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ABSTRACT
We propose a learning mechanism that allows an artificial agent 
to construct and exploit a representation of its surrounding space 
with  minimal  preconceptions  about  its  environment.  This 
representation  is  based  on  a  data  structure  that  encodes 
possibilities  of  behaviors  afforded  by  the  current  context.  The 
behaviors are modeled in the form of sequences of interactions.  
Over time, the agent learns to associate sequences of interactions 
with  the  presence  of  certain  elements  of  the  environment  in 
certain locations in the agent's surrounding space. The agent uses 
this  emergent  relation  between  objects  and  possibilities  of 
interactions  to  construct  and  maintain  a  representation  of  the 
surrounding  space  based  on  sequences  of  interactions. 
Experiments show that efficiently learning object and interaction 
associations  requires  implementing  a  form  of  curiosity  as  an 
additional motivational principle of the agent. These mechanisms 
open the way to implementing agents that learn to generate and 
exploit an awareness of their surrounding space with a minimal 
preconception of their environment. 

Categories and Subject Descriptors
I.2.6  [Artificial  Intelligence]:  Learning.  I.2.11  [Artificial 
Intelligence]:  Distributed  Artificial  Intelligence  –  Intelligent  
agents. 

General Terms
Algorithms, Experimentation.

Keywords
Autonomous  learning;  Spatial  awareness;  Body  schema; 
Peripersonal space; Affordances.

1. INTRODUCTION
In this paper,  we address  the problem of  the construction of a 
short-range  representation  of  the  surrounding  space  by  an 
artificial agent that initially ignores the fact that its environment  
has a spatial  structure. In previous studies, we defined a design 
principle for artificial agents in which perception and action are 
kept  embedded within  data  structures  called interaction,  rather 
than  being  separated,  as  it  is  the  case  in  traditional  modeling 
approaches.  This  design  principle  is  intended  to  account  for 
cognitive  theories  that  suggest  that  perception  and  action  are 
inseparable  (i.e.  O'Regan [14],  Piaget  [16]).  Specifically, 
interactions  are  used  to  model  Piaget's  notion  of  sensorimotor  
scheme. We formalized the learning problem associated with this 
design principle as a special case of Partially Observable Decision 
Process  (POMDP)  [1] called  Interactional  Motivation  Decision 
Process (IMDP) [7]. In an IMDP, the agent's learning is driven by 

predefined  values  associated  with interactions  rather  than  by  a 
reward defined as a function of the state of the system. We called 
this  new  motivational  principle  interaction  motivation.  An 
interactionally  motivated  agent  seeks to  enact  interactions  with 
predefined  positive  values  and  to  avoid  interactions  with 
predefined  negative  values.  Because  an  IMDP agent  can  only 
obtain  information  about  its  environment  through  the  active 
enaction  of  interactions,  it  implements  a  form  of  active 
perception.

Our implementations1 have shown that an agent equipped with an 
IMDP algorithm was able to autonomously capture and exploit 
hierarchical sequential  regularities afforded by the environment. 
But these works have also shown that these agents cannot learn 
spatial regularities. This means they are unable to notice that two 
different sequences can lead to the same spatial situation. They 
also  do  not  recognize  the  persistence  of  objects,  stopping  to 
pursue them when they temporarily disappear from their sensory 
system [5]. The problem of the spatial  awareness relies  on the 
construction  of  a  body  schema,  which  consists  of  learning  a 
model of the agent's own body and of the surrounding space that 
the agent can reach through interactions. Our approach relates to 
existing  studies  on  body  schema  learning  and  exploitation 
[10,12], but differs by the agent's  representation of objects and 
their locations in space that rests only on interactions between the 
agent and its environment.

More  broadly,  these  studies  investigate  the  hypothesis  that  the 
spatial structure does not need to be presupposed by a cognitive 
system. This hypothesis was formulated by theoreticians such as 
Poincaré [17].  Our mechanism is inspired by two observations 
made  on  monkeys.  The  first  observation  shows  that  certain 
neurons  of  the  premotor  cortex  react  to  the  global  shape  of 
presented objects, both if the monkey holds them or just looks at 
them [13]. This suggests that objects are recognized according to 
the grip movement needed to hold them. The second observation 
shows  that  neurons  of  the  precentral  cortex  are  associated  to 
complex postures involving arms, torso, head and face [9]. These 
neurons are organized according to the final position of the hand 
in  space.  Such  a  mapping  suggests  that  the  prefrontal  cortex 
encodes  the  surrounding  space  based  on  movements.  This 
encoding,  however,  only  covers  the  space  that  can  be  reached 
through direct movements, called peripersonal space. Considering 
the  fact  that  a  position  is  equivalent  to  the  integration  of  a 
movement, we propose to extend this representation to the nearby 
surrounding space that a mobile agent can reach by enacting short 
movements.

