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Textured 3D face models capture precise facial surfaces along with the associated textures, making it possible
for an accurate description of facial activities. In this paper, we present a unified probabilistic framework
based on a novel Bayesian Belief Network (BBN) for 3D facial expression and Action Unit (AU) recognition.
The proposed BBN performs Bayesian inference based on Statistical Feature Models (SFM) and Gibbs–
Boltzmann distribution and feature a hybrid approach in fusing both geometric and appearance features
along with morphological ones. When combined with our previously developed morphable partial face
model (SFAM), the proposed BBN has the capacity of conducting fully automatic facial expression analysis.
We conducted extensive experiments on the two public databases, namely the BU-3DFE dataset and the
Bosphorus dataset. When using manually labeled landmarks, the proposed framework achieved an average
recognition rate of 94.2% and 85.6% for the 7 and 16 AU on face data from the Bosphorus dataset respectively,
and 89.2% for the six universal expressions on the BU-3DFE dataset. Using the landmarks automatically located
by SFAM, the proposed BBN still achieved an average recognition rate of 84.9% for the six prototypical facial
expressions. These experimental results demonstrate the effectiveness of the proposed approach and its robust-
ness in landmark localization errors.

Published by Elsevier B.V.
1. Introduction

Facial expression is one of the most naturally pre-eminent means
in human communication. Its automatic analysis and recognition
have many potential applications, including human–computer interac-
tion, security, interactive games, computer-based learning, entertain-
ment, etc. Over the last two decades, Facial Expression Recognition
(FER) has been the subject of extensive research from several research
communities, ranging from computer vision, psychology to human–
computer interaction.

The sources of facial expressions are multiple. They occur in
human verbal and non-verbal communication, during their mental
states, e.g. felt emotions, conviction, etc., or physiological activities such
as pain, tiredness, etc. Facial expressions are characterized by contrac-
tions of facial muscles, leading to temporally deformed facial features.
These temporal facial deformations account for displacement of
intransient features (e.g. eye lids, eye brows, nose, lips, cheeks) as well
as occurrence of transient features like skin texture changes and facial
surface changes, often revealed by wrinkles, furrows and bulges in
y Lijun Yin.
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both texture and geometry modalities. For instance, an exaggerated
smile leads to swelling of the cheeks, wide opening of the mouth and
significant displacement of mouth corners, thus deforming globally
both the face morphology, texture and shape. On the other hand, a
subtle surprise may be simply materialized by raising of the eyebrows
and results in very local changes both in the face morphology and
appearance. Reliable analysis of facial expressions thus requires accu-
rate measurements of facial feature deformations, both global and
local, in terms of morphology, texture and shape.

The current research onmachine-based analysis of facial expressions
features two main streams of approaches: judgment-based approaches
[1] centered on the messages conveyed by facial expressions, and sign-
based approaches, [2,3], targeting the recognition of facial muscle
actions coding visually discernible facial motions and deformations.
Most of the existing efforts on FER are judgment-based approaches
and directlymap facial expressions into the six basic emotions, namely
happiness, sadness, fear, disgust, surprise and anger, due to their
universal properties, their marked reference representation in our
affective lives, and the availability of the relevant training and test
material. Unfortunately, these six prototypical emotion categories
are only a subset of thousands of possible facial displays, most of them
having subtle changes in discrete facial features such as pulling the lip
corners or raising the eyebrows. As far as sign-based approaches are
concerned, the most commonly used facial muscle action descriptors
are the Action Units (AUs) introduced by Ekman et al. in 1978 in the
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Facial Action Coding System (FACS) [2]. These AUs can be further
interpreted, by employing facial expression dictionaries such as
EMFACS and FACSAID, in complex and subtle facial expression catego-
ries such as depression or pain [3].

1.1. The background

The extensive research on FER has accumulated significant lessons
and results over the last two decades. Detailed surveys of previous
work can be found in [4–8,1,9].

However, most of the existing research on FER deals only with the
six basic emotions and works with nearly frontal faces in 2D images,
being static or dynamic in sequence [1]. The typical facial features are
either geometric features such as the shapes of the facial components
(eyes, mouth, etc.) and the location of facial salient points (corner of
the eyes, mouth, etc.) [10,11] or appearance features describing the
facial texture, includingwrinkles, bulges and furrows [12,13]. However,
these methods suffer from the problems of head pose changes and
illumination variations in 2D images.

With 3D imaging systems readily available, FER in 3D, which is the
focus of the current paper, has recently emerged as a major solution
to these unsolved issues [14,9]. The release of the three public 3D
datasets, namely the BU-3DFE, BU-4DFE and the Bosphorus datasets
[15,16], has further fostered research efforts in this direction. As a
textured 3D face scan is theoretically insensitive to lighting condi-
tions and head pose while capturing the accurate facial surface and
texture, one expects more reliable, view-independent and illumina-
tion robust solutions to FER. However, most of the current studies in
3D are judgment-based approaches dealing with the six prototypic
emotions. Most of them are geometric-based approaches, making
use of various geometric features (e. g., fiducial facial points [17–19],
curvatures [20], 3D face parametrization [21]) to best account for
variations in 3D face morphology.

One of the early works in 3D FER is Wang et al. [20] which com-
puted the histogram of the principal curvatures, surface principal
directions and steepness of the surface around face regions extracted
from 64manually labeled landmarks. Soyel and Demirel [17] retrieved
six distances between facial landmarks, describing the openness of the
eyes, the height of the eyebrows, the openness of the mouth and its
width, the stretching of the lips and the openness of the jaw. Such
distance-like features are further explored by Tang and Huang [22],
where fewer than 30 ‘best’ features were automatically selected from
a candidate pool (all distances between 83manually labeled landmarks
in the BU-3DFE dataset). In addition to these distance-based features,
Hao and Huang [18] also extracted the slopes of the line segments
connecting the 83 feature points. Although distance-feature based
approaches are computationally efficient, they ignore appearance
information and need a predefined set of facial landmarks to compute
morphology deformations. Thus, their performance highly relies on the
accuracy of facial landmark location. This probably explains that all
these works only made use of the 83 manually labeled landmarks
defined in the BU-3DFE dataset. Furthermore, these approaches can also
have difficulties in dealing with non-exaggerated and non-prototypical
facial expressions as they ignore appearance features.

In the literature there also exist model-based approaches which
typically fit a deformable face model to an input 3D face model
[21,23,24]. For instance, Ramanathan et al. proposed in [21] aMorphable
Expression Model (MEM) and used the fitted model parameters for
facial expression recognition. Mpiperis et al. [23] first applied an elas-
tically deformable model algorithm to fit a prototypic facial surface
model and then made use of bilinear models for both face and facial
expression recognition. Unfortunately, all these approaches require a
dense registration of point clouds, to build point-to-point correspon-
dences. This is quite computationally expensive when dealing with
thousands of 3D vertex in a facial mesh. Moreover, fitting algorithms
used so far also require the existence of some landmarks for initialization.
1.2. The proposed approach

In this paper, we present a unified framework based on a Bayesian
Belief Network (BBN) to the recognition of 3D facial expressions,
including both the six prototypical expressions and action units (AUs).
The proposed BBN encompasses a subject node, an expression node
and a set of feature nodes describing multiple evidences as provided
byboth geometry and appearance features. These features are extracted
from three different facial modalities and thereby account for both
facial intransient and transient deformations. The three facial modali-
ties are namely facial morphology as defined by the configuration of a
predefined set of 3D landmarks, texture and shape as defined by inten-
sity and range values of local patches in the vicinity of each landmark
respectively. For each expression state associated with the expression
node, a set of Statistical Feature Models (SFM) is trained for each type
of features to enable Bayesian inference for FER on the proposed BBN.
In this work, we make use of Gibbs–Boltzmann distributions and con-
vert the initial Bayesian inference for FER from the probability domain
into the energy domain so that the similarities between an instance of a
feature type and those synthesized by the associated SFMs represent
the beliefs of a feature node on different expression states. These belief
sets are further fused and the highest one in the fused set is recognized
as the hidden facial expression. When combined with our previously
developedmorphable partial face model (SFAM) [25,26], the proposed
BBN achieves fully automatic FER. We demonstrated the effectiveness
of the proposed approach using the two public datasets, namely
Borphorus and BU-3DFE datasets, for the recognition of six basic facial
expressions as well as action units.

