
Mining State Dependencies Between Multiple

Sensor Data Sources

Vasile-Marian Scuturici1 Marc Plantevit2
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Abstract

Pattern mining over data streams is critical to a variety of applications
such as prediction and evolution of weather phenomena or anomaly detec-
tion in security applications. Most of the current techniques attempt to
discover associations between events appearing on the same data stream
but are not able to discover associations over multiple heterogeneous data
streams. In this work, we aim to identify temporal dependencies be-
tween data streams. We represent event streams by state streams that
are induced by the streams’ events themselves. Each state has a dura-
tion, represented as a set of disjoint time intervals with respect to the
events that occurred in the stream. Temporal relations between these
interval sets infers dependencies between the corresponding datasources.
Our interval-based approach is robust to the temporal variability of events
that characterizes the time intervals during which the events are related.
It links two types of events if the occurrence of one is often followed by
the appearance of the other in a certain time interval. The proposed
approach determines the most appropriate time intervals of a temporal
dependency whose validity is assessed by a χ2 test. As several intervals
may redundantly describe the same dependency, the approach retrieves
only the few most specific intervals with respect to a dominance relation-
ship over temporal dependencies, and thus avoids the classical problem of
pattern flooding in data mining. TEDDY algorithm, TEmporal Depen-
dency DiscoverY, prunes the search space while certifying the discovery
of all valid and significant temporal dependencies. We present empiri-
cal results on simulated data to show the scalability and the robustness
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of our approach. We also report on case studies from smart real-world
environments equipped with a number of cameras and motion sensors.
These experiments demonstrate the efficiency and the effectiveness of our
approach.

1 Introduction

In the last decade, the constant evolution in hardware and software technology
has made it possible for companies to generate and store very large volumes of
information from various data sources. This highly innovative context has been
a fruitful source of motivation for the development of many data stream manage-
ment and analysis techniques [1] and extending classical pattern mining tech-
niques (e.g., frequent itemsets [16, 24], multidimensional data [20], sequences
[9, 10, 32], multidimensional sequences [38] and graphs [2, 15]) to tackle the
new challenges faced in this context [25]: handling infinite sequences of events
occurring at steady a pace to provide actionable insights to end-users. Since
the mining step has to be faster than the data acquisition process, it is not
possible to store data streams in their entirety and then perform various scans
on them. For this reason, data stream mining has been popularly recognized as
an important research area with many applications, such as the prediction and
evolution of weather phenomena, anomaly detection in security applications, or
mining health monitoring streams, to mention just a few.

The recent breakthroughs in sensor technology have given users the ability
to monitor many events in real time producing multiple heterogeneous data
streams. As an example, smart environments equipped with various kinds of
sensors (e.g., cameras, badge readers, motion sensors, automatic doors), that
are so many data sources, generate simultaneously several data streams at high
speed. In this paper we address the original problem of identifying temporal
dependencies between data sources. It consists in discovering inter-stream rela-
tions that link two types of events if the occurrence of one is repeatedly followed
by the appearance of the other in a certain time interval. Such dependencies
between data streams may constitute key actionable insights for other timely
challenges such as smart environment monitoring, partial failure detection in
a smart environment, structural health monitoring, object tracking between
various cameras, or data streams indexing.

By nature, events have no duration, but in practice, especially in a smart
environment, they often describe actions or states which actually last for a
period of time. Considering that the occurrence of an event changes the state
of the stream, this makes it possible to design an interval-based approach that
improves existing time-point based approaches with the following advantages:
(1) it is suitable for handling events that are rare but which change the state
of the stream for a long period of time, i.e., events with low frequency but long
duration; (2) it is more robust to the temporal variability of events, (3) it is
semantically rich and allows the discovery of sophisticated relations based on
Allen’s algebra [5], whereas time-point based approaches consider only simple
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“before/after” relations between time points.
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Figure 1: Overview of our approach.

Our interval-based approach not only identifies temporal dependencies be-
tween data sources, but also determines the most appropriate time-delay inter-
vals that may exist between them. An overview of our approach is provided in
Figure 1. Each data stream is first transformed into a state stream: the occur-
rences of the events change the state of the stream which over time goes from
one state to another. Each state is described by its set of active time intervals.
Then, valid and significant temporal dependencies are mined between distinct
data sources. A temporal dependency between two states A and B denotes that
the activation of state B relies on the activation of state A. The strength of the
dependency is evaluated by the proportion of active time of A where B is also
active. To take into account the fact that the activation of B can be delayed
with respect to A, the active time intervals of B are shifted to maximize their
intersection with the active period of A. Finally, to be robust to the inherent
variability of the data, the active time intervals of B can be slightly extended
so as to better coincide with A. The proposed approach determines the most
appropriate time intervals of a temporal dependency whose validity is assessed
by a χ2 test. As several intervals may redundantly describe the same depen-
dency, the approach retrieves only the few most specific intervals with respect
to a dominance relationship over temporal dependencies, and thus avoids the
classical problem of pattern flooding in data mining. Finally, the dependencies
can be directly exploited by the end-users to monitor the environment or de-
tect its failures, e.g. when a valid and significant dependency suddenly becomes
unsatisfied, abnormal behavior or sensor failure can be suspected. Discovering
all valid and significant temporal dependencies is challenging since, for every
couple of states between two data sources, all possible time-delay intervals have
to be taken into account. To overcome the complexity of this task, we propose
an efficient algorithm TEDDY that benefits from different properties in order to
prune the search space while certifying the discovery of all valid and significant
temporal dependencies. We conduct an extensive experimental study on both
synthetic and real-world data streams from smart environments equipped with
various kinds of sensors (cameras, motion sensors, etc.). These experiments
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show that the pruning techniques make it possible to discard a large part of the
search space and speed up TEDDY running time by a factor that varies between
2 and 60. A qualitative analysis of the output shows that TEDDY produces
a small set of non-redundant dependencies that well describe the phenomenon
captured by the data.

To summarize, the main contributions of this paper are:

• The introduction of a novel problem: the discovery of dependencies be-
tween multi-sources data streams. We define the temporal state depen-
dency as a suitable mathematical notion for the study of multiple heteroge-
neous data streams. We introduce the notion of confidence of a temporal
state dependency and assess its validity based on a χ2 test. We define
a dominance relationship between temporal dependencies to control the
intrinsic redundancy of the patterns.

• The design of an efficient algorithm that benefits from various properties.

• The evaluation of the efficiency of the algorithm on synthetic data and
the illustration of its applicability on real data streams from two smart
environments equipped with various cameras and motion sensors.

The remainder of this paper is organized as follows. Section 2 formally de-
fines valid and significant temporal dependencies between multiple state streams.
In Section 3 we present our approach to efficiently discovering temporal depen-
dencies between data streams. Section 4 reports on an empirical study. Section
5 presents related work. Section 6 concludes this paper.

2 Temporal dependencies between multiple state
streams

We consider a set of data streams DS = {DS1, · · · , DSn}, where DSk is a
sequence of timestamped events produced by a data source: DSk = {(t, e) | t ∈
T , e ∈ Ek}. T is an infinite set of timestamps. We assume that a data source
cannot produce more than one event at a time, and Ek is the event type set of
the kth data source. To process the infinite set of events of DSk, T is partitioned
in batches of events. Each batch is defined as the set of events contained in the
interval [tbegin, tend) and is indicated by DS

[tbegin,tend)
k , or simply DSk if there

is no ambiguity, as in the rest of the paper. The event that immediately occurs
before the timestamp t ∈ [tbegin, tend) is denoted pred(DSk, t) whereas the
event that occurs immediately after t or at t is indicated as succ(DSk, t).

