
Embedded facial image processing with
Convolutional Neural Networks

Franck Mamalet, Sébastien Roux, Christophe Garcia
Orange Labs, France

Email: firstname.name@orange-ftgroup.com

Abstract— This paper presents an embedded facial image
analysis framework based on Convolutional Neural Networks
(ConvNets). This robust framework has been proposed by Garcia,
Delakis and Duffner on general purpose workstations without any
constraints on computational and memory resources. We show
that ConvNets, which consist of a pipeline of convolution and
subsampling operations followed by a Multi Layer Perceptron,
are particularly well suited for implementation on embedded
processors. We present a set of high-level optimizations, such
as automatic fractional transformation, convolution and subsam-
pling fusion and memory requirement optimizations that can be
applied to these algorithms without any loss in performance,
leading to a speedup factor up to 700 compared to the reference
implementation. This work leads to a face processing library able
to handle the complete framework and its applications on mobile
phones.

I. INTRODUCTION

Facial image processing is an area of research dedicated to
the extraction and analysis of information about human faces,
information which is shown to play a central role in social
interactions including recognition, emotion and intention. Over
the last decade, it has become a very active research field
due to the large number of possible applications, such as
model-based video coding, image retrieval, surveillance and
biometrics, and intelligent human-computer interaction.

Fig. 1. Generic framework for facial analysis

Fig. 1 presents a general framework for face analysis. It
first relies on face detection in images, followed by facial
feature detection (eyes, mouth, nose) in order to align the face
bounding box and make the last step of face recognition more
robust. Many algorithms have been proposed in the literature
to handle these key steps and provide robust systems in order
to cope with the variability of facial image appearances due
to lighting conditions, poses and expressions, image noise and
partial occlusions. These techniques are commonly classified
in two main groups [1], [2]:
• Local methods: simple visual features are used like color,

edges, geometric features or local template matching-
based approaches [3], [4].

• Global methods: faces and features are treated as a whole
and models are learnt from a training database [5]–[8].

The latter methods are well known to be more robust to the
images variabilities, and show better performances on standard
face databases.

Facial analysis also has many applications in embedded
systems. Among them we can cite automatic focus in digital
cameras, enhanced mobile videoconference, biometry, and
intelligent user interfaces. However, advanced algorithms are
usually developed on PCs without any implementation restric-
tions in mind. Low memory capacities, low CPU frequency
and lack of specialized hardware such as a floating point
unit are some of the major differences between a PC and
an embedded platform. Thus, embedding such applications on
power constraint systems is a challenging task and requires
strong algorithmic, memory and software optimizations.

In the literature, we can find many implementations of facial
analysis algorithms on various kinds of embedded platforms
(processors, DSP, FPGA or Asic). If most of them are based
on simple local methods, several implementations of global
methods have been published: Tang et al. [9], [10] have
proposed an embedded version of the Viola and Jones [7]
Adaboost face detector, and also an eye detector, on mobile
phones. The Adaboost technique was also used in [11] for
implementing a face detector on a DSP. Other papers focus on
FPGA or Asic targets, such as the Viola and Jones algorithm
implementation in [12], the Rowley et al. [5] neuron based
face detector implementation in [13].

Such real time embedded implementations often require a
trade off between detection robustness, fast runtime and small
code size, and a major side effect of embedding facial analysis
methods is often the reduction of the algorithm efficiency.

In this paper we will focus on a neural-based framework
that has been proposed by Delakis, Duffner and Garcia [14],
[15], which robustness has been proven with respect to noise
and partial occlusions as well as variations in lighting and
pose. This framework, which relies on Convolutional Neural
Networks (ConvNets) introduced by LeCun et al. [16], will
be detailed in section II. We will then present in section III a
set of optimizations for embedded software implementations
that we have introduced and applied on several ConvNet
based algorithms, using a methodology based on iterations of
high-level code optimizations and profiling presented in [17],

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 261

Fig. 2. The facial analysis Convolutional Neural Network framework: (a) CFF face detector, (b) Facial feature detector, (c) Face aligner

[18]. Before concluding, we will describe our ConvNet based
embedded face analysis library and its performances.

II. FACIAL IMAGE PROCESSING WITH ConvNets

This section will give a short description of the entire
ConvNet based framework that has been described in [15].
Fig. 2-a presents the general architecture of a ConvNets,

which consists in a pipeline of convolution, subsampling and
neuronal operations. This pipeline performs automatic feature
extraction in an input retina (ConvNet’s input plane), and the
classification of the extracted features, in a single integrated
scheme. The three main types of layers in ConvNets are:
• Layers Ci are called convolutional layers, and contain

a certain number of planes. Each element in a plane
receives an input from a small neighborhood in the planes
of the previous layer. Each plane can be considered as
a feature map that has a fixed feature detector, which
corresponds to a pure convolution with a mask applied
over the planes in the previous layer. A bias is added to
the results of each convolutional mask. Multiple planes
are used in each layer so that multiple features can be
detected.