Section 2 summarizes the IMDP formalism. Section 3 presents the 
new  space  representation  mechanism.  Section  4  describes  the 

1 http://e-ernest.blogspot.fr/2012/03/small-loop-challenge.html



utilization  of  the  mechanism  by  an  artificial  agent. The 
implementation  on  an  artificial  agent  and  the  experiments  we 
provided to test our mechanism are describe in section 5. Finally, 
the paper discusses our results and draws up recommendations for 
future works.

2. THE IMDP FORMALISM
Formally, an IMDP is defined as a tuple (, , q, , r) where  is 
the  finite  set  of  states   of  the  environment,   the  set  of 
interactions I  [7] offered by the coupling between the agent and 
the environment (an interaction represents an atomic sensorimotor 
scheme), q the distribution of probability of transition from a state 
t to a state t+1 after attempting to enact an interaction I at step t, 
 the distribution of probability to result in an enacted interaction 
Ienacted after an attempt to enact an intended interaction Iintended , and 
r the satisfaction value function.  This function differs from the 
reward function of standard reinforcement learning problems in 
that it is not a function of an environmental state  ,  but of the 
enacted  interaction. Unlike  standard  reinforcement  learning 
approaches, the goal of an IMDP is not to maximize the reward 
value, but to learn a policy  that generates intelligent behaviors 
based  on  the  intrinsic  motivation  provided  by  enacting 
interactions. Figure 1 illustrates this formalism.

There  are  three  major  differences  between  an  IMDP  and  a 
POMDP: (a) the cycle does not start from the environment but 
from the agent,  making the agent’s input a consequence of the 
agent’s output rather than a premise. (b) The agent’s input and 
output  belong to the same set   rather  than two different  sets 
(observations and actions).  (c) There is no reward defined as a 
function of the environment, making the agent self-motivated. 

The philosophy of an IMDP is that  the agent tries  to enact an 
intended interaction,  and is informed by the environment about 
the interaction that was enacted. If the intended interaction was 
effectively enacted, the enaction of this interaction is a  success, 
and a failure otherwise. We call the Alternative Group k the set 
of interactions that can be enacted after an attempt to enact the 
interaction Ik.

3. THE SPATIO-SEQUENTIAL 
SYSTEM
To overcome the limitations of sequential systems, we propose to 
define an additional mechanism that allows an agent to organize 
its perception and sequential memory. Moreover, this mechanism 
must  only  be  based  on  interactions  to  satisfy  the  sensorimotor 
hypothesis formalized in an IMDP.

We  developed  a  mechanism,  called  Spatio-Sequential  System 
(SSS), that helps an agent to characterize its current situation by 
constructing a spatial representation of its surrounding space. This 
representation is based on the fact that the result of the enaction of 
an  interaction  depends  on  a  limited  set  of  elements  of  the 
surrounding  environment.  These  elements,  called  objects,  and 
their locations can thus be characterized by the set of interactions 
that  can  be  enacted  in  presence  of  these  objects.  Overall,  by 
representing objects  by the possibilities  of interaction that they 
afford,  we  investigate  theories  of  cognition  that  suggest  that 
knowledge of the world arises from interaction (e.g. Gibson [8], 
and Hume [11]).

The agent gradually learns sequences of interactions and learns to 
apply them in appropriate contexts. The agent learns to predict the 
result  of enacting a sequence of interaction  and simultaneously 
represents  the  context  in  the  form  of  the  list  of  interactions 
predicted as success or failure. The SSS then keeps information 
by updating this list  after each enacted interaction.  This update 
process allows the memory to store sequences of interactions that 
could not  be predicted,  for  example because the corresponding 
object is outside of the sensory system. 

We  call  decision  process the  mechanism that  selects  the  next 
sequence  of  interaction to  enact.  This  mechanism  uses  the 
information stored by the SSS to determine the set of interactions 
that  can  be  enacted  in  the  current  perceived  environmental 
context.

This section formalizes the concepts used to implement the SSS: 
composite  interactions,  condition  patterns,  spatio-sequential 
memory  and  epistemic  enactions.  We  provide  details  of  our 
implementation when it can help clarify the description of these 
principles.