2.1 Converting a data stream into a state stream

Data streams are generally considered as sequences of time-point events, i.e.,
events that have no duration. However, when dealing with sensor data sources,
we consider that the most meaningful temporal information is the time spent
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between two consecutive events. Indeed, each event changes the internal state
of the stream. For example, considering a data stream generated by a door,
the events occurring are of two types: opening and closing. Therefore, the door
is continually either in the state of being open, when the last event is open,
or otherwise close. Let S(DSk) be the set of all possible states of DSk and
state : Ek → S(DSk) be the mapping of events into states. DSk is in state s
at time t if state(pred(DSk, t)) = s. Therefore, a state s ∈ S(DSk) is defined
by the period of time when it is active in DSk. This time period is generally
discontinuous, and it is thus represented by a set of maximal time intervals,
called active interval set, denoted I(s) and defined as follows:

I(s) = {[ti, tj) ⊆ [tbegin, tend) | ∀t ∈ [ti, tj), state(pred(DSk, t)) = s

and state(pred(DSk, ti)) 6= s

and state(succ(DSk, tj)) 6= s}

The significance of a stream state is evaluated by the sum of the lengths of its
active intervals:

len(s) =
∑

[ti,tj)∈I(s)

(tj − ti)

2.2 Active interval sets matching

The dependency of two states, from distinct data sources, is evaluated on the
basis of the intersection of their active interval sets. Let sk and s` be two
states from distinct data streams. The intersection of I(sk) and I(s`) is de-
fined as the union of intersecting intervals: I(sk) ∩ I(s`) = {[ti, tj) ∩ [t′i, t

′
j) |

[ti, tj) ∈ I(sk), [t′i, t
′
j) ∈ I(s`)}. Figure 2 provides an example of the intersection

of two interval sets. However, two stream states sk and s` may be in temporal
dependency sk → s` whereas they are not active at the same time but s` is
time-delayed with respect to sk. To capture such dependencies the active in-
terval set of s` may undergo some transformations so as to better coincide with
the active interval set of sk. Two types of transformations can be applied: (1)
I(s`) can be shifted so as to maximize its intersection with I(sk), or (2) I(s`)
can be slightly extended so as to make the temporal dependency measure more
robust to the inherent variability of the data. Shifting an active interval set I
with β time units consists in translating each time interval of I by β time units:
I[β,β] =

⋃
[ti,tj)∈I [ti +β, tj +β). To slightly extend the sets of I, the first bound

of each interval of I is translating by only α time units, with 0 ≤ α ≤ β. It
results in the following new interval set: I[α,β] =

⋃
[ti,tj)∈I [ti+α, tj +β). Notice

that the intervals of I[α,β] may intersect. In that case, intersecting intervals are
merged. Figure 3 illustrates some active interval set shifts.
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I(sk)
⋂

I(s`)

Figure 2: Example of active interval sets intersection.

Shifting of t time units (I[t,t])

Slight extension of t time units (I[0,t])

Figure 3: Example of active interval set shifts

2.3 Temporal dependency assessment

The temporal dependency of a state sk over a state s` is evaluated by the
proportion of time where the two states are active over the active time of sk.
This confidence measure is formally defined below.

Definition 1 (Confidence of state dependency) Considering two data stream
states sk and s` from distinct data streams, as well as a shifting interval [α, β],

the strength of a [α, β]-temporal dependency between sk and s`, denoted sk
[α,β]−−−→

s`, is evaluated by the following confidence measure:

conf(sk
[α,β]−−−→ s`) =

len(sk ∩ s[α,β]` )

len(sk)

where sk ∩ s[α,β]` = I(sk) ∩ I[α,β](s`).

We can observe that conf(sk
[α,β]−−−→ s`) is equal to 1 iff each interval of I[α,β](s`)

is included in an interval of I(sk).
For an effective search for temporal dependencies, the shifting intervals [α, β]

are taken in [tmin, tmax], where tmin and tmax are parameters set by the end-
user. They specify the time range in which looking for shifting intervals. Some
instantiations of [α, β] convey some specific semantics of the confidence measure.

For instance, sk
[0,0]−−−→ s` highlights a simultaneous dependency between sk and

s`. sk
[β,β]−−−→ s` means that state sk is in the relation after exactly β timestamps

with state s`, and sk
[0,β]−−−→ s` means that sk is in the relation after at most β
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timestamps with state s`. On Figure 4, conf(sk
[0,0]−−−→ s`) = 2+3+5+3

2+4+5+3 = 13
14 and

conf(sk
[1,2]−−−→ s`) = 2+2+4+2

2+4+5+3 = 10
14 .

Figure 4: Example of two active interval sets.

To statistically assess the value of conf(sk
[α,β]−−−→ s`), we propose to perform

a Pearson’s chi-squared test of independence [36]. Considering the time interval
[tbegin, tend), that is to say the batch time window, the test determines whether

the occurrences of sk and s
[α,β]
` are statistically independent over [tbegin, tend).

At every time point of [tbegin, tend), sk and s
[α,β]
` are active or not. These

two possible outcomes of a stream state s are denoted active(s) and active(s).
Table 1 is the contingency table O that crosses the observed outcomes of sk and

s
[α,β]
` .

active(s
[α,β]
` ) active(s

[α,β]
` )

active(sk) len(sk ∩ s[α,β]` ) len(sk)− len(sk ∩ s[α,β]` )

active(sk) len(s
[α,β]
` )− len(sk ∩ s[α,β]` ) T − len(sk)− len(s

[α,β]
` ) + len(sk ∩ s[α,β]` )

where T = tend − tbegin.

Table 1: Matrix O that contains the number of time points of [tbegin, tend) for
the four possible outcomes of sk, s`.

The null hypothesis states that the occurrences of the outcomes active(sk) and

active(s
[α,β]
` ) are statistically independent. If we suppose that active(sk) oc-

curs uniformly over [tbegin, tend), there are len(sk)
T chances that state s

[α,β]
` is

active at the same time. As active(s
[α,β]
` ) occurs during len(s

[α,β]
` ) timestamps,

the expected number that s
[α,β]
` occurs simultaneously with sk under the null

hypothesis is
len(s

[α,β]
` )×len(sk)

T . The three others outcomes under the null hy-
pothesis are constructed on the same principle. All these expected outcomes E
are given in table 2.
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active(s
[α,β]
` ) active(s

[α,β]
` )

active(sk)
len(s

[α,β]
` )×len(sk)

T

(
T−len(s[α,β]` )

)
×len(sk)

T

active(sk)
len(s

[α,β]
` )×(T−len(sk))

T

(
T−len(s[α,β]` )

)
×(T−len(sk))

T

Table 2: Matrix E that contains the number of time points of [tbegin, tend) for

the four possible outcomes of sk, s
[α,β]
` under the null hypothesis.

The value of the test-statistic is

X2 =
2∑
i=1

2∑
j=1

(Oij − Eij)2

Eij

=
T
(
T len

(
sk ∩ s[α,β]`

)
− len(sk)len(s

[α,β]
` )

)2
len(sk)len(s

[α,β]
` )(T − len(sk))(T − len(s

[α,β]
` ))

(1)

The null distribution of the statistic is approximated by the χ2 distribution
with 1 degree of freedom, and for a significant level of 5%, the critical value
is equal to χ2

0.05 = 3.84. Consequently, X2 has to be greater than 3.84 to
established that the active interval set intersection is sufficiently large not to be
due to chance. From equation (1) we derive the following quadratic equation in

len
(
sk ∩ s[α,β]`

)
:(
T len

(
sk ∩ s[α,β]`

)
− len(sk)len(s

[α,β]
` )

)2
≥

3.84

T
len(sk)len(s

[α,β]
` )(T − len(sk))(T − len(s

[α,β]
` ))

which is satisfied iff 0 ≤ len
(
sk ∩ s[α,β]`

)
≤ ∩1 or T ≥ len

(
sk ∩ s[α,β]`

)
≥ ∩2,

∩1 and ∩2 been the roots1 of this equation.
Intersection values that range between 0 and ∩1 are much smaller than the

one expected under the null hypothesis. Such values can be used to detect
anomalies, but, in the following we focus on the intersection values that are

unexpectedly high. Therefore, we conclude that a temporal dependency sk
[α,β]−−−→

s` is valid iff

conf(sk
[α,β]−−−→ s`) ≥

∩2
len(sk)

(2)

As the χ2 test only works well when the dataset is large enough, we use the
conventional rule of thumb [36] that enforces all the expected numbers (cells in
Table 2) to be greater than 5.