• Layers Si are called subsampling layers and consist
in local averaging and subsampling operations. More
precisely, each unit computes the average of four inputs,
multiplies it by a trainable coefficient, adds a trainable
bias, and passes the results through a hyperbolic tangent
function, used as an activation function. This subsampling
operation divides by two each dimension of the input
map and increases the degrees of invariance to translation,
scale, and deformation of the learnt patterns.

• Layers Ni are called classification layers, and are applied
after feature extraction and input dimensionality reduc-
tion of Ci and Si layers. These layers correspond to a
multilayer perceptron.

In [14], Garcia and Delakis have presented a face detection
method called Convolutional Face Finder (CFF) which is able
to localize multiple faces with a minimum size of 20 pixels,

rotated up to ±20◦ in the image plane and turned up to ±60◦.
The CFF (see Fig. 2-a) consists in four 5×5 convolution maps
in C1 layer, fourteen 3 × 3 maps in C2 layer, 14 neurons in
N1 layer, and a single neuron in N2 layer classifying input
retina as face or non-face. The CFF has still the best published
performances on standard face databases with a very low false
alarm rate (88% on CMU database with only 2 false alarms).

In [15], [19], Duffner et al. present a facial feature detector,
which is able to detect four facial features in face images:
the eyes, the tip of the nose and the center of the mouth.
The architecture of this ConvNet is presented in Fig. 2-b: it
has no S2 layer, and 4 output maps consisting of arrays of
neurons with the same dimensions as the retina. C1 layer
comprises four 7 × 7 convolution maps, C2 a single 5 × 5
convolution map, N1 a hundred neurons connected to the
C2 feature map. This network has been learnt to highlight
a feature position using a 2-dimensional Gaussian function
centered at the feature position. The network is applied at
several translations and scales to find the maximum output
score for each feature. This leads to a robust feature detector,
able to cope with considerable variations in pose, illumination,
facial expressions as well as noise and partial occlusions. It
achieves a detection rate of 98.2% on the AR database with a
maximum error of 15% of the bounding box width.

In [15], [20], Duffner and Garcia present a global face
alignment method (see Fig. 2-c) which consists of a network
very similar to the face detector, using four 7× 7 convolution
maps in C1, three 5 × 5 maps in C2, and four output
neurons. These neurons are trained to estimate simultaneously
translation in both axis, rotation and scale parameters of the
transformation the input face image has undergone. A non-
aligned detected face is then presented to the network which
produces an estimation of the underlying transformation. To
improve the correction an iterative scheme is applied where at
each iteration only a certain portion (10%) of the correction
is applied to the bounding box giving a new input retina.
Experimental results show that 94% of the face images of
the BioID database are aligned with an error of less than 10%

262

of the face bounding box width.
Garcia et al. have also proposed in [15], a face recognition

scheme that is based on a non-linear projection and recon-
struction with a ConvNet, and a nearest neighbor classification
using the N1 layer output values. The projection network
comprises four 7×7 C1 convolution maps, three 5×5 C2 maps,
no S2 layer, 60 neurons in N1, and an output layer consisting
of an array of neurons with the same dimensions as the input
retina. This network has been trained to reconstruct for each
input face a reference image of this person. The recognition
rate of this method on Yale database is 93.3%.

III. OPTIMIZATIONS FOR EMBEDDED ConvNets

A. Automatic fractional transformation

The first step towards embedding these algorithms is to
transform the floating point computations into fractional ones
using Q15 and Q31 arithmetic [21]. The main advantage of
the ConvNets is that the results of each extraction layer pass
through a hyperbolic tangent function. This limits the data
dynamics, thus reduces the risk for common issues of fixed
point computations such as arithmetic dynamic expansion and
saturation. We have developed an automatic tool able to parse
the floating point description of a given ConvNet and generate
the corresponding fixed point network, coding all coefficients
with half-words (16 bits).