3.1 Composite Interactions
We define a composite interaction (C-interaction) S as a sequence 
of interactions of size k ∈ [1; n] with n the maximum length of 
C-interactions. The satisfaction value of a C-interaction is the sum 
of the satisfaction values of all of its k interactions. We call  the 
set of all  C-interactions.  Enacting a C-interaction S of length k 
means sequentially enacting all of its k interactions. Note again 
that the intended C-interation Sintended may differ from the enacted 
C-interaction  Senacted.We call  decision cycle  d the set  of k steps 
during which Senacted is enacted. We call final interaction If the last 
interaction  Ik,  and  path  Sp the  possibly  empty  subsequence 
I1,..., Ik-1 (1).

S = 〈 I f 〉 if k = 1
S=〈S p , I f 〉 / S p ∈Ξ else

(1)

We expect the final interaction If of a C-interaction to identify the 
object  needed  to  enact  this  interaction.  We expect  the  path  to 
identify the position of the object around the agent as it indicates 
the  sequence  of  interactions  needed  to  reach  the  object.  A 
C-interaction thus characterizes an object in a certain localization 
in the surrounding space of the agent.

We define  the  function  ℕ → {-1;0;1}  that  characterizes  the 
result of the decision cycle d:

ϵ(d )={
1 if S intended

d
=S enacted

d
(success )

−1 if (S p intended

d
=S penacted

d
)∧(S intended

d
≠S enacted

d
)( fail)

0 else (abort).

(2)

 



The enaction of a C-interaction at a decision cycle d is a success  
if (d)=1, and a failure if (d)=-1. If (d)=0 (an interaction of the 
path  has  failed)  then  the  C-interaction  is  said  to  be  aborted. 
Indeed, objects are identified by the final interaction. A failure of 
the path only indicates that the object was unreachable.

3.2 Condition Patterns
Our learning mechanism is based on the fact that the result of the 
enaction of a C-interaction depends on the presence or absence of  
certain  elements  in  the  surrounding  space.  We  implemented  a 
mechanism that tries to learn, for each C-interaction S, a function 
cs(E) to predict the result of enacting S in a context of interactions  
E. We define the  interactional context E as a vector  [e1,…,em], 
with  m=Card(),  ei ∈ [-1,1]  for  all  i  ∈  [1,m],  computed  as 
follows:

I t interaction enacted at step t
I i i th element of Φ , ∀ i∈⟦1; m⟧.

A i Alternative group of I i

e i
t
={

1 if I i= I t
(confirmed interaction)

−1 if (I i≠ I t
)∧( I t

∈A i) ( failed interaction)
0 else (no information) .

(3)

Thus, at each step t, ei indicates the last result of the enaction of 
the ith interaction in ; ei = 1 means the success of the enaction, 
ei = -1 means a failure. A value of 0 indicates that the interaction 
was  not  enacted.  We  expect  cs to  indicate  the  prediction  of 
enacting S in context E,  with an absolute certitude of success if 
cS(E)=1  and  of  failure  if  cS(E)=-1.  We  propose  to  learn  the 
functions  cS by  defining  a  vector  that  gives  the  minimum 
conditions on the interactional context E to define the result of a 
C-interaction.  This  vector,  called  Condition  Pattern  CS,  must 
match the following properties:

∀ d∈ℕ , E d . CS = 1 ⇒ ϵ(d) = 1

Ed . C S =−1 ⇒ ϵ(d) =−1

ϵ(d ) =1 ⇒ E d . CS ≥0

ϵ(d ) =−1 ⇒ E d . CS ≤0

(4)

The condition pattern CS  defines the minimum pattern over  the 
interactional  context  E  that  allows  the  C-interaction  S  to  be 
successfully enacted. Note that a condition pattern CS can only be 
defined  if  the  C-interaction  S  depends  on  a  unique  “object” 
perceived through interactions. The certitude function can then be 
defined as follows:

cS(E ) = E . CS . (5)

In our implementation, we generate the certitude functions using 
single layered neural networks, with the context vector E as input 
and  the  certitude  value  as  output.  Indeed,  these  structures  can 
provide a robust pattern learning and recognition [2] over an input 
vector. The condition patterns are defined by the set of m weights 
of the corresponding network. The pattern CS is reinforced each 
time the interaction S is completed (both as a success or a failure)  
using the delta rule (or Least Mean Square method):

Δ = ϵ(d−1) − cS(E d−1
)

C S [i ]
d
=CS [ i ]

d−1
+α×e i

d−1
×Δ

∀ i∈⟦1 ;m⟧ , α learning rate ,α∈[0 ;1 ].

(6)

These condition patterns define the “objects” in the point of view 
of  the  agent.  The  definition  of  objects  is  thus  based  on 
interactions and does not imply any internal modelization.