1∩i =
len(sk)len(s

[α,β]
`

)
+
−
√

3.84
T

len(sk)len(s
[α,β]
`

)(T−len(sk))
(
T−len(s

[α,β]
`

)
)

T
.
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2.4 Significant temporal dependencies selection

For two stream states in temporal dependency, a huge number of shifting inter-
vals [α, β] may exist that result in valid temporal dependencies. These intervals
may describe distinct temporal dependencies (e.g., different paths may exist
between two motion captors producing as many temporal dependencies), but
they can also be redundant, depicting the same phenomenon several times. Re-
dundancy between shifting intervals mainly relies on the following property:

Property 1 (Confidence monotonicity) Let sk and s` be two data stream
states and [α1, β1], [α2, β2] be two shifting intervals. If [α1, β1] ⊆ [α2, β2], then

conf(sk
[α1,β1]−−−−→ s`) ≤ conf(sk

[α2,β2]−−−−→ s`).

Proof 1 [α1, β1] ⊆ [α2, β2] implies that I[α1,β1](s`) ⊆ I[α2,β2](s`) and

len(s
[α1,β1]
` ∩ sk) ≤ len(s

[α2,β2]
` ∩ sk). As a result,

conf(sk
[α1,β1]−−−−→ s`) ≤ conf(sk

[α2,β2]−−−−→ s`).

�

To be useful in real data streams, we wish our mining process to automati-
cally discover the shifting intervals that best describe the temporal dependencies
of two given states while avoiding the pattern flooding that may result from the
computation of all valid temporal dependencies. Among all the shifting intervals
included in [tmin, tmax] that lead to valid temporal dependencies, those that are
of interest should have (1) a high confidence value and (2) be as specific as pos-
sible with respect to the inclusion relation. This leads to the following definition
of the dominance relationship on the set of temporal dependencies.

Definition 2 (Dominance relationship) Let d[α1,β1] = sk
[α1,β1]−−−−→ s` and

d[α2,β2] = sk
[α2,β2]−−−−→ s` be two temporal dependencies between sk and s`. We

say that d[α1,β1] dominates d[α2,β2], d[α1,β1] � d[α2,β2], iff [α1, β1] ⊆ [α2, β2] and

1− conf(sk
[α1,β1]−−−−→ s`)

conf(sk
[α2,β2]−−−−→ s`)

< 1−
len(s

[α1,β1]
` )

len(s
[α2,β2]
` )

(3)

The rationale behind this definition is that when [α1, β1] dominates [α2, β2], the
loss of the confidence measure of [α1, β1] is less than the reduction of its active
interval set length and thus I[α2,β2]\[α1,β1](s`) ∩ I(sk) is almost empty. Indeed,

if the reduction of the active interval set length of s
[α,β]
` is uniformly distributed

over [tmin, tmax], then the length of its intersection with I(sk) will be reduced
in the same proportion:

len(sk ∩ s[α1,β1]
` )

len(sk ∩ s[α2,β2]
` )

≈
len(s

[α1,β1]
` )

len(s
[α2,β2]
` )
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However, if the reduction of the active interval set length of s
[α,β]
` mainly occurs

when sk is not active, then the length of its intersection with I(sk) decreases
less than its active interval set length:

1−
len(sk ∩ s[α1,β1]

` )

len(sk ∩ s[α2,β2]
` )

< 1−
len(s

[α1,β1]
` )

len(s
[α2,β2]
` )

This dominance relationship makes it possible to refine an interval while
controlling the loss of the confidence measure. If an interval reduction leads to a
significant loss, then the refinement process has to be stopped, since the portion
of I(sk) non covered by the interval will not be subsequently either. Therefore,
significant temporal dependencies are the most specific temporal dependencies
that dominate all their supersets:

Definition 3 (Significant temporal dependencies) For two states sk and

s`, let Σ be the set of temporal dependencies d[α,β] = sk
[α,β]−−−→ s` such that (i)

d[α,β] dominates all of its supersets, and (ii) every superset of d[α,β] dominates
its supersets as well:

Σ = {d[α1,β1] | ∀ [α2, β2] such that [α1, β1] ⊆ [α2, β2], d[α1,β1] � d[α2,β2]

and ∀ [α3, β3] such that [α2, β2] ⊆ [α3, β3], d[α2,β2] � d[α3,β3]}

Temporal dependencies that belong to the positive border of (Σ,�) are said to
be significant.

Property 2 (Σ-belonging monotonicity) Let [α1, β1] ⊆ [α2, β2]. If d[α1,β1]

belongs to Σ then d[α2,β2] ∈ Σ.

Proof 2 It is derived from definition 3.

�

Property 3 (Dominance transitivity) Let d[ti,tj ] designate the temporal de-

pendency sk
[ti,tj ]−−−→ s`. For all intervals [α, β] such that [α1, β1] ⊆ [α, β] ⊆

[α2, β2], if d[α1,β1] � d[α,β] and d[α,β] � d[α2,β2] then d[α1,β1] � d[α2,β2].

Proof 3conf(sk
[α1,β1]−−−−→ s`)

conf(sk
[α,β]−−−→ s`)

>
len(s

[α1,β1]
` )

len(s
[α,β]
` )

 conf(sk
[α,β]−−−→ s`)

conf(sk
[α2,β2]−−−−→ s`)

⇒ conf(sk
[α1,β1]−−−−→ s`)

conf(sk
[α2,β2]−−−−→ s`)

>
len(s

[α1,β1]
` )

len(s
[α,β]
` )

conf(sk
[α,β]−−−→ s`)

conf(sk
[α2,β2]−−−−→ s`)
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and  conf(sk
[α,β]−−−→ s`)

conf(sk
[α2,β2]−−−−→ s`)

>
len(s

[α,β]
` )

len(s
[α2,β2]
` )

 len(s
[α1,β1]
` )

len(s
[α,β]
` )

⇒
len(s

[α1,β1]
` )

len(s
[α,β]
` )

conf(sk
[α,β]−−−→ s`)

conf(sk
[α2,β2]−−−−→ s`)

>
len(s

[α1,β1]
` )

len(s
[α2,β2]
` )

Therefore, conf(sk
[α1,β1]−−−−→s`)

conf(sk
[α2,β2]−−−−→s`)

>
len(s

[α1,β1]

` )

len(s
[α2,β2]

` )
.

�

3 Efficient Temporal Dependencies Discovery

Discovering temporal dependencies is time-consuming for large volumes of data.
Indeed, a naive algorithm, that looks for dependencies between two stream states
sk and s`, will explore all possible time shift intervals included in [tmin, tmax]
(the number of such intervals is in Θ((tmax− tmin)2)). For each interval, it will
compute its confidence value, which can be done in Θ(#I), where #I is the
number of active intervals of sk or s`. Such an algorithm has to be executed
with a relatively high frequency over data stream batches. Therefore, it is a key
issue to improve its efficiency to make it suitable for the context of multiple data
streams. To do that we propose TEDDY, TEmporal Dependency DiscoverY,
an algorithm that (1) takes advantage of the monotonic characteristic of the
confidence measure, as stated in property 1, to avoid considering time shift
intervals that are guaranteed not to be valid; (2) exploits an upper bound on
the confidence measure, whose complexity is O(1), to reduce the computation
required for the confidence evaluation; (3) explores the search space using a
level-wise approach in order to discover significant temporal dependencies while
computing the confidence value of each interval at the most once.