The following equations describe the fractional transfor-
mation process for a Ci N × N convolution map. Eq. 1 is
the classical formula for a floating point convolution (plus
bias) computation with K = [0, N − 1]2 (w being the
convolution kernel, in the input plane, and b the bias); A
normalization parameter i0 is chosen such as the sum of the
fractional coefficients W (Eq. 2) is lower than 215. Thus the
convolution accumulation will fit on 32 bits, and the fractional
output O(x,y) will be lower than the maximum fractional input
IN(x,y) (Eq. 3).

o(x,y) =
∑

(u,v)∈K

w(u,v)in(x+u,y+v) + b (1)

i0 such as 2i0−1 ≤
∑

(u,v)∈K

‖w(u,v)‖+ ‖b‖ < 2i0

W(u,v) = 215−i0w(u,v) , B = 231−i0b , IN = 216in (2)

O(x,y) = (
∑

(u,v)∈K

W(u,v)IN(x+u,y+v) +B)2−16 (3)

The hyperbolic tangent function is computed with a Look Up
Table with saturation, avoiding any floating point computation.
Our previous papers [17], [18] have shown that this fractional
transformation does not reduce the performance (detection rate
and precision) of the studied ConvNet networks.

B. Convolution and subsampling fusion

In [17], we have proposed an algorithmic optimization
that can be applied in any convolution-subsampling pair in
ConvNets: we can notice that, within subsampling layers, there
is no overlapping between input data to produce two neighbor

subsampled elements (Eq. 4). The output element value s(i,j)
of a Si layer can be expressed as follows:

s(x,y)=α(
∑

(m,n)∈[0,1]2

o(2x+m,2y+n)) (4)

=α(
∑

(m,n)

∑
(u,v)∈K

w(u,v)in(2x+m+u,2y+n+v) + b)

=α(
∑

(u,v)∈[0,N+1]2

w̃(u,v)in(2x+u,2y+v) + b̃) (5)

These equations 4 and 5 prove that we can fuse any N ×N
convolution Ci followed by a subsampling Si operations, into
a single (N+1)×(N+1) convolution CSi with horizontal and
vertical steps of two pixels. Table I gives the computational
and memory access complexities for each version. The gain
achieved by that algorithmic optimization is huge regarding
the computational coast, e.g. 65% for a 5× 5 convolution.

TABLE I
COMPLEXITY OF CONVOLUTION AND SUBSAMPLING FUSION

Number of Mac instructions
CN + S 4 ∗N2 + 4
CN+1 (N + 1)2

Gain (3 ∗N2 − 2 ∗N + 3)/(4 ∗N2 + 4)

C. Memory optimizations

When ConvNets’ input retina is directly connected to the
input image (no pre-processing), it is well-known that com-
putations can be done on the whole image instead of at each
retina position, factorizing several convolution and subsam-
pling operations that are common to successive retinas. This
has been done on the CFF [14], and can also be applied in
the feature detector to merge processings that differ only by
horizontal or vertical translations on the input image.

An other constraint in embedded systems is the amount of
available memory and the memory cache size, which requires
for effectiveness to promote local computing.

Fig. 3. ConvNet dataflow (a) global scheme, (b) line by line processing

Fig. 3-a represents the global processing of a W ×H input
image (simplified with only one map per layer). Wi, Hi are

263

the output sizes of CSi layers (for instance, W1 = (W−N1−
2)/2). Fig. 3-b points out the possibility to compute N1 layer
output line by line: Slashed (resp. unslashed) grey parts are
unused (resp. re-used) previously computed data, whereas dark
rectangles are newly computed data. In order to produce one
output line of N1 layer, we need N3 lines of CS2 output map
among which only one new line has to be produced. Processing
this line requires N2 CS1 map lines (two new ones). CS1

has thus to be applied on N1 + 2 input lines. This line by
line processing has the same computational complexity, and
drastically reduces the amount of memory required to compute
the whole image, and avoid many cache misses.

IV. EMBEDDED FACIAL ANALYSIS LIBRARY

The optimizations presented in the previous section have
been applied to the facial analysis framework presented
in [15]. The target platforms are ARM based mobile phones
or digital assistants, and computation times are evaluated on
a Xscale PXA27x based platform running at 624MHz.

The CFF algorithm has been implemented on this platform
and optimized according to section III, and Table II presents
a comparison between the original and optimized version for
QCIF image processing (see [17] for details).

TABLE II
REFERENCE AND OPTIMIZED CFF PERFORMANCES COMPARISON

Reference Optimized
Detection Rate on CMU database 87.99% 88.2%

Processing rate 0.3 fr./s 6.5 fr./s
Memory footprint 3800 kByte 220 kByte

Another algorithmic optimization has been presented in [17]
to enable face tracking in video, enabling to process up to 16
fr./s. To compare with Tang et al. [9] claims to proceed 3.6
fr./s on an ARM9E processor.

