UbiWare: Web-based Dynamic Data & Service
Management Platform for Aml

Vasile-Marian Scuturici

Sabina Surdu

Yann Gripay Jean-Marc Petit

Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205
.) o F-69621, Villeurbanne, France o
{vasile-marian.scuturici,sabina.surdu,yann.gripay,jean-marc.petit@insa-lyon.fr}

ABSTRACT

The surrounding space is constantly augmented by a myr-
iad of devices that expose heterogeneous data, like slower-
changing data, dynamic data streams and functionalities.
Handling data streams is a challenge by itself. Furthermore,
developing applications that cope with heterogeneous data
and diverse communication protocols is a tedious task. The
success of such applications depends on the performance of
data access and the easy management of available data. To
address these challenges, we propose UbiWare, a middleware
that facilitates application development for ambient intelli-
gence. UbiWare is based on a distributed data access model.
We abstract the surrounding space as a database-like envi-
ronment and the heterogeneous entities and devices as data
sources that produce data. To query the distributed data
sources and access their data we introduce a declarative API
that greatly simplifies application development and is com-
patible with the different operators used by query engines
in Data Stream Management Systems or Pervasive Environ-
ment Management Systems. Queries written in declarative
languages are submitted via an HT'TP/REST-based proto-
col to data sources, where they are translated into the Ubi-
Ware’s API commands.

Categories and Subject Descriptors

H.2.5 [Database Management]: Heterogeneous Databases

1. INTRODUCTION

The surrounding environment is constantly enriched with
devices that provide the user with a digital representation of
the world, yielding the so-called pervasive environments. In
this context, computing systems evolve at a breakneck pace
in order to fulfill the ambient intelligence vision (AmlI), char-
acterized by the heterogeneity, distribution and autonomy of
devices, and by high data dynamics.

Applications developed for the AmI announce an easy to
live in world for the user, who shouldn’t even be aware of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the presence of computing devices. The application devel-
oper, however, faces major challenges that significantly bur-
den the development process. The myriad of environment-
enhancing devices provides heterogeneous data, requiring
different processing paradigms, like slower-changing data,
similar to those found in classical databases, or potentially
unending dynamic data streams. Some devices offer func-
tionalities to the user (e.g., a camera that takes a panoramic
picture of its surroundings). Furthermore, they present their
data through various drivers, APIs and protocols. Aml ap-
plications need to understand and treat in a homogeneous
way all these miscellaneous data and functionalities.

In a data-centric approach, the intensive interaction be-
tween the application and the environment data is performed
via a data management layer, represented by a Data Stream
Management System (DSMS) or by the more recently emerged
Pervasive Environment Management Systems (PEMSs), like
SoCQ [6]. The latter aim at easing application develop-
ment over pervasive environments. The query engines of
such systems use operators to translate SQL-like queries to
relational algebra. Since these operators use data from the
environment, access to the devices is a key factor in the per-
formance of a DSMS or PEMS. Querying the diverse devices
in a pervasive environment using a direct approach, without
any middleware that can facilitate the communication be-
tween the query engine and the environment, is a tedious
task. All the low-level details of the implementation have to
be solved by developers.

We propose the Ubiquitous Data Middleware (UbiWare,
for short), a middleware that aims at easing the interac-
tion between query engines and miscellaneous devices in
pervasive environments. UbiWare provides a homogeneous
model for heterogeneous entities and data types, in a scal-
able framework, using a REST /HTTP-based protocol. Our
goal is to provide a competitive model of organization of the
environment data and mechanisms to efficiently access this
data. The API we provide is compatible with the operators
used by query engines.

2. THE UBIWARE PLATFORM

UbiWare is driven by the idea that the environment con-
tains an ever growing number of miscellaneous entities that
expose interesting, but heterogeneous data for the user. To
tackle this problem, we abstract every entity as a data source,
also called a data service, i.e., a producer as well as a sup-
plier of data. We wrap each data service in a middleware
nutshell that allows the external world (e.g., query engines)
to query it via a declarative API. Moreover, data services

can be connected in chains, in order to provide data flows.

We consider each data source to be a process equipped
with computational capabilities, which provides various types
of data, called resources. Consumers can access resources
like static data, streams or functionalities. A data service
is identified by an URI, it understands HTTP requests, in
a REST manner, and delivers responses that respect the
HTTP protocol. By using a HTTP/TCP protocol in a
RESTful manner, UbiWare enables the integration of data
services independently of the operating system and the used
programming language [5]. HTTP/TCP is also the easiest
way to bypass firewalls on the Internet or on different in-
tranets.

The HTTP protocol presents one drawback: it was not
designed to be used in a streaming context. Nevertheless,
data services in the environment need to follow a push ap-
proach, where the consumer connects to the data service
and waits indefinitely to receive the produced events. We
achieve this behavior by using a permanently open HTTP
connection between the consumer and the data source. The
latter sends every newly produced event to the consumer
and keeps the connection open [5].