3.3 The Spatio-Sequential Memory
We propose an update mechanism to store recognized “objects” 
and  track  them  while  the  agent  is  acting.  We  divide  a 
C-interaction into a beginning interaction Ib and a final composite 
interaction Sf :

S = 〈 I f 〉 if k = 1
S=〈 I b , S f 〉 / S f ∈ Ξ else.

(7)

The  update  mechanism  is  based  on  a  property  of  the 
C-interactions: S and Sf are related to a same object, but they refer 
to different locations separated by a distance represented by the 
beginning interaction Ib. Thus, if a C-interaction S is predicted as 
a success, and then the agent enacts Ib, S can be replaced by the 
final  C-interaction  Sf.  The  Spatio-Sequential  Memory (SSM) is 
then  equipped  with  two  lists,  T,  containing  the  interactions 
predicted  as  success,  and  F,  containing  the  list  of  interaction 
predicted  as  failure.  The update  principle  is  applied  after  each 
interaction  enacted by  the agent.  The global  SSM algorithm is 
described  in  table  1.  We note   the  threshold  that  defines  the 
reliability of the memory with ∈ [0;1].

Table 1. Algorithm of the spatio-sequential memory

I is the last interaction enacted by the agent

   for each C-interaction S in T
         remove S from T
         if Ib =  I  then add Sf to T
   end for

   for each C-interaction S in F
         remove S from F
         if Ib =  I  then add Sf to F
   end for

   for each C-interaction S ∈  
         if cS(E) >  then add S to T
         if cS(E) <- then add S to F
   end for

An  updated  C-interaction  can  provide,  through  its  condition 
pattern, information about an element of the interactional context 
for which the corresponding interaction was not used in the last 
step (e.g. its value is 0). The fact that this C-interaction is in list T 
(or  F)  indicates  that  the  interactional  condition  given  by  the 
prediction pattern  is present (or absent). The agent can thus use 
these updated interactions to generate a completed interactional 
context E' = [e'1,…, e'm] as follows:

∀ i / S i∈T , ∀ j / S j∈F ,

E '=E+∑
i

CS i
−∑

j

CS j
.

e ' i bounded by [−1;1 ] , ∀ i∈[1 ; m ]

(8)

If the interactions used to construct E'  are reliable  enough, this 
context  can  give  the  agent  an  improved  perception  of  its 
environment. We can then add a second SSM, composed  of the 
lists T' and F' and based on E'. This process can be repeated to 



complete the interactional context, but this is done at the expense 
of the reliability of the information.

We increase  the  reliability  of  the  memory  by  implementing  a 
mechanism that detects errors in condition patterns and eliminates 
the corresponding C-interactions from the memory. These errors 
can  be  detected  by  comparing  the  condition  pattern  of  a 
C-interaction  with  the  condition  pattern  of  its  path:  enacting  a 
C-interaction means enacting first  its  path,  which means that  a 
certain environmental context is favorable to the enaction of both 
the C-interaction and its path. Thus, if the condition patterns of a 
C-interaction  and  of  its  path  correspond  to  different  and 
incompatible  environmental  conditions,  at  least  one  of  these 
patterns contains errors. We define a C-interaction S as coherent 
if it matches the following condition:

S=〈 I 1, ... , I k 〉 , S i=〈 I 1, ... , I i 〉 , i∈[1; k ]

coherent (S ) ⇔ ∃E∈[−1 ;1 ]m/∀ i∈[1 ; k ] , cS i
(E )>0

(9)

We  thus  define  a  memory  that  can  define  elements  of  the 
environment  as objects  and localize  them in a  non-topographic 
representation.  This memory can also track these objects  while 
the agent is moving, which results in a form of object persistence 
learning.

3.4 Epistemic Enaction System
As introduced in Section 1, an IMDP agent actively perceives its 
environment through interactions rather than passively receiving 
perceptual data. This active perception principle implies that the 
agent  may  sometimes  enact  interactions  for  the  purpose  of 
acquiring information about its current situation rather than for 
the purpose of immediately satisfying its interactional motivation. 
We  call  epistemic  enaction  the  enaction of  a  C-interaction 
intended for a perception purpose, as opposed to the enaction of a 
C-interaction  intended for the satisfaction value it  can provide. 
The  term  epistemic refers  to  Gatti's  Sensorial  Epistemic  
Actions [4], that is defined as an action “in which the cognitive  
agent structures her own sensorial action in order to receive from  
the  environment  a  feedback  structured  sensation  that  carries  
information”. 