TEDDY is sketched in Algorithm 1. For every pair of states, it explores the
temporal dependencies in a breadth-first approach. The inclusion operation over
time shift intervals defines a semi-lattice, illustrated in Figure 5, where intervals
at given depth d have the same length: tmax − tmin − d. This semi-lattice is
traveled level by level. At each iteration of the loop while, Candd contains the
d-depth shift interval candidates. Line 7, Ad is computed as the restriction
of Candd to the dependencies whose confidence value is greater than a lower
bound. If a temporal dependency from Ad dominates its two ancestors, then it
is a promising dominant candidate and thus belongs to Σd (line 8). As such, it
is added to the Border set whereas its ancestors are removed, as they are no
longer the most specific intervals of Border. Line 9, d+ 1-depth candidates are
generated if their d-depth ancestors belongs to Σd. Line 12 processes Border
only to extract valid and significant temporal dependencies.
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[tmin, tmax]

[tmin, tmax-1] [tmin+1, tmax]

[tmin, tmax-2] [tmin+1, tmax-1] [tmin+2, tmax]

[tmin, tmax-3] [tmin+1, tmax-2] [tmin+2, tmax-1] [tmin+3, tmax]

[tmin, tmin] [tmax, tmax][tmin+1, tmin+1] [tmax-1, tmax-1]….

…. …. …. ….

Figure 5: Interval shift join semi-lattice with respect to ⊆.

The four most important steps of this algorithm, the candidate generation,
the pruning based on confidence and dominance, and the identification of valid
and significant dependencies, are detailed in the following subsections.

Algorithm 1 TEDDY

Require: A time interval [tbegin, tend), DS =

{DS[tbegin,tend)
1 , . . . , DS

[tbegin,tend)
n } the data stream batch, tmin, tmax.

Ensure: All significant temporal dependencies over DS.
1: for all si ∈ FS do
2: for all sj ∈ FS do
3: Border ← ∅
4: Cand0 ← [tmin, tmax]
5: d← 0
6: while Candd 6= ∅ do
7: Ad ←Pruning based on confidence(Candd)
8: [Σd, Border]←Pruning based on dominance(Ad, Border)
9: Candd+1 ←Candidate generation(Σd)

10: d← d+ 1
11: end while
12: Significantsi,sj ←Compute valid and significant TD(Border)
13: end for
14: end for
15: return

⋃
si,sj

Significantsi,sj

3.1 Candidate time shifts generation

As stated in property 1, the confidence measure increases monotonically with
time shift interval inclusion. In addition, property 2 stipulates that Σ-belonging
is also a monotonic property. So, to prune the search space made of temporal
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dependencies that are not valid or not significant, the interval semilattice is tra-
versed from the largest interval down to the singletons. If a time shift interval is
not valid or does not dominate one of its direct ancestors, then none of the in-
tervals included in it can correspond to a valid significant temporal dependency.
As each interval at depth d + 1 is included in at most two intervals at depth
d, we generate d + 1-depth candidate by intersecting d-depth promising time
shifts. Algorithm 2 presents the candidate generation procedure. The first test
(line 2) checks that the bottom of the semilattice is not reached. It processes
L, the list of promising d-depth intervals ordered by their first endpoint. If the
first (resp. last) interval, lines 3-5 (resp. lines 15-17), is [tmin, tmax − d] (resp.
[tmin + d, tmax]), then [tmin, tmax − (d + 1)] (resp. [tmin + (d + 1), tmax]) is a
d + 1-depth candidate as its only one ancestor belongs to L. The loop (lines
7-14) generates all other temporal dependencies whose two direct ancestors are
in L by intersecting their time shift intervals.

Algorithm 2 Candidate generation

Require: L, the list of promising d-depth intervals, ordered by their first end-
point.

Ensure: Cand, the list of d+ 1-depth candidate intervals.
1: Cand← ∅
2: if tmax − tmin > d then
3: if (L[0] = [tmin, tmax − d]) then
4: Cand← Cand ∪ [tmin, tmax − (d+ 1)]
5: end if
6: i← 0
7: while i < #L− 1 do
8: [α, β]← L[i]
9: [γ, δ]← L[i+ 1]

10: if (α = γ − 1) and (β = δ − 1) then
11: Cand← Cand ∪ [γ, β]
12: end if
13: i← i+ 1
14: end while
15: if (L[#L− 1] = [tmin + d, tmax]) then
16: Cand← Cand ∪ [tmin + d+ 1, tmax]
17: end if
18: end if
19: return Cand

3.2 Pruning-based on confidence measure

In order to avoid the computation of the confidence values of unpromising de-
pendencies, we consider the following property, that bounds the difference of
confidence between two time shift intervals:
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Property 4 (Bounds on confidence) Let sk and s` be two data stream states,
and [α1, β1] and [α2, β2] be two time intervals:

|conf(sk
[α1,β1]−−−−→ s`)− conf(sk

[α2,β2]−−−−→ s`)|

≤ (|α1 − α2|+ |β1 − β2|)×#I(s`)

len(sk)

where #I(s`) represents the number of intervals in I(s`).

Proof 4 By shifting an interval [ti+α1, tj+β1] ∈ I[α1,β1](s`) with [α2−α1, β2−
β1], the length of the resulting interval may win or lose a maximum of (|α1 −
α2|+|β1−β2|) time units. By multiplying this quantity by the number of intervals
in I(s`), the result follows.

�

Furthermore, as stated by equation (2) page 8, valid temporal dependencies
have a confidence value greater than

MinConfidence (L(α, β)) ≡
λL(α, β) +

√
3.84
T λ(T − λ)L(α, β)(T − L(α, β))

λT

where L(α, β) = len(s
[α,β]
` ) and λ = len(sk). Property 5 provides a lower bound

on MinConfidence (L(α, β)):

Property 5 (Lower bound on MinConfidence (L(α, β)))

MinConfidence (L(α, β)) ≥ min (1,MinConfidence (L(0, 0)))

Proof 5 L(α, β) (T − L(α, β)) is a quadratic function which vanishes at L(α, β) =
0 and L(α, β) = T . Therefore, MinConfidence (L(α, β)) first increases and then
decreases over [0, T ] with MinConfidence (0) = 0 and MinConfidence (T ) =
1. Let x1 < T be such that MinConfidence (x1) = 1. We can observe that
MinConfidence (x) increases over [0, x1] (see Figure 6). As L(α, β) ≥ L(α, α) =
L(0, 0), we have MinConfidence (L(α, β)) ≥ min (1,MinConfidence (L(0, 0))).

�

conf(sk
[α,β]−−−→ s`) is upper bounded by 1, therefore if MinConfidence > 1,

there is no valid temporal dependency. Algorithm 3 details the evaluation of
the confidence measure. The confidence value of the first candidate is com-
puted (line 4). Then, the confidence value of the following candidates is esti-
mated based on Property 4 (line 7). If the upper-bound (lastConf + maxGain)
of the confidence value of a candidate is lower than MinConfidence (L(0, 0))
(boundMinConfidence, estimated thanks to property 5), then the candidate
cannot be valid. Otherwise, its exact confidence is evaluated (line 10) and, if it
is greater than boundMinConfidence (line 11), the candidate is considered as
a promising valid temporal dependency. Notice that the confidence measure is
stored for future needs (line 12). This confidence value is used as a new ref-
erence for further maxGain evaluations, since maxGain tends to decrease when
evaluated on distant intervals in Cand.
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Figure 6: Illustration of MinConfidence function.