The flowchart of the proposed system is shown in Fig. 1 and
encompasses 4 main stages: offline SFAM construction, offline BBN
training, online landmarking and feature extraction and online facial
expression recognition. Specifically, SFAM is trained for automatic
landmarking using a small set of 3D face models with all expressions.
For facial expression recognition, a set of SFMs are trained for all
combinations of types of feature and facial expressions. During online
recognition, a 3D face scan is first landmarked by the SFAM, then 15
types of features in the vicinity of these landmarks are extracted
and used as evidence by the BBN for belief inference. The recognized
facial expression is thus the one having the highest a posteriori prob-
ability given all the geometric and appearance evidence. Alternatively,
this BBN based inference may also be applied to manually labeled
landmarks whenever they are available, thus skipping the automatic
landmarking stage.

The contributions of this paper can be summarized as follows:

1. The use of Bayesian Belief Net (BBN) for FER which fuses multiple
evidence as revealed by both geometric and appearance features
extracted from three different modalities of 3D face scans;

2. Bayesian inference using Statistical Feature Models (SFMs) and
Gibbs–Bolzmann distribution;

3. Facial ExpressionRecognition using automatically located landmarks
and its comparison with manually labeled ones;

Early versions of this work presenting step results appeared in
[25,27]. The reminder of the paper is organized as follows. The BBN
for FER is presented in Section 2. We then describe both the geometric
and appearance features in Section 3. The Statistical Facial Feature
Model (SFAM) used for automatically landmarking is shortly intro-
duced and discussed in Section 4. Experimental evaluations are given
in Section 5. Section 6 concludes the paper.

2. Bayesian Belief Net

In this section, we first give a short introduction to BBN and then
present the proposed BBN for 3D facial expression recognition and
the associated belief inference.



Fig. 1. The flowchart of the proposed 3D facial expression recognition system.

Fig. 2. The proposed Bayesian Belief Net for 3D FER in its general form. The node X
represents facial expressions or AU states; the node S represents subject identity;
The nodes F represent facial features. It depicts that facial activity X is subject dependent
(S) and conditions the various features Fi that one can observe. However, without any
specific priori knowledge of facial activities of the subjects as it is generally the case,
e.g., those in the two public datasets, namely BU-3DFE and Bosphorus, we have assumed
a uniform distribution of facial activities for each subject and simply ignored the parent
node S in the BBN inference.
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2.1. Overview of BBN

Bayesian Belief Net [28] is a probabilistic graphical model with the
topology of directed acyclic graph (DAG). It is thus a graph formed by
a set of nodes and directed edges without cycles. Nodes represent a set
of random variables and directed edges represent their conditional
dependencies.

In a given BBN, the ‘belief’ of variables (X=(x1,x2,…,xn)) on a node
X describes its probability of states given the evidence e (observations)
on its connected neighbor nodes. We divide these nodes into parents
(those nodes pointing directly to X via an edge) and children (those
nodes pointed directly from X via an edge) so as to compute the belief
as:

P X ej Þ∝ P ec Xj ÞP X ep
�� ���� ð1Þ

where ep is evidence on all parents and ec evidence on all children. The
first term can be rewritten as:

P ecjX� � ¼ P ec1; e
c
2;…; ecNcjX

� � ¼ ∏
Nc

l¼1
P ecl Xj Þ� ð2Þ

where el
c is the evidence or observation of the lth child node, Nc is the

number of children, P(elc|X) is the probability of evidence knowing
the X state.

2.2. BBN for expression recognition

Our BBN is constructed as shown in Fig. 2. The node X represents
the random variable having different states, each of which corre-
sponds to a facial expression to be recognized. It can thus be one of
the states corresponding to the six universal expressions or one of
the facial AUs. The node S is X's parent whose states are human sub-
jects displaying the facial expression in X. It thus has as many states as
the number of subjects. X's children F1, F2,…, FNf

represent the differ-
ent types of facial features that can be extracted and used as evidence.
In linking the X node directly to each feature node FNi

as in Fig. 2, we
simply state by assumption that all the types of features as represented
by those nodes are conditionally independent each other with respect
to the X node.

This BBN-based Bayesian formulation of FER is interesting as it
says that the recognition of a facial expression should take into
account not only the identity of a subject Si but also the prior proba-
bility of facial expressions for a given subject P(X|Si). This statement
is consistent with our intuition that the prior distribution of facial
expressions is subject dependent, widely depending on the character
of a person, e.g., a joyful person would mostly display a smiling face
while a sad person in nature would exhibit sadness more frequently.
While such a statement is very simple and intuitive, the computation
of such a prior distribution P(X|Si), is not easy as it assumes plenty of
additional observation data made available for each subject. In this
work, we carried out FER experiments on two public datasets, namely
BU-3DFE and Bosphorus, without any knowledge regarding to prior
distributions P(X|Si). As a result, we assume in this work uniform
distributions for P(X|Si) which becomes a simple constant and the
parent node S can be ignored in the subsequent inference for 3D FER.

By introducing Eq. (2) into Eq. (1) and making use of the condi-
tional independence of the children nodes of X while omitting the
parent term, P(X|ep), which is a constant value C according to our pre-
vious assumption of uniform distributions, Eq. (1) can be rewritten as
follows:

p Xjeκð Þ∝ C∏
Nc

l¼1
P ecl jX
� �

∝∏
Nc

l¼1
P ecl Xj Þ� ð3Þ

where elc is the observation of the lth child, Nc is the number of children,
P(elc|X) is the conditional probability of evidence knowing the state X
whereas eκ refers to observations from a given 3D face scan κ. Thus,
the belief for each expression state is computed from eκ and the state
holding the highest belief is considered as themost probable expression
or Action Unit (AU) of the given 3D face scan κ.

2.3. Belief computation for BBN

In order to estimate P(elc|X) in Eq. (3), we adopt a statistical fea-
ture model (SFM) associated with the type of features within the lth
child node in assuming that P(elc|X) follows the Gibbs–Boltzmann dis-
tribution. Accordingly, the probability P(elc|X) can be computed as the

image of Fig.�2
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matching score between an instance Fl
x from the type of features in

lth node with its equivalent F̂
x
l that is synthesized from the SFM asso-

ciated with the type of features in lth node for the expression X=x.
Specifically, P ecl Xj Þ∝eAlQ

x
l

�
, where Ql

x is the match quality and Al is a
normalizing constant. Inserting the Gibbs distribution into Eq. (3)
and taking the logarithm gives:

logP Xjeκð Þ ¼ log ∏
Nc

l¼1
P ecl jX
� � !

þ c ¼
XNc

l¼1

AlQ
x
l þ c: ð4Þ

In this way, the Gibbs distribution converts the belief inference
from the probability domain to the energy domain. TheQl

x is computed
as the normalized cross-correlation between evidence Fl

x and its in-
stance F̂

x
l : Finally, the belief for each state of facial expressions of the

node X is computed as in Eq. (4) and the facial expression is recognized
as in Eq. (5). is to discover the highest belief among all expression
states, the constant c can be omitted.

X ¼ argmax
X

P Xjeκð Þ ¼ argmax
X

XNc

l¼1

Al
Fxl
‖Fxl ‖

;
F̂ x
l

‖F̂ x
l ‖

* +
ð5Þ

where X is a state of facial expressions, thus one of the six basic facial
expressions in case of a judgment-based approach, i.e. anger, disgust,
fear, happiness, sadness, surprise, or a state of AUs in the case of a
forced-choice classification of a single AU.

2.4. SFM training and BBN testing algorithms

Given a type of features in a node in the BBN, a Statistical Feature
Model (SFM) is built for each expression x to be recognized. Specifically,
given a training set for a type of features Fl as represented by the lth
node, we divide it into Ne (number of expressions or AUs) subsets. For
each subset corresponding to the facial expression x, Principle Compo-
nent Analysis (PCA) is applied to learn the major modes which explain
the 95% variation of the type of features under the xth expression or AU
[29]:

Fxl ¼ �F x
l þ Px

l b
x
l ð6Þ

where l indexes the type of features represented by the lth node in
the BBN, x designates a particular state of facial expressions to be recog-
nized, �F x

l denotes themean feature in the xth subset, Plx denotes amatrix
composed of eigen-features, blx denotes the control parameter vector.
Each parameter ( bxlj) is supposed to follow a Gaussian distribution
with zero mean and the standard deviation σx

lj
: The training algorithm

is depicted in Algorithm 1.
In Algorithm 1, j∈1..N, l∈1..Nf, x∈X which is the set of facial

expressions to be recognized, Ne=|X|, Nf equals 15 in this work. The
computational complexity is O(N) for feature extraction and O(Nf×Ne)
for SFM learning.