An  epistemic  enaction  may  be  needed  if  the  intended 
C-interaction  cannot  be  predicted  in  the  current  environmental 
context E, i.e. the absolute value of cs(E') is lower than a certain 
threshold.   We  implemented  a  mechanism,  called  Epistemic 
Enaction System (EES), to propose such an epistemic enaction. 
For an intended C-interaction Sintended, the EES proposes to enact a 
C-interaction Sepistemic that can provide an interactional context in 
which the prediction of success or failure of Sintended can be defined 
with a high  degree of  certitude. The EES learns the information 
provided  by  each  C-interaction.  We  integrate  the  provided 
information  of  a  C-interaction  S  by  measuring  the  average 
improved context E' observed when it is successfully enacted. For 
each C-interaction S, we thus define a vector PS = [pS_1,...,pS_m], 
called  the prediction  pattern PS  ,  that  characterizes the average 
environmental  context  observed  when  this  C-interaction  is 
enacted, and thus, the provided information. 

In  our  implementation,  we  define  a  prediction  pattern  PS as  a 
weighted average of every context vector E' observed when the 
C-interaction  S  is  successfully  enacted,  with  high  weights  for 
recent  contexts  (10).  We  thus  reduce  the  influence  of  old 
observations as they can be out of date due to condition patterns 
learning.

p Si

d+1
= {

(β × pSi

d
+ e' i

d
)

(β+1)
if ei '

d
≠0

pS i

d+1 else

∀ i∈⟦1 ;m⟧ , β discount factor , β>0.

(10)

The  mechanism then  uses  the  prediction  patterns  to  select  the 
most  suitable  interaction  Sepistemic to  provide  the  needed 
information to define the certitude of the intended C-interaction 
Sintended.  The  aim  of  an  epistemic  enaction  is  to  provide  an 
interactional  context  in  which an intended C-interaction can be 
predicted (as a success or a failure) with a high certitude. As the 
prediction pattern gives the average interactional context observed 
when  the  epistemic  interaction  is  enacted,  we  can  define  the 
suitability  of  an  epistemic  interaction  as  the  absolute  value  of 
cSintended(PSepistemic). We called the selected C-interaction of the EES 
the epistemic interaction.

4. UTILIZATION OF THE SPATIO-
SEQUENTIAL SYSTEM
The  SSS  is  an  extension  of  the  sequential  decision  process 
described in section I. However, the SSS can be self-sufficient if 
the  range  of  the  memory  can  cover  the  space  covered  by  the 
sensory system of the agent. We tested two different approaches 
in  exploiting  the  SSS on  such  an  agent.  The  first  approach  is 
based on the satisfaction values of interactions. The agent selects 
an  interaction  according  to  its  satisfaction  value,  based on  the 
hypothesis that the condition patterns, and thus the predictions of 
success,  are  correct.  The  condition  patterns  are  only  corrected 
when errors are observed. The second approach adds an additional 
intrinsic  motivational  mechanism  that  implements  a  form  of 
curiosity that drives the agent to test and validate its hypothesis.

4.1 Greedy Agent
We qualify an agent that uses the first approach as  greedy if its 
behavior  is  guided  only by  the  satisfaction  of  its  interactional 
motivation.  This  approach  consists  of  listing every  interaction 
considered  as  enactable  according  to  the  SSS.  We  define  an 
interaction as enactable in a decision cycle d if the interaction is 
predicted as a success and if the path is recognized as valid (11) 
according to the SSS. The SSS thus act like a filter that simplifies 
the selection process by eliminating irrelevant elements.

S=〈 I 1,. .. , I k 〉 , S p=〈 I 1,. .. , I k−1〉

S i=〈 I 1,. .. , I i 〉 , i∈[1 ; k ]

Valid (S p , d )=∀ i∈[1 ; k−1 ] , S i∈T 'd
(11)

Note that, due to the initial lack of reliability, the threshold that 
characterizes a prediction of success must be initially negative to 
allow an untested C-interaction S to be selected. This value can 
then be increased with the reliability of the interactions.

The  agent's  decision  process  then  uses  the  list  of  enactable 
interactions to select the next C-interaction. This policy consists 
of selecting the C-interaction with the highest satisfaction value. 
Note that  an interaction  that  does not  imply  movement  can be 
repeated  indefinitely.  We  thus  implemented  a  mechanism that 
compares condition and prediction patterns  to  detect  and avoid 
such C-interactions. If the prediction of the selected C-interaction 
cannot  be defined in  the current  interactional  context,  the  EES 
selects  an  epistemic  interaction  that  can  provide  the missing 
information. Once the epistemic interaction is enacted, and if the 
selected  C-interaction  is  still  enactable,  the  system  enacts  it. 
Otherwise, the selection process is repeated. 



