiments, however, we slightly modified this
classification algorithm for efficiency reasons. Instead of
classifying the outputs of the final layerl6 we used the out-
puts of the neuron layerl5 which represent the projected
vectors. We then compare the projected vectors with the
ones produced by the reference images. Thus, the classifi-
cation formula becomes:

I = argmin
i

‖y5 − vi‖ ∀ i ∈ 1..N , (5)

wherevi represents the the output of layerl5 when present-
ing ri to the neural network.

The two classification formulas led to equivalent results
but the second one is more efficient in terms of computa-
tion time. Thus, all the results presented in this paper were
obtained using Eq. 5.

5 Experimental Results

We conducted experiments on two public face databases:
the Olivetti Research Ltd. (ORL) face database [13] and the
Yale database [1].

The ORL database contains 40 individuals with 10 im-
ages per individual showing slight pose variations, facialex-
pressions and rather limited illumination changes. The Yale
database contains only 15 individuals with 11 images each.
They show virtually no pose variations but much more il-
lumination variations (e.g. left/right/center light) and facial
expressions (smile, sad expression, open/closed mouth).

In order to evaluate the different approaches we per-
formed a ”leave-one-out” validation, i.e. the neural network
was initialized and retrained 30 times with a random sepa-
ration into training and test set. Then, the mean of the re-
spective recognition rates was calculated.

Fig. 3 shows the Receiver Operator Characteristic (ROC)
curves of the proposed approach with both reference image
selection strategies, MEAN and DIST. The ROC curves il-
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Figure 3: ROC curves for the ORL and Yale databases

lustrate the recognition ratesvs. the false accept rate while
varying a distance threshold above which a face image is re-
jected. In general, the recognition rate of the ORL database
is higher than that of the Yale database. The recognition
rates without rejection are shown in table 1. Further, the
MEAN approach performs better than DIST (cf. Sect. 3.1)
for both test sets. Thus, the following experiments only
show the results of the MEAN approach. Fig. 4 illustrates
some face images (top row), the reconstructions (middle
row) and the respective reference images (bottom row).

(a) ORL (b) Yale

Figure 4: Examples of image reconstruction.Top row: in-
put images,middle row:reconstructed images,bottom row:
reference images

We also compared the proposed approach with the
Eigenfaces and the Fisherfaces approaches. As for the pre-
ceding experiment, a leave-one-out validation with the same
training and test sets was performed. Note that concerning
the classification procedure the proposed approach is more
efficient in terms of computation time and memory usage
because it only requires the reference images in order to
classify new face image whereas the other two approaches
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ORL Yale

Eigenfaces 89.7% 77.9%
Fisherfaces 87.7% 85.2%
proposed approach: DIST 90.6% 87.1%
proposed approach: MEAN 92.6% 93.3%

Table 1: Average recognition rates

need the whole dataset. Fig. 5 and 6 show the ROC curves
of the Eigenfaces and Fisherfaces methods together with
the proposed approach for the ORL and Yale database re-
spectively. For both of the databases the proposed method
clearly outperforms the other methods. Table 1 summarizes
the recognition rates of the preceding experiments.

We further evaluated the robustness of our approach with
respect to noise and partial occlusions. In the first experi-
ment we added Gaussian noise with increasing standard de-
viation σ to the images of the test set. Fig. 7 shows the
respective recognition rates with varyingσ. Note that aσ
of 0.5 represents a considerable amount of noise as the gray
values are between−1 and+1 in an image of size 46x56
(see illustration at the bottom of Fig. 7). The graphs show
that the proposed method is very robust to Gaussian noise.
Forσ < 0.5 the recognition rate decreases by only 12% for
the ORL database and by only 6% for the Yale database,
and it remains above 80% forσ < 0.6. The Eigenfaces
approach, on the other hand, shows even slightly better per-
formance the recognition rate staying almost constant over
the whole interval. This can be explained by the pure global
processing of the PCA. As it is extracting rather lower fre-
quency features it is less sensitive to high-frequency noise.

The last experiment demonstrates the robustness of the
approach with respect to partial occlusion. To this end,
the bottom part of the images is masked by a black band
of varying height. Fig. 8 shows the respective results as
well as some example images at the bottom to illustrate the
type of occlusion (0%, 10%, 20%, 30% and 40%). Here,
our approach clearly outperforms the Eigenfaces method.
For both databases the recognition rate stays above 80%
when the occluded proportion is less than 20% of the image
whereas the performance of the Eigenfaces method drops
considerably.

6 Conclusions

We presented a face recognition method based on a specific
type of neural network that receives a face image at its in-
put and reconstructs a reference face image pre-defined for
each individual. The reconstruction is realized by a ”bottle-
neck” architecture that projects the face images into a lower-
dimensional vector space before reconstruction. Compared
to most other statistical projection methods, the process-

ing isnon-linearand all parameters are learnt conjointly by
the neural network, including a hierarchical set of convo-
lution filters at the input. The performance of the method
was evaluated with two public face databases: the ORL
and the Yale database. The proposed approach achieved a
recognition rate of 92.6% for the ORL and 93.3% for the
Yale database and outperforms the well-known Eigenfaces
and Fisherfaces methods. We further demonstrated that our
method is very robust to Gaussian noise and partial occlu-
sions.
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