Algorithm 1. Training Algorithm for building statistical feature models
(SFMs)

Input: Ne sets of textured face scans, corresponding to Ne different
expressions or AUs. Each textured face scan contains a 3D face mesh,
its texture and 19 landmarks (N face scans in total).

Output: Ne∗Nf learnt statistical feature models.

1. For each face scan j, extract Nf types of features from the local
regions around the landmarks and concatenate them into Nf feature
vectors Flj respectively.

2. For each type (l) of feature vectors:
For each facial expression (x):

Apply PCA to learn the statistical feature model: Fxl ¼ �F
x
l þ Px

l b
x
l :
Feature instances F̂
x
l can be generated from Eq. (6) using Fl to

estimate the best parameter bl
x by bxl ¼ Px

l
T Fl−�F

x
l

� �
: The detailed

steps can be found in steps 2a–2c inAlgorithm2. The belief ormatching
quality is computed in step 2d. Once computed the qualitymatrixQ, we
convert it to a belief vector Qx of size Ne×1 by adding beliefs to each
column. Then, the expression or AU is recognized as the one having
the highest value in the belief vector according to Eq. (5).

In Algorithm 2, 〈⋅, ⋅〉 denotes the inner product and ‖⋅‖ denotes
the L2 norm.

Once all the features extracted, the computation complexity is
O(NeNf) for belief computation and O(Ne) for the recognition of facial
expressions. In our experiments, it takes on average around 0.24 s to
compute beliefs for each child node using a desktop PC with Intel
Core2 E4400 at 2.00 GHz CPU and takes less than 4 s to classify a test-
ing data on the six universal expressions.

2.5. Discussion

Eq. (5) outputs a single state of the node X, i.e. one of the six basic
facial expressions or a single AU while maximizing the posterior
probability given the different types of features as input evidence. In
this sense, the proposed BBN using Eq. (5) for FER is a judgment-
based approach rather than a sign-based one. In the latter case, one
needs first to recognize simultaneous facial muscle actions, e.g., AUs,
occurring in combination during a facial expression, then proceed to
the interpretation of these AUs into complex or subtle facial expres-
sion categories. Meanwhile, the proposed BBN can be slightly adapted
to fit this case, using a threshold in Eq. (5), to recognize the AUs
occurring at the same time:

P X ej Þ > ξ:ð ð7Þ

Algorithm 2. Algorithm for belief computation

Input: A textured face scan for a given subject s, which contains its
3D face mesh, its texture and the 19 landmarks.

Output: A matrix of beliefs Q with size Ne×Nf.

1. Extract Nf types of features from 19 local regions and concatenate
them into Nf feature vectors Flx respectively.

2. For each vector corresponding to the type of features (l):
For each facial expression (x):

a. Apply the trained SFM to the input feature Fl
x to estimate the

control parameter bls by bsl ¼ Px
l Fxl −�F

x
l

� �
;

b. Limit the range of control parameters to increase the separa-
bility among classes by applying the function f

b̂
s
lj
¼ f bslj

� �
; f tð Þ ¼

bslj ; abs bslj

� �
b 0:5σ x

lj

0:5σ x
lj
; abs bslj

� �
≥ 0:5σx

lj

:

8<
:

c. Generate the instance F̂ x
l for the feature Fl

x by F̂ x
l ¼ �F x

l þ Px
l b̂

s
l ;

d. Compute the matching quality Ql
x of the feature Fl

x on the

facial expression x by Qx
l ¼ F̂

x

l

‖F̂
x

l ‖
; Fxl
‖Fxl ‖

� �
;

Graphicalmodels havebeen already used in 2D facial expression anal-
ysis. A dynamic Bayesian Network was developed in [30] to model the
dynamic and semantic relationships among facial action units. This net-
work was extended to a more sophisticated one in [31] which performs
a joint analysis of head pose and action units. A Bayesian Belief Network
aiming at modeling the relationship between expressions and facial ac-
tion unitswas also proposed in [32] for FER. However, the proposed BBN
differs from them in three aspects. Firstly, the proposed BBN carries out
FER in 3D whereas all the aforementioned works, e.g. [30,32], uses BBN
to perform FER in 2D. Secondly, the structure of our BBN is different. In



235X. Zhao et al. / Image and Vision Computing 31 (2013) 231–245
[30], the learnt structure of the Bayesian Network explores the dynamic
relationship among AUs. In [32], the structure of BBN describes the re-
lationship between AUs and the six universal expressions. In contrast,
the proposed BBN concentrates on describing the causal relationship
among subject, facial activity (Expressions and AU) and facial features.
Thirdly, we propose a novel method for parameter computation based
on SFM which is different from the aforementioned works.

3. Extraction of features

In order to retrieve evidence for exaggerated facial displays as well
as subtle ones, we propose to make use of both geometric features,
thereby accounting for deformations of intransient facial features
e.g., eyelids, eyebrows, the mouth, as well as appearance features in
terms of both texture and shape, aiming to characterize occurrence
of transient features (e.g., wrinkles, furrows, bulges). Savran et al.
[33,34] have shown recently that geometric and appearance features
carry complementary information and their joint use does indeed im-
prove 3D FER. Therefore, we have not sought to reinvent the wheel
each time but instead to capitalize on the best practice in the existing
works on FER in terms of features sensitive to facial expression. The
originality of our approach is rather its hybrid nature, as we not
only explore both geometric and appearance features but also com-
bine global features with local ones. Specifically, we extract 15 types
of geometric and appearance features from three modalities as in
Fig. 3 to take full advantage of the wealth of information contained
in textured 3D face scans. In this section, we explain in detail the fea-
tures extracted from each modality. The extensive experimental eval-
uation described in Section 5 will further highlight the relevance of
each modality in FER, in particular in terms of discriminating power.

3.1. Morphology features

Morphology features aim at capturing global 3D facial geometry
changes during facial displays. In this work, we made use of a set of
predefined facial landmarks whose configuration is used to define
morphology features. Specifically, as illustrated in Fig. 3, 19 anthropo-
metric landmarks were used. They encompass the corners of the eyes
and mouth, the nose tip, etc. They were chosen because they were
automatically located by SFAM in a previous work [26] and enable a
further study in Section 5 comparing manually labeled landmarks
with automatically located ones on FER. Alternatively, more landmarks
can be used whenever available.

We first define the configuration of the landmarks by vector S in
staking the 3D coordinates of all the landmarks. In our case, the eye
centers are interpolated by averaging corresponding eye corners
when using automatically located landmarks.

S ¼ x1; y1; z1; x2; y2; z2;…; xN ; yN ; zNð ÞT ð8Þ

where N is the number of landmarks, 19 in this work, which are located
on different facial components sensitive to deformation when a facial
expression occurs, e.g., themouth corners, the eye corners, the eyebrow
corners, etc.

Several works [17–19] showed the effectiveness of simple distances
between landmarks in FER. We thus use the vector S to compute a new
feature vector L, which is formed by all the distances pictorially shown
as green lines in Fig. 3(a). These distances are empirically chosen to
best describe the configuration relationships among facial components
under different facial expressions. For the purpose of comparison, we
also used the correlation-based feature subset selection (CFS) [35] to
automatically select a subset of distances from all the 381 distances
that we can compute between 19 landmarks, as shown in Fig. 3(b).
This feature selection method was chosen because it evaluates the
value of a subset of distances by considering the individual predictive
ability of each along with the degree of redundancy between them.
Accordingly, distances that are highly correlated with an expression
class while having low intercorrelation are preferred. We evaluated
these two sets of distances on FER using 3D face scans of 60 subjects
from the BU-3DFE dataset which display the two highest intensity
levels of the six prototypical facial expressions (see Section 1). The dis-
tances automatically selected by CFS achieved a recognition rate of
73.3% while the empirically selected distances as depicted in green
lines in Fig. 3 achieved a recognition rate of 75.3%. Therefore, the em-
pirically selected distances as staked in the feature vector L are used in
the subsequent experiments.

We further extract a landmark displacement feature vector D,
which measures the displacement of each landmark when an expres-
sion occurs from a neutral display. This feature vector is thus very in-
formative since it directly measures the shape difference between the
face displaying a facial expression and a neutral one. However, it also
imposes the constraint of one neutral face from each subject being
available for comparison and therefore is subject biased. To remove
this constraint for subject independent FER, we use a mean vector of
landmark locations computed from all training neutral faces instead
of using the landmark locations on a neutral face of a given subject.
Thus, D is computed by subtracting from S themean of landmark loca-
tions from the training neutral faces (�Sneutral) as in Eq. (9). They are il-
lustrated in red lines in Fig. 3.