3.3 Pruning-based on dominance relationships

Pruning based on dominance function consists simply in evaluating whether
each promising candidate satisfies equation (3) for its direct ancestors. Actually,
property 3 states that if a temporal dependency dominates its direct ancestors,
then it also dominates all its ancestors, and thus belongs to Σ. It is also added
to the Border set whereas its ancestors are removed, as they are no more the
most specific temporal dependencies of Σ.

3.4 Identification of valid and significant dependencies

The last step of TEDDY is to consider the temporal dependencies of Border to
ensure they are valid, that is, they truly satisfy equation (2). Algorithm 4 states
that if a temporal dependency is valid (line 7) and more specific than any other
dependencies of R (line 8), then it is added to R (line 9) and temporal depen-
dencies that are more general are removed from R (line 10). If the dependency
is not valid (line 12), its direct ancestors are recursively considered in lines 14
and 17.

If R is implemented as an interval tree, evaluating that a temporal depen-
dency is the most specific among the n elements of R can be done in O(log(n)).
Finding all the dependencies of R that are more general than d[α,β] can be done
in O(min(n, k log(n))) where k is the number of dependencies in the output list
[12].

4 Experimental Study

In this section, we report experimental results to illustrate the interest of our
approach. We start by describing four synthetic and two real-life datasets we
use, as well as the questions we aim to answer. Then, we provide a performance
study and give some qualitative results. All experiments were performed on a
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Algorithm 3 Pruning based on confidence

Require: Cand, an ordered list of candidate intervals, #I(sj), the number of
intervals in I(sj) and len(si).

Ensure: R, the set of promising valid temporal dependencies and their confi-
dence value.

1: R← ∅
2: k ← 0
3: [α, β]←Cand[k]

4: lastConf← conf(si
[α,β]−−−→ sj)

5: while k < #Cand do
6: [αk, βk]←Cand[k]

7: maxGain← (|α− αk|+ |β − βk|)× #I(sj)
len(si)

8: if (lastConf + maxGain ≥ boundMinConfidence then
9: [α, β]←Cand[k]

10: lastConf← conf(si
[α,β]−−−→ sj)

11: if (lastConf ≥ boundMinConfidence then
12: Cand[k].confidence← lastConf
13: R← R ∪ Cand[k]
14: end if
15: end if
16: k ← k + 1
17: end while
18: return R

8 GB RAM computer with a octo-core processor cadenced at 3 GHz, running
Windows 7. TEDDY algorithm is implemented in standard C++.

4.1 Dataset description

Synthetic datasets

To generate the synthetic datasets, we built a simulator of a sensor surveillance
network. It consists in the simulation of 8 video cameras that record what is
going on in a rectangular space. Each camera captures the images of an elliptical
area of this space (see Figure 7). The simulation consists in moving objects along
eight predefined rectilinear paths. To control the number of events occurring per
time unit, objects are generated according to a Poisson distribution. The area
covered by each camera is divided into subareas that are as many data sources.
In total, there are 216 data sources that produce events in our experiments. A
data source produces an event “object detected” every time step in which an
object is located in the associated subarea and the corresponding stream is in
the state “object detected”. At the other time steps, the stream is in the state
“no object detected”. In the following, we are interested only in dependencies
between “object detected” states.
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Algorithm 4 Compute valid and significant TD

Require: Border
Ensure: R the set of valid and significant TD.
1: R← ∅
2: for all [α, β] ∈ Border do
3: Confident and most specific([α, β], R)
4: end for
5: return R

Function Confident and most specific([α, β], R)

6: if depth([α, β]) ≥ 0 then
7: if ([α, β].confidence ≥ MinConfidence(α, β) then
8: if is most specific([α, β], R) then
9: insert([α, β], R)

10: R← R\ set of most general([α, β],R)
11: end if
12: else
13: if α− 1 ≥ tmin then
14: Confident and most specific([α− 1, β], R)
15: end if
16: if β + 1 ≤ tmax then
17: Confident and most specific([α, β + 1], R)
18: end if
19: end if
20: end if

We generate four different datasets, which differ from the average number
of events produced per minute and per stream. Quantitative characteristics of
these datasets are given in Table 3, lines SYNT02, SYNT04, SYNT08, SYNT16.

Real-World datasets

CASAS Smart Home project, a multi-disciplinary research project at Wash-
ington State University [11], uses a physical testbed (three bedrooms, one bath-
room, a kitchen, a dinning room), depicting a smart home where sensors are
used to monitor different daily activities. Various experiments performed in this
physical testbed produced different datasets, called Tokyo, Milan, Aruba and so
on. In the following, we focus on a single dataset called Milan for which the
residents in the home were a woman and a dog. The woman’s children visited
on several occasions. We consider only the data produced by the motion sensors
and by the contact switch sensors located on the doors. For each room, there
are between 20 to 70 data streams producing a total of 433 665 events over 3
months. Data streams are split into batches of one day (24 hours). Figure 8
(left) reports on the distribution on these events throughout the week.
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Figure 7: Synthetic testbed: a rectangular space is equipped with 8 video cam-
eras. Objects are moving along 8 rectilinear trajectories.

Dataset # Data sources # Events Duration Avg events

SYNT02 216 85,806 3 hours 2
SYNT04 216 173,645 3 hours 4
SYNT08 216 352,553 3 hours 8
SYNT16 216 696,677 3 hours 18
Milan 31 433,665 three months 0.1

Foxstream 1604 33,278,036 one week 2.1

Table 3: Dataset characteristics. The last column shows the average number of
events per minute and per stream.

Foxstream is a real-world dataset obtained from the company Foxstream. It
depicts one week of activity of a smart environment: two video-cameras, two
thermographic cameras and four motion sensors are used for outdoor surveil-
lance of a building, whereas another motion sensor is located inside it. The
area captured by each camera is partitioned into 400 rectangular subareas that
correspond to as many data sources. The movement detection is carried out as
follows. For each subarea, we compute a background image by averaging the
last 50 frames. Every second, the new image is compared with the background.
A pixel is considered to have changed if its difference from the background cor-
responding pixel is greater as a given threshold (15 in our case). If the subarea
has at least 75% of its pixels that have changed, an event “motion detected” is
produced. We emphasize that motion detection in video is still a challenging
problem. Therefore, this pre-processing may produce erroneous data: for in-
stance, spurious motions can be detected due to changes in weather or lighting
(rain, shadow). During the one-week period, the cameras generated about 33
million events, whereas the motion sensors produce around 38 000 events (see
Table 3). Data streams are split into batches of one hour. Figure 8 (right)
reports the distribution on these events through the different batches of this
week.
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Figure 8: Number of events per batch: Milan (left) (Batch size=24h) and
Foxstream (right) (Batch size=1h) datasets.

4.2 Aims

We analyze the experimental results with regard to the following questions:

• What is the efficiency of TEDDY with regard to dataset characteristics
that may affect its execution time? At the beginning of section 3, we men-
tion that a baseline algorithm, that explores all possible time intervals
included in [tmin, tmax], would have a time complexity function that is
quadratic with regard to tmax− tmin and linear with the number of inter-
vals in the active interval sets. Therefore, it is interesting to know whether
TEDDY outperforms the baseline algorithm and to compare their empiri-
cal complexities. Notice that both algorithms have the same complexity in
the worth case, but TEDDY uses pruning techniques that should increase
its efficiency in practice. As the number of intervals in active interval
sets increases with batch size, in the following, we study the behavior of
TEDDY with regard to tmax and batch size.

• How effective are TEDDY’s pruning properties? We carry out a detailed
study of the impact of each pruning technique on TEDDY’s performance.

• Does TEDDY scale? We want to investigate the scalability property of
TEDDY’s execution time.

• Is TEDDY robust when data are noisy? We analyze TEDDY’s ability to
discover temporal dependencies in noisy data.