The facial feature detector, Fig. 2-b, has been implemented
on the ARM platform using the same kind of optimizations. In
[18], we have shown that the exhaustive computation of output
neurons (to find the maximum location), can be replaced by
a ”three step” fast search algorithm, with no loss in feature
detection precision. All the optimizations have induced a speed
up factor of 700 in execution time, reaching a 12.8 faces/s
processing rate. Tang et al. [10] are able to process 2.5 faces/s.

We have also optimized the face alignment method (Fig. 2-
c), fractional transformation and convolution-subsampling fu-
sion enable processing up to 7.4 faces/s.

The non-linear projection of the face recognizer method
presented in [15] can also be optimized, fusing C1 and S1

layers and using fractionnal arithmetics. However, until now,
we had not evaluated the full recognizer process and its
performances on standard databases.

This embedded facial framework has been integrated into
a single library that enables the detection of faces in images
(or video with tracking), align bounding boxes and find facial
features (face recognition integration is in progress). The
whole framework is able to process up to three QCIF frames

every second (with one face). Many applications have been
implemented using this library on mobile phone, such as real-
time centering of faces in video, automatic face cropping in
pictures and intelligent picture browsing.

V. CONCLUSIONS

In this paper, we have described a set of optimizations that
can be applied to Convolutional Neural Networks for their
implementation on embedded processors, and its application to
a ConvNet based facial analysis framework described in [15].
These optimizations enable us to reach a speed up factor up to
700, and to propose an embedded library which can robustly
detect, track, align and find facial features on mobile phones
at up to 3 QCIF frames per second. Further works will consist
in implementing and testing the face recognizer, and also to
explore others domain with embedded ConvNet networks such
as mobile phone text detection and recognition.

REFERENCES

[1] E. Hjelmås and B. K. Low, “Faces detection : A survey,” Computer
Vision and Image Understanding, vol. 83, pp. 236–274, 2001.

[2] M.-H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in image
: A survey,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, 2002.

[3] E. Saber and A. M. Tekalp, “Face detection and facial feature extrac-
tion using color, shape and symmetry-based cost functions,” in Proc.
ICPR’96, 1996.

[4] R. Brunelli and T. Poggio, “Face recognition: Features versus templates,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 15, pp. 1042–1052, 1993.

[5] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face
detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, 1996.

[6] K. K. Sung and T. Poggio, “Example-based learning for view-based
human face detection,” IEEE Trans. PAMI, vol. 20, 1998.

[7] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. Computer Vision and Pattern Recognition,
CVPR’01., 2001.

[8] T. Cootes and C. Taylor, “Locating faces using statistical feature
detectors,” Proc. FG’96, 1996.

[9] X. Tang, Z. Ou, T. Su, and P. Zhao, “Cascade adaboost classifiers with
stage features optimization for cellular phone embedded face detection
system,” in Proc. ICNC’05, 2005.

[10] D. Chen, X. Tang, Z. Ou, and N. Xi, “A hierarchical floatboost and mlp
classifier for mobile phone embedded eye location system,” in Proc.
ISNN’06, 2006.

[11] J.-B. Kim, Y. H. Sung, and S.-C. Kee, “A fast and robust face detection
based on module switching network,” Proc. FG’04, 2004.

[12] K. Khattab, J. Dubois, and J. Miteran, “Cascade boosting-based object
detection from high-level description to hardware implementation,”
EURASIP Journal on Embedded Systems, vol. 2009, 2009.

[13] T.Theocharides, G.Link, N.Vijaykrishnan, M.J.Irwin, and W.Wolf, “Em-
bedded hardware face detection,” Proc. VLSID’04, 2004.

[14] C. Garcia and M. Delakis, “Convolutional face finder: A neural archi-
tecture for fast and robust face detection,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 26, 2004.

[15] C. Garcia and S. Duffner, “Facial image processing with convolutional
neural networks,” in Progress in Pattern Recognition, 2007.

[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proc. of the IEEE, 1998.

[17] F. Mamalet, S. Roux, and C. Garcia, “Real-time video convolutional
face finder on embedded platforms,” EURASIP Journal on Embedded
Systems, 2007.

[18] S. Roux, F. Mamalet, C. Garcia, and S. Duffner, “An embedded robust
facial feature detector,” in Proc. MLSP’07, 2007.

[19] S. Duffner and C. Garcia, “A connexionist approach for robust and
precise facial feature detection in complex scenes,” in Proc. ISPA’05.,
Sept. 2005.

[20] ——, “Robust face alignment using convolutional neural networks,” in
Proc. VISAPP’08, 2008.

[21] A. Bateman and I. Paterson-Stephens, The DSP handbook : algorithms,
applications and design techniques. Prentice Hall, 2002.

264

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