D ¼ S−�Sneutral ð9Þ

3.2. Local texture features

Many existing works on 2D FER [12,13] have shown the effective-
ness of texture-based features. As illustrated in Fig. 3, we also extract
several local texture features to account for appearance features. We
first form the raw vector of texture T by simply stacking the intensity
values from the remeshed grids centered at each landmark:

G ¼ g1; g2;…; gmð ÞT ð10Þ

where m is the number of intensity values in all the remeshed grids
associated with the landmarks.

To further capture fine facial texture details, we also make use of
Local Binary Pattern (LBP) operator which is a simple and powerful
texture descriptor widely used in 2D face analysis [36]. Specifically,
we extract from local texture patches Multi-Scale LBP [37], namely
LBPU2

16;1ð Þt; LBPU2

16;2ð Þt;…, LBPU2

16;5ð Þt; thus at scales from 1 to 5, to char-
acterize both quite noticeable facial displays as well as subtle ones
around each landmark. LBPU2

P;Rð Þt feature labels each pixel in the
image with a number of binary values (P=16 in our case) calculated
by thresholding the sampled neighborhood (16 black dots in Fig. 4)
with each pixel (the white dot in Fig. 4). R is the Scale, 1–5 in our case,
which designates the radius of the circle for neighborhood sampling,
shown as the circle in Fig. 4. Superscript u2 indicates that the LBP relates
to uniform patterns with a U value of at most 2 [38]. The LBP values
using each (P,R) pair extracted from the local grids around the land-
marks are then concatenated into a new feature vector.

Alternatively, one can also use Gabor features on several scales
and orientations which have been shown very effective in FER but
computationally quite expensive [12,34].

3.3. Local shape features

In order to account for local deformations of a facial surface, some-
time without provoking significant texture changes as it is the case for
subtle facial expressions, we also derive several local shape features.
The very simple one is the depth vector Z by staking all the depth values
from all the local grids associated with the landmarks:

Z ¼ z1; z2;…; zmð ÞT : ð11Þ



Fig. 3. (a) Extraction of the features from three modalities: global morphology features defined by the configuration of the landmarks, local texture features and local shape features
extracted from remeshed local grids centered at each landmark. Local patches in the figure correspond to the remeshed grids formed by local shape and rendered by local texture.
The green lines correspond to the manually selected distances between landmarks. (b) Automatically selected distances between landmarks by the correlation-based feature subset
selection method.
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To better characterize local surface properties, we also compute
Multi-scale LBP values on the local range grids associated with the
landmarks, namely.

LBPU2

16;1ð Þr; LBPU2

16;2ð Þr;…, LBPU2

16;5ð Þr: The extracted range LBP values
on local grids using each (P,R) pair are also concatenated into a vector
respectively.

The description of local surface properties is further enhanced by
shape index [39] that we compute on all points on the local grids.
They are concatenated into a vector SI. Recall that curvature-based
features prove to be very useful in 3D FER [20,9,34] and shape index
is widely used in 3D face recognition [40,41].

To summarize, 15 types of features are extracted from the three
modalities of a textured 3D face model and used in the BBN as evi-
dence in the children nodes. Table 1 summarizes these types of fea-
tures along with their dimension.

4. Statistical facial feature model for automatic landmarking

As we aim to perform fully automatic 3D FER, we briefly present
the Statistical Facial Feature Model (SFAM), first proposed in
[25,26], which is used to locate landmarks on 3D faces with expres-
sions. The use of automatically located landmarks also gives rise to a
comparison study in Section 5 with the state of the art on 3D FER
which mostly uses manually labeled facial landmarks.

4.1. Model building

In order to efficiently learn variations on the global morphology,
local texture and local shape among training faces, a preprocessing
stage is first performed to exclude variations introduced by global
factors like head pose or face scale. Local grids are then used to remesh
local regions centered at 19 landmarks (shown in Fig. 5(a)). Intensity
and range data are extracted from these grids, as in Fig. 5(b),(c). This
Fig. 4. LBP Operator. The circular (8,1), (16,2), and (8,2) neighborhoods. The pixel values a
process ensures that the same number of points is sampled from all
training faces and that they are matched point-to-point.

SFAM is then learnt by applying PCA respectively to the three
types of features from training faces, preserving 95% of variations
for each one. The resulting model is given in Eq. (12)

s ¼ �s þ Psbs; g ¼ �g þ Pgbg ; z ¼ �z þ Pzbz ð12Þ

where �s, �g , and �z are respectively the mean morphology, mean inten-
sity and mean range vectors while Ps, Pg, and Pz are their learnt varia-
tion components respectively obtained from PCA. bs, bg, and bz are the
corresponding sets of control parameters.

Partial face instances, corresponding to local face regionswith texture
and shape configured by their morphology vector, can be synthesized by
a linear combination of these components, as shown in Fig. 6. This SFAM
is built from face scans displaying the six universal expressions. Thus,
each learnt variation mode is a mixture from all those expressions. This
facilitates the landmarking process on faces with different expressions.

4.2. Automatic landmarking

Automatic landmarking on an input 3D face scan can be considered
as a SFAM fitting process. The fitting process is tomaximize an objective
function:

f bsð Þ ¼ α
XN
i¼1

Fgi sið Þ þ β
XN
i¼1

Fzi sið Þ−
Xk
j¼1

b2j
λj

ð13Þ

whereN is the number of local regions, Fgi and Fzi are the aforementioned
normalized cross correlation (Eq. (5)) between the synthesized local
instances of the texture and range patches and their corresponding
local patches on an input scan, α and β are weight constants, k is the
number of retained landmark configuration modes and λj denotes the
re bilinearly interpolated whenever the sampling point is not at the center of a pixel.
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Table 1
15 types of features and their textual descriptions.

Symbol Textual description Dimension

D Person independent point displacement of 19 landmarks 11
Z Range values extracted from 19 local patches 4275
G Intensity values extracted from 19 local patches 4275
L Selected distances between 19 landmarks 57
SI Shape index extracted from 19 local patches 4275
LBPU2

16;1ð Þ
t LBP feature extracted at scale 1 from 19 local texture maps 4275

LBPU2

16;2ð Þ
t LBP feature extracted at scale 2 from 19 local texture maps 4275

LBPU2

16;3ð Þ
t LBP feature extracted at scale 3 from 19 local texture maps 4275

LBPU2

16;4ð Þ
t LBP feature extracted at scale 4 from 19 local texture maps 4275

LBPU2

16;5ð Þ
t LBP feature extracted at scale 5 from 19 local texture maps 4275

LBPU2

16;1ð Þ
r LBP feature extracted at scale 1 from 19 local range maps 4275

LBPU2

16;2ð Þ
r LBP feature extracted at scale 2 from 19 local range maps 4275

LBPU2

16;3ð Þ
r LBP feature extracted at scale 3 from 19 local range maps 4275

LBPU2

16;4ð Þ
r LBP feature extracted at scale 4 from 19 local range maps 4275

LBPU2

16;5ð Þ
r LBP feature extracted at scale 5 from 19 local range maps 4275
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corresponding eigenvalue in the landmark configuration model. bj de-
notes the control parameter that generates the landmark configuration
s given the statistical model. The values of α and β are fixed and are

computed as the ratios of
XN
i¼1

Fgi over
Xk
j¼1

b2j
λj
; and

XN
i¼1

Fzi over
Xk
j¼1

b2j
λj
;

respectively, during the off-line training. During the fitting process,
the first two terms Fgi and Fzi are computed as two response meshes
(Fig. 7), describing respectively the similarity between the local texture
and its corresponding instance from SFAM, and the similarity between
local shape and its corresponding instance. High values imply high
chance to locate the landmark, since the corresponding local texture
and range match the texture and range instances by SFAM given the
landmark configuration s. The third term represents the Mahalanobis
distance, introduced to limit the generation of unplausible configura-
tions since high absolute values of bj results in the outlier of synthe-
sized configurations s in Eq. (12).

The fitting algorithm as described in Algorithm 3 encompasses five
steps to locate the landmarks Ŝ. The optimization in step 2 and 5 is
processed by Nelder–Meade simplex algorithm [42] for its robustness
to local minimum. More details can be found in [26].

Algorithm 3. SFAM fitting for landmarking input

Input: A textured 3D scan and a trained SFAM.
Output: Optimized morphology parameters.