4.2 Curious Agent
The second approach is similar to the first approach, but adds an 
additional mechanism that drives the agent to test the validity of 
its  condition  patterns.  This  mechanism  implements  a  form  of 
curiosity because the agent selects interactions for the purpose of 
testing them in unknown situations.

This  second  approach  thus  consists  in  learning  and  testing 
C-interactions while they are considered as reliable. We define an 
interaction  as  reliable if  its  number  of  correct  consecutive 
predictions  of  success,  and  of  failure,  are  greater  than  a 
predefined threshold. Note that the higher the threshold value, the 
higher the certitude of having a correct prediction pattern. But on 
the other  hand,  the  number  of  tests needed  increases.  This 
selection mechanism selects a non-reliable sequence with a valid 
path  in  order  to  maximize  the  learning  rate,  according  to  the 
actual information stored in the SSS and the number of correct 
consecutive predictions. The selection process does not take the 
satisfaction  value  of  interaction  into consideration.  This 
mechanism is thus related to the problem of active learning [15].

The  selection  process  is  based  on  the  number  of  correct 
consecutive  number  of  successes and  of  failures.  The 
C-interactions are tested alternatively in a situation of success and 
of  failure  prediction.  This  alternation  prevents  the  learning 
mechanism from repeating consecutively a test on a C-interaction 
in the same environmental context. Note that in certain cases, the 
final interaction If is always possible after enacting the path Sp. 
For these C-interactions, the number of failures will remain zero. 
We then define an interaction  as  always true if  the  number of 
consecutive  predictions of  success  is  greater  than a  predefined 
threshold and if the C-interaction has never failed. An always true 
C-interaction is considered as reliable.

This mechanism returns at most one candidate C-interaction. If no 
C-interaction can be learned in the current environmental context, 
the mechanism selects a C-interaction according to the selection 
process  of  the  greedy  approach.  Thus,  while  the  number  of 
reliable  C-interactions  increases,  the  curiosity  approach  is 
progressively  replaced  by  the  greedy  approach.  Note  that  the 
agent  does  not  become  definitively  greedy,  as  the  agent  can 
continue  to  use  the  curiosity  approach  if  new  sequences  of 
interactions are observed. 

5. IMPLEMENTATION IN AN 
ARTIFICIAL AGENT
This mechanism was tested  on a simple agent evolving in a 2-
dimensions  discrete  and  static  environment.  This  environment 
was implemented from Cohen's Vacuum Environment [3]. Both 
the environment  and the agent  were implemented in  Java.  The 
agent has twelve possible interactions, listed in table 2.

Table 2. List of interactions. The satisfaction value of each 
interaction is given in parentheses.

We reduced the complexity of the problem by limiting the context 
vector  E  to  the  six  touch interactions.  This  simplification  is 
reasonable  as  these  interactions  are  the  only  ones  that  can  be 
considered as purely perceptive.  The agent can thus detect  two 
types  of  objects,  Empty  Spaces  and  Walls,  in  three  distinct 
locations,  Front,  Left  and Right.  Note  that  the agent  has  no  a 
priori preconceptions about the number of objects and locations.

We implemented the SSS as shown in Figure 2. This memory is 
composed of three SSMs representing three levels of reliability. 
The interactional context E is used for condition pattern learning, 
as the information provided is defined with an absolute certitude. 
The second SSM is used for prediction pattern learning, and the 
third SSM is used to define the enactability of C-interactions.

We  tested  our  mechanisms  in  four  different  environments  to 
measure  the  influence  of  the  environmental  structure  on  the 
learning  process  and  the  final  behavior  of  the  agent.  These 
environments are variants of the small loop environment proposed 
in [6]. They are shaped in a loop to offer sequential and spatial  
regularities for the agent to discover and exploit. Environment 1 
has  five  right  turns  and  one  left  turn  (clockwise)  while 
Environment  2  has  6  right  turns  and  2  left  turns  (Figure  3). 
Environments 3 and 4 are mirror versions of the environments 1 
and 2. The memory was tested with a range (maximum lenght of 
C-interactions) of 2 and 3.

The experiments were conducted as follows: the agent is started 
in its environment. Once the behavior stops evolving, we add a 
wall block to close the loop of the environment and add a new 
environmental  configuration  (a  dead  end).  While  the  agent  is 
learning, the behavior and the condition patterns are analyzed.

We propose to observe the emergence of discriminated elements 
by  analyzing  the  condition  patterns  of  C-interactions.  We  can 
especially  observe  the  location  specialization  and  the  object 
specialization  of  sequences.  We  propose  to  observe  the  object 
persistence  by  comparing the C-interaction  stored in  the SSMs 

 



and the improved interactional context E''  with the interactional 
context E.