The UbiWare model allows to filter interesting data di-
rectly at the source via projection and selection operators
applied on data services. Data is accessed through the afore-
mentioned streaming push technique, but also through pull
mechanisms. The API we propose allows a consumer to ob-
tain all the resources published by a data service, to get the
structure (i.e., schema) of a resource, to perform a set of op-
erations specific to each type of resource and to execute op-
erations that manage resource composition. For managing
data streams and resources, the API defines the PUT, GET,
DELETE, UPDATE, INSERT and CALL operators. The
names of the first 5 operators are self-explanatory, whereas
the last one allows the developer to invoke a functionality
on a given event from a stream or on a given resource and
to produce a set of events over a specified schema.

UbiWare is built around a distributed architecture, where
components have a dynamic behavior. The user is not con-
cerned with handling distribution-specific aspects. The plat-
form encompasses dynamic discovery functionalities. By us-
ing multicast announcement, data services reveal themselves
when they become available or unavailable, and on a peri-
odic basis. Consumers can also send discovery requests that
receive immediate unicast responses [7]. Moreover, the dis-
covery of data services producing data is facilitated by con-
text awareness, i.e., through primitives using queries based
on context values.

UbiWare achieves scalability by allowing clusters of data
services to be processed by multiple management modules,
called Data Service Managers. Such a module keeps in-
formation about discovered data services from the environ-
ment. It acts, in turn, as a data service that supplies in-
formation about the data sources in the environment. Con-
sumers can directly interact with data services, without go-
ing through the Data Service Managers layer, but in this
case developers also need to implement the data service dis-
covery components.

With UbiWare as an abstraction layer between query en-
gines and the environment, the developer is insulated from
both heterogeneity aspects and specific data services imple-
mentation details. Application development under these cir-
cumstances is significantly simplified. Figure 1 describes the

eieé ©0© ©

,/ . DS Manager
DS Manager
DS Manager
/a

GYBlERD / Am] app Aml app

Figure 1: Data sources in the environment expose
their resources via the UbiWare API and are man-
aged by Data Service Managers. The latter interact
with DSMSs/PEMSs, which process queries for AmI
applications.

UbiWare architecture.

3. EXPERIMENTAL RESULTS

In the experimental study, we considered a pervasive en-
vironment comprising data services from the Linear Road
benchmark [3]. We implemented a query engine on top of
UbiWare. More precisely, we modified SQLite [2] in order
to see the UbiWare data services as relational tables. We
extended the standard SQL queries implemented in SQLite
with continuous features. Moreover, every declarative query
that accesses environment data and is submitted by the
modified SQLite engine is translated into UbiWare API calls.

We ran a set of SQL continuous queries that describe var-
ious interactions between the query engine and the environ-
ment and we monitored system performance. Our experi-
ments showed that the HTTP overhead incurred by using
UbiWare depended on the representation of the transferred
data. For binary data we used a base64 encoding, and the
overhead in this case was around 33%. This overhead may
be regarded as acceptable when considering the advantages
derived from the middleware. Another possible drawback of
UbiWare is the processing time at the query engine level in
order to decode the HTTP strings to obtain the data. For
data from the Linear Road dataset we observed a number of
140.000 decoded tuples/sec at the level of the query engine
on a Windows XP machine with an Intel dual-core 3 Ghz
and 3 GB RAM. This number is also acceptable, considering
the time consumed by the query engine on various relational
operators, like the join operations.

4. RELATED WORK

Our middleware is designed to handle heterogeneous data
sources, providing not only static data, but also streams
and functionalities. It can therefore be used as a data layer
in DSMSs and PEMSs, smoothing communication between
query engines and pervasive environments. We are not aware
of existing solutions, that target both the streaming and the
heterogeneity aspect. Using Web Services (that also use
HTTP) is not appropriate in this context, as they don’t
allow efficient network streaming.

The LinkedData project ([1]) defines ways of sharing struc-
tured data on the Web. Data is represented using the RDF
data model and each resource is identified by its URI. Access

to data is realized using HTTP via GET requests. When
compared to this approach, UbiWare stands out through its
orientation towards streaming data.

The ExoEngine platform presented in [4] virtualizes com-
ponents of streaming engines at different levels of granular-
ity, to provide interoperability between SPEs and flexible
deployment, but it doesn’t tackle the heterogeneity encoun-
tered in pervasive environments.

S. REFERENCES

[1] Linked Data. http://linkeddata.org/.

[2] SQLite. http://wuw.sqlite.org/.

[3] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier,

A. Maskey, E. Ryvkina, M. Stonebraker, and
R. Tibbetts. Linear Road: A Stream Data Management
Benchmark. In VLDB 2004, pages 480491, 2004.

[4] M. Duller, J. S. Rellermeyer, G. Alonso, and N. Tatbul.
Virtualizing Stream Processing. In Middleware 2011,
pages 269-288, 2011.

[5] Y. Gripay, F. Laforest, F. Lesueur, N. Lumineau, J.-M.

Petit, V.-M. Scuturici, S. Sebahi, and S. Surdu.

ColisTrack: Testbed for a Pervasive Environment

Management System. In "EDBT 2012, pages 574-577,

2012 (demo).

Y. Gripay, F. Laforest, and J.-M. Petit. A Simple (yet

Powerful) Algebra for Pervasive Environments. In

’EDBT 2010, pages 1-12, 2010.

[7] M. Scuturici. Dataspace API.
http://ds.liris.cnrs.fr/.

6