1. Given a 3D face, its head pose is first compensated using ICP
algorithm.

2. The morphology parameters bs are optimized to minimize the dis-
tance between correspondingmorphology instances and their closest
points on the input face. In this process, only landmarks located on the
rigid facial parts are involved, such as those in the eyebrow, eye and
nose regions.
Fig. 5. Three types of features extracted from a textured 3D face scan for building the SFAM. a
remeshed local regions around each landmark, and c: range values on the remeshed local r
3. Synthesize texture and shape instances based on the optimized
morphology from the previous step.

4. Correlation meshes are computed over 19 facial regions by cross-
correlating the texture and shape instances with local texture and
shape samples obtained from a neighborhood around potential
landmark locations.

5. Morphology parameters are optimized to maximize Eq. (13), i.e. the
sum of values on two correlation meshes on all 19 regions while
minimizing the distance associated with the landmarks configura-
tion defined by the control parameters.
5. Discussion

By combining BBN with SFAM, a fully automatic 3D facial expres-
sion recognition system can be realized. Recall that it consists of four
main stages, as shown in Fig. 1: offline SFAM construction, offline BBN
training, online landmarking and feature extraction, and finally online
facial expression/AU recognition. Offline, SFAM is trained using a set
of textured 3D faces having different facial expressions. As described
in Section 2, a set of statistical feature models (SFMs) are also trained
offline for each class of facial expression to be recognized and each
feature used as evidence in BBN. During online recognition, faces
are first landmarked by SFAM, and then the 15 types of features are
extracted and used as evidence by BBN for Bayesian belief inference
for the recognition of facial expression as represented by the node
X. The output of the system is thus class of facial expressions whose
corresponding state has the highest belief among different expres-
sions or AUs.

As compared to other 3D model-based approaches requiring com-
putationally costly dense registration of point clouds [43,21,23], SFAM
is a morphable face model built on partial faces, which only requires a
sparse correspondence in the registration. Thus, it is computationally
much cheaper. Moreover, as each instance is only composed of local
patches, SFAM is able to deal with partially occluded faces by simply
masking the occluded regions in the fitting process [26], as well as
hard facial expressions like opening of themouth as shown in Section 5.

6. Experimental results

Extensive experimental evaluations have been conducted on two
public databases, namely the BU-3DFE dataset for the recognition of
the six universal expressions using both automatically and manually
located landmarks and the Bosphorus dataset for the recognition of
16 AUs featuring ample facial deformations as well as subtle ones.
These experimental evaluations have also compared the proposed
BBN with two other classifiers, namely SVM and Sparse Representa-
tion Classifier (SRC). In this section, we first introduce the two used
datasets and the general experimental setup, and then compare the
automatic landmarking results with the manual landmarks in terms
of accuracy. Subsequently, we describe the experimental results
: 3D morphology as defined by the locations of 19 landmarks, b: intensity values on the
egions around each landmark.
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1 There are usually more than one AU according to the expert FACS scoring, where
the acted AUs are often the most dominant AUs in the actual FACS codes.

Fig. 6. Instances of the SFAM at the ±3σit ending corresponding tobs1 ; bg1 ; bz1 : The first morphology mode explains blend variations in terms of the face size and expression; the first
texture mode explains skin color variations; the first range mode explains local curvature variations.
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respectively on the BU-3DFE and the Bosphorus datasets. These re-
sults are further discussed in comparison with literature.

6.1. Databases and experimental setup

The BU-3DFE database [15] contains 100 subjects (56% female,
44% male) with a variety of ethnic/racial ancestries. Each subject per-
forms seven expressions in front of the 3D face scanner, i.e. the six uni-
versal expressions (happiness, disgust, fear, anger, surprise and sadness)
and the neutral. Each of the six universal expressions is displayed with
four levels of intensity, from theweakest to the strongest. In our exper-
iments, we have considered the two highest intensity levels: level 3
and level 4. Generally, facial scans in level 4 capture the apex of a facial
expression whereas scans in level 3 capture its onset.
We have also used the Bosphorus dataset [44] for AU recognition.
It contains 4666 face scans from 105 subjects. This dataset contains
not only the six universal facial expressions, but also 3D face scans
displaying AUs. However, the number of AUs is not evenly distributed
over the subjects. The number of acted AUs per subject1 varies from 6
to 23. Thus, in the following experiments, subjects have been selected
based on the availability of acted AU scans.

All tests on AU and facial expression recognition followed a
10-fold subject-independent cross-validation process. Subjects were
randomly separated into 10 groups. In each round, subjects in 9
groups were used for training and the subjects in the remaining
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Fig. 7. Correlation meshes from two viewpoints. (a) and (b) are the same response mesh from 2 point of views, describing the similarity of texture instance from SFAM and texture
on the given face. (c) and (d) are the correlation mesh describing the similarity of shape instance from SFAM and face shape.
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group used for testing. The experiments were conducted 10 times so
that 3D face scans of subjects in each group were utilized as test once.
This experimental setup guarantees that each subject appears once in
the testing set and 9 times in training set and any subject used for
testing does not appear in the training set as the partition is based
on the subjects rather than individual 3D face scans.

6.2. Results of automatic landmarking

In the experiment on landmarking, we trained our SFAM using
143 face scans from 11 subjects, 6 females and 5 males, out of 100
subjects from the BU-3DFE dataset. These face scans encompass the
ones displaying the neutral expression as well as the two highest in-
tensities for each of the six prototypical facial expressions. We then
applied SFAM then to locate 19 landmarks on 1157 3D face scans of
the other 89 subjects in this dataset. This experimental setup enables
comparison of the result with that by [45] which is based on a 3D
Point Distribution Model (PDM).

Fig. 8 illustrates several locating examples with facial expres-
sion. Table 2 summarizes the mean errors (the first row) of the
landmarking algorithm in comparison with the manually labeled
landmarks used as ground truth. Table 2 also provides the standard
deviations in the second row. For comparison purpose, the third
row lists the mean errors of landmarking in [45] which only locates
five anthropometric points. As we can see from the table, the mean
errors for most landmarks remain within 5 mm, and most of standard
deviations are lower than 5 mm. Compared to the results by [45], our
approach locate more landmarks with a higher accuracy. This im-
provement can be explained by the fact that the Point Distribution
Model in [45] merely uses landmark locations as features and only
takes into account the configuration relationships of landmarks. In
contrast, SFAM characterizes each landmark location through its
global configuration relationships as well as its local properties in
terms of texture and geometric shape, thereby enabling increased
landmarking accuracy.

(1: left corner of left eyebrow, 2: middle of left eyebrow, 3: right
corner of left eyebrow, 4: left corner of right eyebrow, 5: middle of
left eyebrow, 6: right corner of right eyebrow, 7: left corner of left
eye, 8: right corner of left eye, 9: left corner of right eye, 10: right corner
of right eye, 11: left nose saddle, 12: right nose saddle, 13: left corner of
nose, 14: nose tip, 15: right corner of nose, 16: left corner of mouth, 17:
middle of upper lip, 18: right corner of mouth, 19: middle of lower lip).

6.3. Results on FER using the BU-3DFE dataset

We first experimented BBN on the BU-3DFE dataset for subject in-
dependent recognition of the six universal facial expressions. Even
though BU-3DFE database provides 3D face scans from 100 subjects
displaying the six prototypical facial expressions with 4 intensity
levels, most methods in the literature only make use of face data
from 60 subjects displaying the highest intensity levels, i.e. level 3
and 4, in their experiments. To enable comparison with the literature,
we also used face data of 60 subjects in our two experiments using
either manually labeled or automatically located landmarks. Subjects
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Fig. 8. Automatic landmarking examples from the BU-3DFE dataset with expressions of anger (a), disgust (b), fear (c), joy (d), sadness (e) and surprise (f).

240 X. Zhao et al. / Image and Vision Computing 31 (2013) 231–245
were selected randomly but were not necessarily the same for these
two tests, since in the case of using automatically located landmarks,
we need to exclude those subjects used for building the aforemen-
tioned SFAM in order not to bias the results. As the proposed BBN
can be considered as a principled way to fuse different types of fea-
tures for the purpose of FER, we further studied different fusion
schemes both at feature and score level in comparison with BBN.