The  relation  between  C-interactions  and  space  is  displayed  as 
follows:  we  represent  the  surrounding  space  of  the  agent  with 
three squares corresponding to the left, front and right cells of the 
environment  the agent  can perceive through  touch interactions. 
C-interactions  are  represented  by  points,  for  whose position  is 
determined by the absolute  values of  its condition  pattern.  We 
display a link between interactions and their final interaction. This 
link represents the “movement” of objects around the agent while 
the path is enacting.

We represent the relation between interactions and objects with a 
second set  of  points.  For  each  pair  of  points,  we  generate  an 
attractive force with a value corresponding to the scalar product 
of  condition  patterns  of  corresponding  C-interactions.  Thus, 
points  of  C-interactions  with  similar  pattern  are  attracted,  and 
repulsed if the patterns are opposite. A strong attractive force is 
applied between points with a same final interaction, as they are 
related to  a same object  by definition.  Points  of C-interactions 
with a final interaction If related to an empty place (as described 
in table II) are represented with light gray crosses, points related 
to walls are represented with green discs. Note that the agent does 
not have any access to these graphs.

The object persistence is observed by analyzing the interactional  
contexts E, E' and E'', and the C-interactions stored in the memory 
lists. As described in section 3.3, the object persistence consists of 
information  stored  by  the  SSMs that  cannot  be  found  in  the 
interactional  context  E.  We  represent  the  six  elements  of  the  
interactional contexts and condition patterns with three squares, as 
interactions  with a  same movement  are  mutually  incompatible. 
We thus only display interactions related to empty space. A white 
square means the corresponding interaction is a success (and thus 
a failure of the opposite interaction) or the corresponding value of 
a  prediction  pattern  is  positive;  a  black square  means  the 
interaction has failed or a negative value of the condition pattern.

5.1 Results of the Greedy Approach
We first  tested  the  direct  utilization  approach  with  a  memory 
range of 2. In the four environments,  we observed, after  fewer 
than 400 steps, a very efficient behavior summarized in table 3.

Table 3: behavior observed with the direct utilization 
approach with a memory range of 2

This behavior is based on an error in condition patterns: as the  
turn interactions are used only in turn configurations, the agent 
can  associate  both  turn interactions  with a  single  side  (empty 
space on left side for turn left and wall on left side for turn right).  
This  hypothesis  is  confirmed by  the  pattern  repartition  (Figure 
4.a): the agent does not take its left side into consideration. These 
patterns  are  incorrect  as  they  would  fail  in  a straight  line 
configuration,  but  as  the  agent  only  uses  the  corresponding 
interactions in turns,  we can consider them as correct  for their 
current utilization.

We then add the wall block. The agent adapts its behavior in 500 
to 700 steps, depending on the environment. We can observe that 
the agent has learned that certain C-interactions are related to its  
left side (Figure 4.b). However, a large part of C-interactions still 

contains  errors.  We  did  not  observe  changes  in  known 
configurations. We however observed two different behaviors in 
the  dead-end  configuration,  depending  on  the  environment 
(table 4). These two sequences use a touch interaction to probe 
the element that was originally behind the agent.

Table 4: behaviors observed in the dead-end configuration.

Despite this efficient behavior, the learned condition patterns are 
not  reliable  enough  to  discriminate  objects  and  locations.  The 
agent  thus  cannot  use  the  C-interactions  to  characterize  its 
surrounding  environment.  The  test  with  a  memory  range  of  3 
showed  another  limit  of  this  approach:  because  of  the 
accumulation of errors, the final behavior remains inefficient in 
some environments:  the agent  continues  to  bump into walls  or 
stay  trapped  in  a  part  of  the  environment.  These  observations 
show  that  the  greedy  approach  does  not  allows  the  agent  to 
specialize  the  C-interactions  with  pertinent  information.  This 
suggests that  the agent  needs to  validate  the condition patterns 
before exploiting them. 

5.2 Results of the curiosity approach
The learning approach was first tested with a memory range of 2. 
The  agent  reached  a  stable  behavior  after  3700 to  4200 steps, 
depending  on  the  environment,  and  learned  the  dead-end 
configuration in  fewer than 1000 steps after the additional  wall 
block  is  added.  The  final  behavior  is  summarized  in  Table 5. 
Compared to the direct utilization approach, we can observe an 



additional  touch  interaction  in  the  left  turn  configuration.  The 
reason is that the agent has successfully associated the turn left  
interaction  with its  left  side.  The agent  thus uses  an epistemic 
interaction to probe the element on its left side.