• What about TEDDY’s temporal dependencies? Last but not least, we
examine the ability of TEDDY’s temporal dependencies to account for
the phenomena recorded in the data. To that end, we construct a graph
whose nodes are the data stream states and whose arcs are the extracted
temporal dependencies (i.e., TEDDY’s output). We demonstrate that
such a graph is a useful tool to describe a system made of heterogeneous
datasources. Beside experiments on real-world data to establish that the
discovered temporal dependencies make sense, we aim to highlight how
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temporal dependencies can be used to detect abnormal measurements or
sensor failures.

The experimental study we report aims at answering all the above questions.

4.3 Quantitative experiment results

In this section, we study the behavior of TEDDY with respect to various pa-
rameters: the frequency of events, the size of the batches (Batch size) and tmax.
In all the experiments, tmin is set to 0. Besides, we examine the impact of
the constraints that define valid and significant temporal dependencies (the χ2

assessment of the confidence measure and the non-dominated constraint) on the
search space size as well as on the execution time of TEDDY. To this end, the
four following configurations of algorithm 1 are studied:

1. WP (without pruning): lines 7 and 8 are removed and all possible tem-
poral dependencies are considered.

2. Chi2 (χ2-based pruning): line 8 is removed and only the constraint on
the confidence measure is pushed aside to reduce the search space.

3. Gradient (dominance-based pruning): line 7 is removed and only the
dominance constraint makes it possible to discard unpromising dependen-
cies.

4. TEDDY: both pruning constraints are fully exploited as presented in
algorithm 1.

4.3.1 Evaluation of the pruning efficiency

There is no other algorithm that computes temporal state dependencies using
the same constraints as in our proposal. Therefore, we first study the perfor-
mance of TEDDY in comparison with the baseline algorithm. This algorithm
considers all possible temporal dependencies and removes, in a post-treatment,
the non valid or non significant dependencies. For these experiments, we do not
take into account the execution time required by this post-processing step.

Figures 9 and 10 depict the behavior of TEDDY when Batch size and tmax
vary. In each figure, the running time and search space size ratios of WP to
TEDDY are evaluated on the synthetic datasets. Each value is averaged over
all the batches of the same size. In most cases, TEDDY is at least twice as fast
as WP. The ratio of the execution time increases with tmax since the number
of possible intervals is quadratic in tmax − tmin and TEDDY is able to prune
a large part of them early on. On the contrary, when Batch size increases, the
ratio tends to decrease since the number of active intervals #I of each state
tends to increase and TEDDY is not able to prune the search space as much.
Indeed, maxGain increases linearly with #I and the condition at line 8 of
algorithm 3 tends to be always true which implies that the time interval cannot
be pruned. Furthermore, from Figures 9 and 10, we can also notice that the
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Figure 9: Comparison of TEDDY and WP w.r.t. Batch size (tmin = 0, tmax =
10): execution time ratio (a), search space size ratio (b).
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Figure 10: Comparison of TEDDY and WP w.r.t. tmax (Batch size=900, tmin =
0): execution time ratio (a), search space size ratio (b).

denser the datasets, the lower the ratios are. Actually, the number of extracted
dependencies increases with the dataset density as well as the portion of the
search space considered by TEDDY, as shown in the following figures.
Figures 11 and 12 show the proportion of the search space explored by TEDDY.
Among the pruned candidates, we make a distinction between those removed
thanks to the chi2-based constraint and those discarded by the gradient-based
constraint. These quantities are evaluated with respect to Batch size (Figure 11)
and tmax (Figure 12). A first observation is that the number of candidates
avoided thanks to the two constraints is much higher than the number of de-
pendencies considered by TEDDY, except when the dataset is very dense and
tmax very small. The gradient constraint is even more efficient when the dataset
density increases or the values of Batch size and tmax grow. Indeed, while the
batch size increases, the number of candidates avoided with gradient-based con-
straint increases or remains stable whatever the dataset density. This pruning
criterion becomes even more effective when tmax increases. The larger the length
of a pruned interval, the greater the size of the pruned search space. Indeed,
if an interval [α, β] does not dominate one of its direct ancestors, it is pruned
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Figure 11: Impact of each constraint on search space size with regard to
Batch size: number of candidates pruned by Chi2 and Gradient, and number of
candidates considered by TEDDY.

by the gradient-based constraint as well as (β−α)×(β−α+1)
2 − 1 other candidates,

that is to say all the dependencies that are below [α, β] in the semi-lattice. Be-
side, chi2-based pruning tends to be less efficient when tmax and/or Batch size
increase. As explained above, this is due to maxGain that increases with the
time interval length and the number of active intervals of the stream state.

Figure 13 reports the execution time of TEDDY and the average number
of dependencies discovered per state pair and batch when Batch size varies.
Figure 14 also studies the performance TEDDY but according to the value of
tmax. In a manner consistent with what has been observed from Figures 11 and
12, TEDDY benefits from the two pruning techniques in obtaining very good
time performance. Notice that, for each dataset the execution time is always
much lower than the batch size (at least 200 times). Therefore the temporal state
dependencies computation is faster than the data acquisition process, which is
a prerequisite to data stream mining techniques. For dense datasets (SYNT08
and SYNT16), the number of extracted dependencies increases with Batch size
and tmax. For SYNT02 and SYNT04, the number of dependencies decreases
with Batch size: some values may become statistically insignificant on a large
batch of data, when the density of events is low. The number of dependencies
also decreases slightly with tmax. This is due to the gradient-based constraint:
a dependency satisfies this constraint if it dominates all its ancestors. Thus,
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Figure 12: Impact of each constraint on search space size with regard to tmax:
number of candidates pruned by Chi2 and Gradient, and number of candidates
considered by TEDDY .

as the number of ancestors increases with tmax, the constraint may become
unsatisfied, especially when the dataset density is small.

These first series of experiments are very conclusive and we can argue that
our approach scales up well with regard to tmax and Batch size parameters.

4.3.2 Robustness to noise

This empirical study also aims to investigate TEDDY’s robustness against noise.
We assume that synthetic datasets described in Table 3 are noiseless, hav-
ing been generated following a specific scenario in a testbed. We introduce
a uniform random noise in each dataset by adding x% of spurious events,
x ∈ {1, 3, 5, 10, 20, 30}. It consists in adding p “object detected” events and
q “no object detected” ones, where p is the proportion of object detected events
in the stream times x% and q is the proportion of “no object detected” events
in the stream times x%. Therefore, the probability of occurrence of each event
type is maintained throughout the process. Based on our previous assumption,
we suppose that the set of valid and significant dependencies of the original
dataset are those expected and constitute the relevant dependencies. TEDDY’s
robustness is thus evaluated by computing the recall and the precision of this set

of dependencies. To declare whether two temporal dependencies s1k
[α1,β1]−−−−→ s1`
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Figure 13: Runtime (left) and average number of discovered dependencies per
state pair and batch (right) with respect to Batch size (tmin = 0, tmax = 10).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30

R
u
n
ti
m

e
 (

s
)

TMAX

SYNT02
SYNT04
SYNT08
SYNT16

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20  25  30

N
u
m

b
e
r 

o
f 

d
e
p
e
n
d
e

n
c
ie

s

TMAX

SYNT02
SYNT04
SYNT08
SYNT16

Figure 14: Runtime (left) and number of discovered dependencies (right) with
respect to tmax (Batch size=900, tmin = 0).

and s2k
[α2,β2]−−−−→ s2` depict the same phenomenon, we consider the two following

cases:

• the exact matching: all the temporal dependency parameters are equal
(s1k = s2k, s

1
` = s2` , α

1 = α2, β1 = β2);

• the relaxed matching: the two temporal dependencies are between the
same data states (s1k = s2k, s

1
` = s2`).