6.3.1. BBN for FER
The first experimental evaluations featured several comparisons

for subject independent FER: the use of automatically located land-
marks versus manually labeled ones, the proposed BBN as classifier
versus the Support Vector Machine (SVM) [46] and the Sparse Repre-
sentation Classifier (SRC) [47], and the discriminating power of the
features extracted from each modality and modality combination.
All tests followed a 10-fold cross-validation process as described in
Section 1. Face scans in levels 3 and 4 were tested separately and
the final recognition rate was obtained by averaging the results
from the two intensity levels for all the three classifiers. For all tests
using manual landmarks, feature extraction and classifier training
were based on manual landmarks. For all tests using automatic land-
marks, feature extraction and classifier training was based on automatic
landmarks.
Table 2
Mean error (1st row) and the corresponding standard deviation (2nd row) of the 19 automa
expressions included. The 3rd row gives the mean errors of the five landmarks automatica

1 2 3 4 5 6 7 8 9

Mean 6.26 4.58 4.87 4.88 4.51 6.07 4.11 2.93 2.90
Std 3.72 2.82 2.99 2.97 2.77 3.35 1.89 1.40 1.36
Mean′ – – – – – – 20.46 12.11 11.89
For classification tests using SVM, a multi-class SVM (one-against-all)
using RBF kernel was trained respectively for each of the 15 types of
features extracted from face scans of each of the two facial expression
intensities, thus leading to 30 SVMs in total. The output of the SVMs is
a set of probabilities describing how likely a face scan belongs to each
expression class according to the type of features under test. These
probabilities (15 in total per level) were simply added together and
the testing face was then labeled by the facial expression class having
themaximum probability score. Grid searchwas used for choosing the
best parameters (c, g) over the 10 folder cross-correlation. This pro-
cess was repeated for each type of features and for each facial expres-
sion intensity level of 3D face scans, thus repeated 30 times.

For classification tests using SRC, 30 SRCs were respectively
trained following the approach proposed in [47]. The principle of
these SRC is to represent a test sample using anovercomplete dictionary
whose elements, or atoms, were training faces represented through a
given type of features. The sparse coefficients used to describe the test
sample according to atoms were obtained via a l1−normminimization
by an orthogonal matching pursuit. As in the tests using SVM, param-
eters in SRC were set empirically to obtain the best performance. The
SRC output is a set of distances between the input feature and its six
approximations generated from the sparse coefficients associated
with each facial expression class. These distances (15 in total per
tically located landmarks on 3D face scans from 89 subjects in the BU-3DFE dataset, all
lly located by [45].

10 11 12 13 14 15 16 17 18 19

4.07 3.30 3.27 3.32 4.04 3.62 7.15 4.19 7.52 8.82
2.00 1.70 1.56 1.94 1.99 1.91 4.64 2.34 4.75 7.12

19.38 – – – 8.83 – – – – –
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expression intensity level)were simply added together and the testing
face was labeled by the class having theminimum distance. For tuning
SRC training, we selected the best value from candidates [50, 60, 70,
80, 90, 100] as the max number of coefficients in terms of recognition
rate also over 10 folder cross validation. The process was repeated for
each type of features and for each intensity level, thus repeated 30
times as well. Note that in the case of BBN, this parameter tuning pro-
cess was not necessary since the unique parameter used in BBN is the
boundary of control parameter used in Algorithm 2.

The left three columns depict the recognition rates and standard
deviations of the six universal expressions based onmanual landmarks,
using SVM, SRC, and the proposed BBN, respectively. The right three
columns depict the recognition rates and standard deviations based
on automatic landmarks. The first three rows are the results using fea-
tures fromeach singlemodality, respectivelymorphology features (M),
local texture features (T), local shape features (S), the following three
rows display the results using every combination of two modalities,
and the last row shows the results for all features from the three
modalities.

Table 3 depicts all the performance figures using different experi-
mental configurations. Several lessons can be drawn from that table.
Firstly, the first three rows compare the discriminating power of the
feature sets from the three modalities, namely morphology (M), local
texture (T) and local shape (S) and the feature set from local shape
proves to be the best one for all the three classifiers regardless ofwhether
the landmarks are manually labeled or automatically located. This is
consistent with the fact that 3D face scans capture accurate facial sur-
faceswhich are sensitive to facial deformations due to facial expressions.
Secondly, When fusing feature sets from two different modalities (row
M+T,M+S and T+S)for FER, the best combination in terms of the rec-
ognition rate is T+S, thus the one combining local texture and local
shape features, which displays almost the best performance for all the
three classifiers. The combination (M+S) of the morphology and local
shape features performs secondly, further highlighting the discriminat-
ing power of the shape features in FER. Third, the performance of the
three classifiers using only morphology features, which are extracted
from the configuration of the landmarks (e.g., distances among 19 land-
marks and their displacements), highly depends upon the location accu-
racy of the landmarks involved. As we can see from the row M, there is
a drop on performance of nearly 30% when switching from manually
labeled landmarks to automatically located ones. Meanwhile local tex-
ture features (row T) and local shape features (row S) display relatively
stable performance by all the three classifiers when switching from
manual landmarks to automatic ones. However, all three classifiers re-
cord some performance drop because of errors in landmark locations
when switching from manually labeled landmarks to automatically
located ones.

When comparing BBN to SVM and SRC, we can see that SVM per-
forms the best in all the tests using the feature set from one single
modality, either morphology (M), texture (T) or shape (S), whereas
BBN and SRC are clearly behind. However, the proposed BBN with
its Bayesian inference proves to be an efficient fusion engine which
improves its recognition accuracy when more evidence is added.
Table 3
Average recognition rates for the six universal expressions with different feature configurat
over 10 fold tests are the values in the brackets.

Manual

SVM SRC BBN

M 83.6% (4.4%) 61.7% (7.9%) 76.9% (8.7
T 76.9% (6.8%) 74.7% (6.4%) 75.8% (7.5
S 84.3% (5.6%) 81.3% (6.7%) 82.9% (5.9
M+T 83.1% (6.1%) 78.3% (8.2%) 84.9% (5.8
M+S 86.4% (5.7%) 83.1% (5.6%) 86.5% (5.1
T+S 87.2% (4.3%) 83.5% (7.0%) 86.1% (4.5
M+T+S 88.1% (4.1%) 85.3% (6.8%) 89.2% (3.6
Indeed, when fusing feature sets from two different modalities, BBN
performs slightly better than SVM in the case of using manually
labeled landmarks. When all the feature sets from the three modali-
ties (row M+T+S) are fused, BBN keeps improving and performs
slightly better than SVM regardless of whether manually labeled or
automatically located landmarks were used.

Table 4 is the confusion matrix of the proposed BBN for the recog-
nition of the 6 prototypical facial expressions using the 15 types of
features extracted from 19 landmarks manually labeled (first value
in each cell) or automatically located by SFAM (second value in
each cell). The average recognition rates are 89.2% and 84.9% respec-
tively. In both case, the best recognized facial expressions are happi-
ness and surprise certainly due to their large deformation on face
meshes while fear is the least recognized since its facial display is
quite subtle. We also discover that fear and sadness expressions re-
cord the most remarkable performance drop when switching from
manually labeled landmarks to automatically located ones. This can
be explained by the fact that the accuracy of landmark locations is
more important for subtle facial expressions than exaggerated ones.

6.3.2. BBN vs. feature level fusion
As the proposed BBN can be considered as a score level fusion

method, we also carried out a comparison with a feature level fusion
scheme that we develop in this subsection. For this purpose, we made
use of the whole BU-3DFE dataset (100 subjects) and extracted 15
types of features from each face scan which, once normalized into
[0 1], were further packed into a single feature vector. Then, PCA was
applied to reduce the feature vector dimension from 55608 to 650 so
that 98% of data variations were preserved. SVM and SRCwere utilized
to classify the six universal expressions using the subject-independent
10 fold cross-validation. Grid search was used for choosing the best
parameters for SVM (linear kernel, c 4, g 0.0014). SRC parameter was
empirically chosen to obtain the best performance.

Tested on both the levels 3 and 4 data (each 650×600), the aver-
age recognition rate is 59.9% and 64.9% for classifying the six expres-
sions using SVM and SRC respectively. In contrast, with the same
experiment setup and raw data (levels 3 and 4, each 55608∗600),
the proposed BBN achieves a recognition rate of 80.9%. This experi-
ment tends to demonstrate that feature level fusion, in packing to-
gether features of different nature into a single feature vector, is not
effective for FER and probably explains why most FER techniques in
the literature perform fusion rather at score level.