We then  tested the mechanism with a  memory  range  of  3.  Of 
course,  the learning  process  becomes  slower as  the number  of 
possible interactions increases: 19000 to 22000 steps are needed 
to reach the final behavior, and the about-turn configuration needs 
3000 to 12000 additional steps. The final behavior is basically the 
same as with a memory range of 2. However, we observed some 
variations in the first and second environments for the turn-about  
configuration.  This  variation  is  due  to  an  error  in  a  condition 
pattern  that  cannot  be  corrected  once  the  agent  reaches 
permanent behavior. However, this error has no negative effect on 
the behavior: as observed with the greedy approach, the condition 
patterns containing errors are correct for their current utilization.  
These  variations  suggest  that  the  environment  still  has  an 
influence on the learning process of the memory, and thus, on the 
behavior.

Table 5: final behavior of the agent with the learning 
approach

The location and object discrimination is visible on Figure 5: even 
if  some  errors  remain,  a  large  majority  of  C-interactions  are 
specialized to the correct locations. With a range of 2, more than 
90% of the reliable C-interactions are specialized in the correct  
location in every environment, and more than 70% with a range 
of 3. We do not observe errors in the object discrimination: the C-
interactions are aggregated into two groups, corresponding to the 
two objects (empty space and wall) of the environment. The agent 
has  thus defined  the notions of  “left”,  “front”,  “right”,  “empty 
space” and “wall” based on its interactions.

Figure 6 shows an example of sequence of interactions where the 
improved context E'' contains information that is not found in the 
initial  context  E.  This  example  shows how the  memory  keeps 
track of objects  while  the agent is touching its environment  or 
rotating. We can observe that in the third step, the six elements of 
the completed  interactional  context  E''  are  non-zero.  The agent 

, 
 and the failure of interactions ,  . This information 

allows the agent to characterize its current situation. In step 4, the 
memory has tracked the object (empty space) that was initially on 
the  agent's  left  side.  The  object  is  now in  front  on  the  agent, 
which  allows  it  to  move  forward  without  probing  the 
environment.

The object persistence allowed by the SSS is not limited to the 
completed context E'': Figure 7 shows an example of a sequence 
of interactions where the SSS gives information about an object 
that is lost by the agent's sensory system. In this example, the SSS 
indicates that there is a wall behind the agent. This C-interaction 
cannot  be  used  to  complete  the  interactional  context  as  its 
condition pattern is empty, but informs the agent about an object 



that is outside of the agent's  sensory  system. The memory can 
thus increase the agent's perception field. Note that the SSS does 
not only indicate the presence of the object, but also the sequence 
of interaction needed to reach it, in the form of a C-interaction.

These observations show that the SSS mechanism allows an agent 
to give a meaning to its interactions.  Our agent is thus able to 
recognize, localize and track objects that it has defined according 
to its own viewpoint. The observed object persistence shows that 
the agent has construct an ''awareness'' of its surrounding space.

This second approach shows that a form of curiosity motivation 
must  be  implemented  to  allow  an  agent  to  associate  pertinent 
information with its interactions. Once this information is reliable 
enough, the intrinsic motivation based on satisfaction values of 
interactions  can  provide  efficient  behavior  and  a  correct 
utilization of the SSS abilities.

6. DISCUSSION AND CONCLUSION
We  propose  an  approach  to  implement  a  non-topographic 
representation  of  the  peripersonal  space  based  on  interactions.  
Our  implementation  shows  that  such  a  representation  can 
simultaneously be learned and used by an artificial agent.

This memory segments, recognizes, localizes and tracks objects 
of  the  surrounding  environment  without  any  ontological 
preconception  about  these  objects.  We  believe  that  this 
mechanism sheds some light on the question of how an agent can 
construct its own perception and knowledge of its environment. 
The  structure  of  the  memory  based  on  interactions  allows  the 
agent  to  exploit  information with a  limited computational  cost, 
because the agent directly uses the stored interactions to generate 
behavior.  This suggests that this memory can generate  a set  of 
reflex behaviors related to space.

These results are however limited by the simplicity  of our test  
system. These results are nevertheless encouraging as they show 
that an agent equipped with a rudimentary sensory apparatus can 
construct a representation of the perceived environment without 
presupposing the spatial nature of its environment. In future work, 
we  intend  to  address  the  problem  of  implementing  our 
mechanisms  in  more  complex  possibilities  of  interactions,  
especially agents evolving in continuous environments as opposed 
to a  grid.  We believe that  a continuous set  of  interactions  can 
improve  the  agent  learning  skills  in  such  an  environment  by 
allowing  parallel  learning  and  pattern  overlapping  of  similar 
interactions.
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