Finally, we report the F1 score, that is a trade-off between precision and the
recall score which reaches its best value at 1 and worst score at 0:

F1 = 2 · precision · recall

precision + recall

Figure 15 shows the F1 score computed for the exact matching (left) and
the relaxed matching (right) for the different datasets. It demonstrates that
TEDDY is rather robust to noise as the harmonic mean of precision and recall
remains satisfactory even when the percentage of noise is high. Two things
are worth noticing. Firstly, exact matching gives worse results. In fact, the
shifting intervals are less well identified by TEDDY when the percentage of noise
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Figure 15: Robustness of TEDDY on synthetic dataset with respect to percent-
age of noise (Batch size=900; tmin = 0, tmax = 5).

increases. Secondly, the higher the number of events per minute, the less robust
against noise TEDDY becomes. If the proportion of “object detected” events
is small, then the added spurious events are too sparse to produce additional
temporal dependencies and the F1 score remains high.

4.4 Qualitative experiment results

Milan dataset

Figure 16 reports the running time of TEDDY with respect to the batch size
(a) and tmax (b). These results confirm the observations made in the previous
section. The execution times are negligible compared to the duration of the
batches.
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Figure 16: Runtime of TEDDY on Milan with respect to the size of the batches
(a) and tmax (b) (default values Batch size=24 hours, tmin = 0s and tmax =
10s).

Looking for temporal dependencies between smart home sensors, our aim is
to describe the daily behavior of the persons living in the Milan smart home, as
well as identifying unusual events. It is important to notice that, even if the data
owner has some partial knowledge of the dependencies that may exist between
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the smart environment sensors, the effective temporal dependencies depend on
what really happens within such a smart environment.
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Figure 17: Two dependency graphs from the Milan dataset: temporal depen-
dencies that occur the 26th October (left) and the 1st January (right).

The whole set of temporal dependencies discovered by TEDDY can be rep-
resented as a graph whose nodes are the data states and the arcs the temporal
dependencies. Figure 17 illustrates two different dependency graphs extracted
respectively from the batch related to October 26th and the batch of January 1st
with tmin = 5 and tmax = 10 seconds. The background of the figure represents
the plan of the apartment. Circles and color stains stand for motion sensors.
On the graph corresponding to October 26th, we can observe that the temporal
dependencies mainly involve sensors from the living room and the kitchen, as
well as the sensors from the kitchen and the master bedroom and bathroom.
The graph obtained from the batch related to January 1st is denser. There are
edges that involve entrance sensors with kitchen or living/dining room sensors,
indicating that the sensors detected many such movements, probably guests
who visited the apartment. In addition it should be noticed that the sensors of
the guest bedroom have been activated in temporal relationship with corridor
sensors. As during these two days different actions were performed, the depen-
dencies discovered are not the same. Therefore, temporal dependencies rely on
both the disposition of the sensors within the environment and on the usages
that are made within this environment. Even if the testbed does not change,
the temporal dependencies discovered are quite different. This experiment high-
lights the interest of our proposal. Indeed, background knowledge is not enough.
Temporal dependencies have to be discovered to accurately describe what really
happens.
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Foxstream dataset

TEDDY’s performances: Figure 18 reports the running time of TEDDY
with respect to respectively all the batches (a), the batch size (b) and tmax (c).
Figure 18 also displays the average number of dependencies found per couple
of states and batch in Foxstream dataset varying Batch size (b) and tmax (c).
These results confirm the observations made in the previous section. TEDDY’s
execution time increases according to tmax and batch size but remains negligible
compared to the real batch duration. Therefore, temporal dependency detection
can be carried out without risk of generation batch overflow. Furthermore, it
is so fast that there is still time for more sophisticated analysis in addition to
temporal dependencies.
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Figure 18: Runtime of TEDDY on Foxstream with respect to the size of the
batches (a) and tmax (b) (default values Batch size=2 hours, tmin = 0s and
tmax = 5s).

TEDDY’s ability to describe temporal phenomenon: To investigate
whether the temporal dependencies are well suited to describing the weekly
activity around the monitored building, we compare the temporal dependencies
found in 4-hour batches. To this end, we perform a hierarchical clustering
to automatically group batches having a similar dependency set. The distance
between two batches is computed as (1− J(A,B)) where J(A,B) is the Jaccard
similarity coefficient [22] between the temporal dependency sets A and B. For
the computing distance between clusters, we used the shortest distance.

The resulting dendogram is given in Figure 19. For each day of the week,
there are 6 batches numbered from 1 to 6 that correspond to the following
time slots: (2am-6am), (6am-10am), (10am-2pm), (2pm-6pm), (6pm,10pm) and
(10pm-2am). Notice that batches with no dependency found have been removed.
In this dendrogram, five clusters are clearly identified. Two of them (C1 and
C4) contain batches related to office hours on working days, while C2 and C5
are specific to weekend day batches. The last cluster C3 contains two batches
of late hours (10pm-2am) of Thursday and Friday. As the batches are grouped
within a cluster if they contain similar dependencies, we can conclude that some
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Figure 19: Hierarchical clustering of the batches.

of the extracted dependencies are specific to the office hour slots of working days,
while others are specific to week-end days or nights. This hierarchical clustering
demonstrates TEDDY’s ability to identify temporal phenomena without prior
knowledge.

The temporal dependencies extracted within a batch can be seen as the
arcs of a directed graph whose nodes are the data states. Such a dependency
graph describes the dynamic of events between data states during the batch
period. Thus, analyzing the graphs associated with the batches enables us to
understand the evolution of this dynamic through time. For example, we can
consider the evolution of some macroscopic properties [37], such as the average
degree as shown on Figure 20. Dependency graphs are dense during office hours
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Figure 20: Evolution of the average degree of dependency graphs (Batch size=1
hour, tmin = 0s and tmax = 5s).

on working days, especially in the evening. On weekend days and at night,
the dependency graphs are less dense. This is mainly due to the fact that the
camera capture events in a working area. Thus, there is less activity during
weekend days and at night.
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TEDDY’s ability to detect a spatial phenomenon: Dependency graphs
may contain up to ten thousand temporal dependencies. This high number is
mainly due to the important number of data sources mined. Actually, a moving
object generates events in many areas, leading to as many reliable temporal
dependencies. Figure 21 shows the temporal dependencies between the data

Figure 21: Temporal dependencies between data sources corresponding to sub-
areas of two cameras. Images on top represent the subareas involved in de-
pendencies; Bottom images display the temporal dependencies between them
(tmax = 10s, Batch size=3600s).

sources corresponding to subareas of two overlapping cameras. These depen-
dencies have been extracted from the batch of events that occur on Tuesday
between 10am and 2pm. The corresponding dependency graph is represented
in Figure 22. This graph contains two connected components. If we study
the evolution of this graph through time, we observe that it changes very lit-
tle during the office hours of working days, whereas at night, the dependencies
discovered are those from the upper connected component of the graph in Fig-
ure 22. Therefore, our approach makes it possible to automatically discover two
distinct behaviours: one component captures the activity around the building
(cars and persons) and the other depicts the activity (car traffic, pedestrians)
within the street located in the neighborhood of the building, but not in the
private parking lot.
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Figure 22: Dependency graph corresponding to data sources of Figure 21.
The two connected components corresponds to two different behaviors: mo-
tion around the building (bottom/right component) and the background street
activity (up/left component).