6.3.3. BBN vs. late fusion schemes
In its Bayesian inference using statistical feature models (SFMs),

BBN fuses, through a simple sum rule as in Eq. (4), all the matching
scores computed between each of 15 types of features, l, extracted
from an input 3D face scan with the corresponding SFM associated
with each facial expression class x. Alternatively, some other late fusion
schemes, at score, rank or decision level, e.g., product, Borda count,
plurality voting, max, min, could also be used [48]. In this subsection,
we propose to compare BBN with two different late fusion schemes,
namely two stage classification and score, rank and decision fusion.
ions and classifiers on both manual and automatic landmarks. The standard deviations

Automatic

SVM SRC BBN

%) 54.2% (8.2%) 35.6% (7.7%) 51.1% (9.9%)
%) 74.2% (7.2%) 67.5% (7.7%) 67.8% (6.2%)
%) 80.8% (6.1%) 74.7% (6.5%) 77.3% (6.3%)
%) 76.7% (7.8%) 62.5% (6.1%) 67.8% (6.2%)
%) 80.8% (6.2%) 73.6% (6.7%) 77.5% (6.7%)
%) 83.1% (6.4%) 79.7% (7.1%) 84.9% (5.4%)
%) 82.8% (8.7%) 77.2% (6.6%) 84.9% (5.9%)



Table 4
Confusion matrix of the subject-independent expression recognition by the proposed BBN with all the 15 types of features. Left value on each cell is the result based on manual
landmarks and right value the result based on automatic landmarks.

Input\output Anger Disgust Fear Happiness Sadness Surprise

Anger 86.7/83.3% 2.5/3.3% 1.7/1.7% 0.0/0.0% 9.1/11.7% 0.0/0.0%
Disgust 3.3/3.3% 89.3/86.7% 3.3/6.7% 0.8/0.0% 3.3/0.0% 0.0/3.3%
Fear 1.7/5.1% 6.7/8.5% 79.1/67.8% 6.7/8.5% 5.0/1.7% 0.8/8.5%
Happiness 0.0/0.0% 0.0/1.7% 5.8/3.3% 94.2/93.3% 0.0/0.0% 0.0/1.7%
Sadness 6.7/13.3% 0.8/0.0% 2.5/1.7% 0.0/0.0% 90.0/83.3% 0.0/1.7%
Surprise 0.0/1.8% 1.7/1.8% 2.5/1.8% 0.0/0.0% 0.0/0.0% 95.8/94.6%
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Regarding the two stage classification fusion scheme, the basic
idea is to feed matching scores output by BBN to another classifier,
e.g., SVM or LDA, to improve recognition accuracy. For this purpose,
we concatenated, for each face scan, score sets (6 scores per set corre-
sponding to the six prototypical facial expressions to be recognized)
from all the 15 types of features into a vector (90×1). Scores of all
360 scans from 60 subjects were combined into one score matrix
(360×90) for each level. SVM and LDA were used for classification
following the 10-fold cross-validation approach to these matrixes.
For each fold, SVM and LDA were thus trained on score vectors of
54 subjects and tested on the remaining ones. The final recognition
rate was averaged on recognition rates achieved on 3D facial expres-
sion scans of intensity levels 3 and 4. For the experiment denoted
“N-sum” in Table 5, we first normalized 6 scores for each feature
type into the range between 0 and 1. These 6 scoreswere then summed
up over the 15 types of features and the class of facial expression having
the highest score was then declared as the recognized class.

As it can be seen from Table 5, BBN achieved the best recognition
rate whereas the two stage score-space based methods using LDA or
SVM were several point behind. N-Sum was in between these two
performances. This performance difference can be explained by the
fact that the proposed BBN is a generative approach for FER. Given a
type of features among the 15, we learn a priori knowledge on feature
variations for each facial expression through a Statistical Feature
Model (SFM). The recognition of an expression is then carried out in
explicitly estimating p(X|eκ) as in Eq. (3) or equivalently logP(X|eκ)
according to Eq. (4), and to choose the facial expression maximizing
this a posteriori probability as in Eq. (5). Therefore, while the pro-
posed BBN gathers as much as possible evidence from the different
features for the inference on FER, the different matching scores, as
delivered by the 15 types of features through their SFMs and used
as input to SVM and LDA, may not be as discriminating as required
a discriminative classifier such as SVM or LDA. N-sum proceeds in
much a similar way as BBN except the fact that the scores delivered
by various types of features were first normalized in the 0.0.1 range
before their addition to produce the final score. In doing so, efficient
features with high matching scores may have their effect decreased
in the final score, thereby leading to a slight performance decrease
in comparison with BBN.

We also studied two different voting rules, namely plurality voting
and Borda count, on the score sets from BBN, SVM, SRC as used in
Table 3, compared with score level fusion schemes using Product,
Max, Min and Sum rule. In both plurality voting and Borda count
voting, each type of features represents a voter (15 in total), each
class of facial expressions represents a candidate (6 in total when
using BU-3DFE). In the former voting, each type of features used its
highest score to vote for an expression class. The expression which
Table 5
Average recognition rate (RR) for different score weighting strategies.

LDA SVM N-sum BBN

RR 82.5% 85.1% 86.5% 88.9%
has been voted the most is then recognized. In the latter voting,
each type of features gave 6 points to its highest score, 5 points to
its second highest one, …, and 1 point to its lowest score. Then the
points from 15 voters were summed up and the expression having
most points was then recognized. In the test using Max rule, the
max score from all 15 features for each expression is compared with
others and the highest one is recognized, while in the one using
Min rule, the min score from all 15 features for each expression is
compared with others and the highest one is recognized. When using
product fusion rule, we multiplied scores from 15 types of features
together for each expression and selected the highest one as the recog-
nized facial expression class. Table 6 depicts the comparison on differ-
ent score level fusionmethods for SVM, SRC and BBN respectively. Note
that the Sum Rule was the one used in Table 3.

It can be seen from Table 6 that the sum rule performs the best for
all the three classifiers while the proposed BBN achieves the highest
recognition rate. The low recognition rates by the plurality voting
rule can be explained by the information loss in the decision process
as the recognition decision is only made based on the number of fea-
ture voters, thereby discarding the matching scores or likelihoods
achieved by each type of features on the six facial expressions. Borda
Count Voting alleviates this information loss in affecting a rank number
to each matching score by a given type of features on the six facial ex-
pressions. In doing so, it enables an improvement of the recognition
rates of plurality voting by a number of points up to 25. The other fusion
rules, e.g., Max, Min, Product and Sum, take into account, each to some
extent, all the matching scores as delivered by the 15 types of features
for each facial expression. The Max rule is a kind of “Or” operator as it
says that a facial expression is recognized as long as a type of features
among the 15 has recognized it in delivering the highest matching
score, i.e. likelihood within the Bayesian framework. The Min rule is a
kind of “AND” operator as intuitively it says that a facial expression
can be recognized as long as all the 15 types of features have recognized
it. Finally, the Product rule behaves in a similarway as the Sum rule as in
taking logarithm on the Product rule, the latter becomes a Sum rule.
However, the Product rule, in taking a direct product of the matching
scores, is likely to be more sensitive to outliers in comparison with the
Sumrule. All these explain in someway that theMax andMin rules gen-
erated comparable performance figures on one side and the Product
and Sum rules similar results on the other side, the best recognition
rates being achieved by the Sum rule. These results are consistent
with the study by Kitller et al. [49] which gives a theoretical support
of the superiority of the sum rule in comparison of several other popular
rules, i.e. product, min, max, median rule along with majority voting,
from a sensitivity analysis.
Table 6
Score fusion comparison of SRC, SVM and BBN.

Plurality
voting

Borda count
voting

Max
rule

Min
rule

Product
rule

Sum
rule

SRC 32.4% 57.8% 75.6% 78.5% 84.8% 85.3%
SVM 37.4% 60.4% 74.9% 79.3% 87.9% 88.1%
BBN 36.7% 60.8% 76.1% 77.6% 88.6% 89.2%



Table 8
Confusion Matrix of the subject-independent AU recognition.

Input\output AU12 AU27 AU28 AU34 AU9 AU2 AU4

AU12 94.95% 0.00% 0.00% 0.00% 0.00% 1.01% 4.04%
AU27 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
AU28 0.00% 0.00% 95.96% 0.00% 0.00% 1.01% 3.03%
AU34 0.00% 0.00% 1.01% 89.90% 0.00% 0.00% 9.09%
AU9 1.01% 0.00% 0.00% 0.00% 89.90% 0.00% 9.09%
AU2 3.03% 0.00% 1.01% 1.01% 0.00% 90.91% 4.04%
AU4 0.00% 0.00% 1.01% 0.00% 1.01% 0.00% 97.98%
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6.4. Results of 3D AU recognition using the Bosphorus dataset

In order to highlight the flexibility and capacity of the proposed
BBN in facial expression analysis, we carried out additional experiments
on the Bosphorus dataset for recognizingAUs. Due to the data availability,
we used BBN to recognize two sets of AUs. 7 facial AUs from 100 subjects
were first evaluated and 16 facial AUs from 60 subjects were then
analyzed.

The 7 AUs used for the experiment include AU2, AU4, AU9, AU12,
AU27, AU28 andAU34. They account for ample facial displays, e.g., AU27,
aswell as subtle facial expressions, e.g., AU2, AU4. AU34 displays signif-
icant facial surface deformation almost without texture variations. All
the tests followed a 10-fold subject-independent cross-validation pro-
cess as described in Section 1. Table 7 shows the overall average recog-
nition rates using different feature sets.

As it can be seen from Table 7, the first three columns show
the recognition rates by features from each single modality, namely
Morphology (M), local texture (T) and local shape (S). Once more,
as we have already discovered from the results in Table 3, we see again
that the local shape modality, in capturing facial surface properties,
performed the best, which is followed by local texture modality and
finally the morphology modality. The following three columns are
the results combining features from any two modalities, and the last
column shows the result using all the 15 features from the three mo-
dalities. Again in line with the findings from the results in Table 3,
we can observe that the best combination, in terms of average recog-
nition rate when fusion two modalities, is local shape (S) and texture
(T), which is followed by local shape (S) and morphology (M) and
finally local texture (T) and morphology (M). The proposed BBN has
efficiently fused multiple evidences with its Bayesian inference and
displays a recognition rate up to 94% when all types of features were
used as evidence. Table 8 shows the confusion matrix of the proposed
BBN on recognizing the 7 AUs. It is worth noting that AU27 (Mouth
Stretch) featuring opening of the mouth recorded a 100% recognition
rate while subtle facial displays such as AU2 (Outer Brow raiser),
AU4 (Brow Lowerer) and AU34 (Puff) were recognized in roughly
90% cases with a peak for AU4 recognized in roughly 98% cases.

The second experimentmade use of 60 subjects out of 62 having 3D
face scans displaying all the 16AUs in order to keep the data balanced in
the experiment. These subjects were only selected based on the data
availability of the aforementioned 16 AUs. In this experiment, we de-
fined the states of the node X in BBN as the 16 AUs to be recognized
and conducted the test following the 10-fold subject-independent
cross-validation process. The results are given in Table 9 in terms of
average positive rates and average false-alarm rates for all AUs. Indeed,
recognizing each AUi can be considered as a two-class classification
according to the AUi and the non-AUi. The positive rate is defined as
PR ¼ TP

TPþFN and the false-alarm rate is FAR ¼ FP
TPþFP where TP stands for

“True Positive”, FN for “False negative” and FP for “False Positive”.
Among the 16 AUs, seven of them (AU10, AU18, AU22, AU26, AU27,
AU2, AU43) have an average PR over 90%, while 4 of them (AU14,
AU24, AU7, AU4) have average PR below 80%. Meanwhile, AU24 has
the highest FAR, which suggests that it is easily confused with other
AUs. This is also the case for AU34 and AU4 having each a FAR above
20%. On the other hand, AU43, AU27, AU22with a FAR below 5% are rel-
atively clearly identified. Globally, our BBN achieves an overall average
PR for all 16 AUs of 85.6% with an overall average FAR of 13.6%.
Table 7
Average recognition rates for 7 action units using different feature sets.

M T S M+T M+S T+S M+T+S

RR 74.60% 87.01% 91.92% 88.74% 90.19% 93.36% 94.23%
6.5. Discussion

Table 10 presents a comparison of our work with the literature in
3D FER. With the exception of our work, all the works listed in the
table are 3D geometric feature based approaches using distances
among landmarks or deformable models to capture 3D facial surface
deformations. With a 94% recognition rate [22], displayed the best
performance. However, they made use of a set of distance features
computed over the 83 manually labeled feature points provided by
the BU-3DFE dataset and require a neutral face from each subject
for distance normalization. Furthermore, as our experiments have
evidenced previously, there will be significant performance drop when
switching from the manual landmarks to less accurate automatic
landmarks.

Another remarkable performance is 90.5% recognition rate
achieved by [23]without usingmanually labeled landmarks in the testing
phase. Meanwhile, their approach requires costly dense registration and
hardly converges without specific treatment for ample facial displays
such as wide opening of the mouth. Furthermore, most misclassification
in their work occurs in distinguishing anger and sadness, which have
very subtle differences in the configuration of the eyebrows. This suggests
that in order to distinguish subtle expressions or AUs, one really needs to
resort to other features such as appearance ones.

As compared to all these works, the proposed BBN achieves a good
balance between recognition accuracy and computational simplicity
in following a hybrid approach. It takes full advantage of textured
3D face models in FER and makes use of Bayesian inference to effi-
ciently fuse multiple evidences from both geometric and appearance
features. Compared with [23], the building and fitting of the SFAM
for morphable partial face models can be easily implemented and
does not require dense registration nor specific treatment for ample
facial deformations such as wide opening of the mouth. Meanwhile,
the proposed BBN proves to be effective in recognizing both the six
universal facial expressions and AUs which account for ample facial
displays as well as subtle ones.

In [50], 22 AUs are detected automatically by estimating the defor-
mation between the registered face and the reference. Based on the
same dataset, they achieve an average PR of 91.1%. In [51], 7 AUs are con-
sidered and a AU combination on their own database is performed
allowing to achieve a PR of 89.1%. In [31], authors use aDynamic Bayesian
Net to learn the relationship between AUs on 2D Cohn–Kanade database
in order to enhance the recognition performance using Gabor features
and Ababoost classifier. They achieve an 85.8% PR on 14 AUs. Our ap-
proach achieves an average PR of 85.6% for 16 AUs, which achieves a
consistent result with the highly optimized 2D method [31].

7. Conclusion

We have proposed in this paper a unified framework based on a
Bayesian Belief Network (BBN) to recognize both facial expressions
and AUs. The proposed BBN performs Bayesian inference for 3D FER
based on SFM and fuses multiple evidence from both geometric and
appearance features. Fully taking advantage of textured 3D face
models, the geometric and appearance features are extracted from
three modalities which account for deformations of intransient and



Table 9
Average positive rates (PR) and Average false-alarm rates (FAR) of AUs.

AU2 AU4 AU7 AU9 AU10 AU12 AU14 AU17 AU18 AU22 AU24 AU26 AU27 AU28 AU34 AU43

PR 90.0% 75.0% 78.3% 81.7% 95.0% 85.0% 75.0% 80.0% 91.7% 90.0% 76.7% 91.7% 91.7% 81.7% 88.3% 98.3%
FAR 3.6% 26.2% 13.0% 5.8% 10.9% 19.0% 23.7% 7.7% 14.1% 3.6% 40.3% 12.7% 3.5% 7.5% 20.9% 4.8%

Table 10
Result comparisons between our method and state-of-the-art methods for FER.

Method Methodology Subjects Expressions Manual
landmarks

Results

[17] Neural network 60 7 Yes (23) 87.9%
[22] SVM 60 6 Yes (83) 94.7%
[20] LDA 60 6 Yes (64) 83.6%
[18] AdaBoost 60 6 Yes (83) 87.1%
Our approach BBN 60 6 Yes(19) 89.2%
[23] Bilinear model 100 6 No 90.5%
[19] Modified PCA 60 6 No 81.7%
Our approach BBN & SFAM 60 6 No 84.9%
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transient facial components. When combined with our previously
developed morphable partial face model (SFAM), the proposed BBN
achieves fully automatic FER.

Experimented on the two public databases, namely the BU-3DFE
dataset for recognition of the six universal facial expressions using
both automatically andmanually located landmarks and the Bosphorus
dataset for recognition of 16 AUs, the proposed BBN proves to be a
powerful engine by its Bayesian inference to fuse multiple features
from the three modalities and shows its effectiveness for FER. The pro-
posed BBN achieved average recognition rates of 94.2% and 85.6% for 7
AUs and 16AUs respectively and 89.2% and 84.9% for the six universal ex-
pressions using manually and automatic labeled landmarks respectively.

In the future, we want to adapt the proposed BBN for the recogni-
tion of multiple AUs as in [34] and envisage also performing joint in-
ference based on the BBN for both 3D face and expression recognition.
Furthermore, we also want to better characterize the dynamics of
facial displays as we did partly in this paper when measuring dis-
placement of the landmarks.
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