Anomaly detection: The video surveillance cameras used in this dataset
are equipped with infrared LEDs, used to illuminate the scene in the infrared
spectrum. This technology produces heat which attracts all sorts of insects,
especially spiders. Spider’s webs partially obstruct the view of the camera and
blur the captured images. This phenomenon is even more important when it
rains, water droplets hanging from the web causing serious obstruction of the
camera view. Our goal is to automatically detect cameras that are subject to
interference by insects. To this end, we apply a spider’s web mask on the camera
images captured during Wednesday and study the impact of the spider’s web on
the dependency graphs as follows. For each one-hour batch of Wednesday, we
build the dependency graph from TEDDY’s output and select the dependencies
that involve a subarea of the camera. This so-called camera egocentric depen-
dency graph is compared to the similar graph built from the batch of events
produced 24 hours before, that is on Tuesday. The Jaccard index is used to
evaluate the similarity of the set of arcs of these two graphs. Comparing two
batches associated with the same time slots of two working days makes sense
as the batches of these two days are grouped within the same cluster C1 of the
hierarchical clustering of Figure 19, indicating that the activity recorded during
these two days is analogous. Furthermore, it enables us to overcome the fluctua-
tions related to night/day phenomena. We assume that if the similarity measure
is smaller than a given threshold, the corresponding camera is suspected of un-
dergoing an unusual phenomenon, that may be due to the presence of insects
on the camera lens.

Figure 24 (right) reports the Jaccard index values between the camera ego-
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Figure 23: Temporal dependencies between two cameras for a batch correspond-
ing to a period of no activity around the building (night-time). The correspond-
ing dependency graph is the up/left component of the graph from Figure 22.
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Figure 24: An image with a spider’s web (left). Jaccard index evolution over
Tuesday and Wednesday (right) (Batch size=1 hour, tmin = 0s and tmax = 5s).

centric dependency graphs obtained at time T and T − 24. The spider mask
is introduced at T = 21. We can observe a drop in the Jaccard index that
coincides with the appearance of the spider’s web. Afterwards, the value of
the Jaccard index remains smaller than 0.6. Therefore, a threshold of 0.6 on
the Jaccard index can be used to detect abnormal behaviors in the monitoring
system. This experiment demonstrates that it is possible to capture unusual
phenomena / anomalies with TEDDY’s output. It is a proof of concept and
some more sophisticated treatments can be defined.

5 Related work

This paper makes a significant contribution to data stream management. The
novelty of our approach is represented by the knowledge nuggets discovered over
multiple heterogeneous data streams. Due to the type of processed data and
the confidence measure used, our proposal might be related to the contribu-
tions from time series area. In this topic of research, algorithms are devised
for measuring the similarity between two time series [43]. Most of them extend
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the Dynamic Time Warping (DTW) algorithm [41, 7, 27] that makes it possi-
ble to find an optimal time alignment between two time series. However, the
time-series are warped non-linearly in the time dimension so as to determine a
measure of their similarity independent of certain non-linear time variations. In
our work, we aim to consider linear transformation of the state stream in order
to find out temporal state dependencies and their most specific time-delays.

Our work is related to various research areas: (i) temporal pattern mining
on event intervals, (ii) trajectory and workflow mining, and (iii) mining smart
environments.

Taking temporal information into account, most of the existing approaches
aim at discovering frequent patterns among a set of sequences (i.e., temporal
information is used to order the events within the sequences). Such approaches
include mining of sequential patterns [3] or episodes [31] on sequences of “point
events” (i.e., events with no duration), with applications in data stream process-
ing [10, 32, 9]. In addition, some approaches show a particular interest in the
time transition between events, either pushing aside some specific constraints
like the well-known - mingap, maxgap and window-size - time constraints or try-
ing to characterize the lag intervals between two event types [19, 42] or between
items within a sequence [17]. Furthermore, based on the fact that sequential
pattern mining on point event sequences is inadequate in discovering more so-
phisticated relations than the “before” / “after” relation, some works consider
“interval events”, i.e., events that have a duration. This introduces more com-
plex relations between events extending Allen’s algebra [26, 21, 8, 35, 45, 44].
Some approaches define events based on the interval model, but only the “be-
fore” / “after” temporal relation is supported [13, 4, 14]. We emphasize the
fact that these approaches, except [30, 28, 29], are not dedicated to data stream
mining tasks. Moreover, they aim at discovering regularities in a collection of
sequences, whereas we wish to highlight some temporized dependencies between
data sources (that are sequence producers) based on their states. Furthermore,
incorporating statistical metric like χ2 test within the pattern mining process is
a well-studied issue [33, 23]. But these measures are often considered in addition
to others such as confidence and support measures. In this paper, this statistical
assessment is also used to automatically set some thresholds. Indeed, threshold
setting is a difficult issue for end-user who are often not data miners and not
familiar with these techniques. Thus, χ2 test used in our proposal enables us
to obtain more valuable results while limiting the number of parameters the
end-user has to set. Finally, we are convinced that the two tasks are different
and complementary. Indeed, two data sources may support several frequent
sequences without having a dependency relation between them and vice versa.

Temporally annotated sequences [17] have been successfully applied to work-
flow mining [6] and trajectory pattern mining [18]. Once again, our approach
differs in the nuggets that are discovered. For process or trajectory mining, a
collection of logs is examined to highlight the regularities. In our approach, we
search for dependencies between data sources.

From an application point of view, our work is close to the research con-
ducted in the smart environment community, where one of the main challenges
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is activity discovery. In [39], Rashidi and Cook proposed mining sequential pat-
terns over time from streaming non-transactional data using tilted-time win-
dows [20]. They extended their previous work [40], thereby introducing the
first stream mining method for discovering human activity patterns in sensor
data. Based on these proposals, association rule mining was applied to discover
temporal relations of daily activities in [34]. Nevertheless, the motivations are
different and these approaches are supervised while ours is unsupervised.

6 Conclusion

Designing new methods to discover relations over multiple heterogeneous data
streams is a timely challenge. To the best of our knowledge, recently proposed
methods focus on the discovery of regularities among events within streams. No
proposal that we are aware of takes on the challenge of discovering particular re-
lations between data sources that produce multiple heterogeneous data streams.
Our work has investigated a new direction in data stream mining. We aimed at
identifying temporal dependencies between data streams. We represented event
streams by state streams that are induced by the streams’ events themselves.
First, we defined the novel problem of mining temporal state dependencies over
multiple heterogeneous data streams. Then, we designed and implemented a
complete, though scalable, algorithm that efficiently computes such temporal
dependencies. Our approach is robust to the temporal variability of events and
characterizes the time intervals during which the events are dependent. It links
two types of events if the occurrence of one is often followed by the appearance
of the other in a certain time interval. The proposed interval-based approach
determines the most appropriate time intervals of a temporal dependency whose
validity is assessed by a χ2 test. As several intervals may redundantly describe
the same dependency, the approach retrieves only the few most specific intervals
with respect to a dominance relationship over temporal dependencies, and thus
avoids the classical problem of pattern flooding in data mining. The TEDDY
algorithm takes advantage of various properties to prune the search space while
certifying the discovery of all valid and significant temporal dependencies. We
conducted an extensive experimental study of both synthetic and real-world
data streams from smart environments equipped with various kinds of sensors
(cameras, motion sensors, etc.). From these experiments, we conclude that the
pruning techniques are very efficient and speed up TEDDY running time by
a factor that varies between 2 and 60. A qualitative analysis of the output
shows that TEDDY produces a small set of non-redundant dependencies that
accurately describe the phenomenon captured by the data.

There are several ways of extending the main results of this paper. First
of all, we plan to investigate the dynamics of dependency graphs through time.
The set of temporal dependencies can be viewed as an attributed graph whose
nodes describe streams’ states. Mining such dynamic attributed graphs would
enable us to discover periodic phenomenon and other evolving behaviors that
cannot be easily discovered without such a graph abstraction. We also plan
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to make temporal dependencies more actionable from a database perspective.
We are convinced that such dependencies can be integrated into continuous
query engines. Indeed, some temporal dependencies could be the basis of a
semantic indexation of data sources to better support human monitoring or
object tracking in a set of cameras.
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