
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2012)
J. Bender, A. Kuijper, D. W. Fellner, and É. Guérin (Editors)

Generic Spine Model with Simple Physics for Life-Like
Quadrupeds and Reptiles

Ahmad Abdul Karim1,2, Alexandre Meyer1, Thibaut Gaudin2, Axel Buendia2,3 and Saida Bouakaz1

1 Université de Lyon, CNRS
1 Université Lyon 1, LIRIS, UMR5205, F-69622, France

2 Spir.Ops Artificial Intelligence, Paris, France
3 CNAM − CEDRIC, 292, rue St Martin, 75003 Paris, France

(4 (5 (3 (2 (1

Figure 1: Example of our system generated animation: from right to left, a wolf animated using the pseudo-physics and flexible
spine model.

Abstract
We propose a pseudo-physics system and a spine model that can be coupled to generate life-like locomotion
animations of quadrupeds and reptiles. The pseudo-physics system uses minimalist particle-based physics and
values of the gait pattern to generate the sinusoidal-like ballistic movement of the pelvis observed in nature. While
the spine model uses simple geometry-based calculations and 3D Hermite curves to generate a flexible spine
model, giving the animated creatures more agility. Our final system is totally controllable by the user in order to
generate any desired style.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Animated creatures in virtual worlds like arachnids,
quadrupeds, reptiles etc. should have the ability to move
freely in a convincing and a life-like way, in order to make
the virtual experience more immersive. The movement of
these creatures is governed essentially by their morphology,
as their complex anatomies impose constraints on their
way of displacement. They move in different locomotion
styles based on different sets of gait patterns. Simulating
the actual physics and anatomy constraints of these multi-
legged characters is quite complex. But in most computer-
based applications like games or multimedia virtual worlds,
the most important thing is the plausibility of the generated
motion [BHW96] more than the accuracy of the calculations.

Even with simplified calculations, produced animations
can be realistic and believable in comparison to motions
generated using complex physics-based calculations. Plus,
they offer a better control over the final animation.

Contribution. We propose a simple pseudo-physics
system and a generic spine model that help to animate
virtual creatures in a life-like way (Figure 1). The goal of
the pseudo-physics system is to generate the sinusoidal-like
ballistic movement of the pelvis observed in nature. To do
so, we simplify calculations by using particle-based physics
equations. Based on the gait pattern and Newton second laws
of physics we calculate the force that each foot is exerting on
the pelvis on each simulation step. We also add a flexible
spine model when simulating quadrupeds and reptiles to

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

give them the agility observed in real-life animals. Our
spine model is quite generic and can be applied on different
morphologies. It uses simple geometry-based calculations
and 3D Hermite curves. By coupling the spine model with
the pseudo-physics system the final locomotion becomes
believable and more realistic. These added components are
totally controllable giving the user the ability to generate any
needed locomotion style.

2. Related Work

There are many techniques for generating locomotion, many
of them target human-like morphologies (bipeds). Multon
et al. in [MFCD99] and more recently van Welbergen et
al. in [vWvBE∗10] identified two main groups: Data-Driven
techniques and Procedural-Based techniques with two
subcategories physics-based and kinematic-based. Skrba et
al. in [SRH∗08, SRH∗09] show in their survey that same
techniques are used for quadrupeds animation: Data-Driven,
physics-based models, IK systems or some combination of
the above.

A wide variety of input data are used to generate multi-
legged characters animation. For instance, early work of
McKenna et al. in [MZ90] uses gait patterns observed
in biology and oscillatory-based dynamics to animate a
cockroach model that adapts to planar and uneven terrain.
More recently, Favreau et al. in [FRDC04] extract 3D
cyclic motion of animals from video sequences using image
processing techniques. Kry et al. in [KRFC09] animate a
dog model by making a subset of its joints vibrates with
specific periods and with low frequencies, which induces
passive movement in other connected joints and rigid bodies.
In [CKJ∗11], Coros et al. use gait patterns and dynamic
values (forces/torques) extracted from MoCap, to animate
a dog capable of a wide range of locomotion on a straight
line. These systems are, most of the time, morphology
specific meaning that they can animate only a specific
morphology like a dog in [CKJ∗11], a horse in [TCHL12] or
a quadruped robot (Called BigDog by Boston Dynamics TM)
in [RBNP08].

We are more interested in morphology independent
systems like the PODA system proposed by Girard et
al. in [GM85, Gir87] as they can animate a multitude of
morphologies with nearly no constraints. PODA is one of
the earliest procedural-centric locomotion controllers. They
use it to animate a wide range of multi-legged characters
on planar terrain (bipeds, quadrupeds, etc.). The user only
needs to specify the gait pattern (an example of a gait
pattern is shown in Figure 4), everything else is calculated
automatically. They add pseudo-physics calculations to the
pelvis of the multi-legged character, making it reacts to the
feet movement in the horizontal and sagittal plane in a more
believable way. But in their system the user needs to fix and
tweak by hand the force of each foot in order to achieve the
needed effect, while in our system (Section 4) we aim for a

transparent control for the user with no need for any extra
settings.

Another interesting system is the one used in the game
Spore TM (by Maxis Studio TM). Where Hecker et al. in
[HRE∗08] created a system capable of animating multi-
legged characters whose morphologies are unknown when
creating the actual animation system. These characters can
be created by the user in run-time. Their animation database
contains semantically generalized keyframe data specialized
in real-time based on the actual new morphology.

Finally, most of the systems discuss the importance of
adding a spine-like model while animating multi-legged
characters (specially quadrupeds) in order to generate more
natural results [CKJ∗11, CR06]. An important issue that we
address in more details in Section 5.

3. Locomotion Controller

 Pelvis

Gait

Manager

 User

Figure 2: Locomotion controller overview.

Locomotion is the act of moving from one place to
another. For most terrestrial animals that means putting one
foot in front of the others in a successive way until reaching
the designated point of interest (target). During a normal
foot movement there are two main phases Stance and Swing
phase [INM66]. During the stance phase a foot is blocked
on the ground. While in swing phase (flight phase) the foot
flies in a parabolic-like curve toward its target without any
ground contact.

Our system follows these principles when generating
locomotion. It is kinematic-based and inspired by the
locomotion controllers found in [GM85, Gir87, AGM∗12,
aCT12]. The overall locomotion process is computed by two
main blocks as shown in Figure 2:

• The character controller is the central main structure that
manages the overall locomotion.

• The gait manager regulates the feet tempo according to
the movement patterns defined by the user.

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

The character controller is in charge of two main tasks:
managing the movement of the feet and computing the
pelvis 3D movement. Concerning the movement of the feet,
at each time step, the gait manager informs the character
controller about the feet that are going to enter in swing
phase. For each one of these feet, the character controller
calculates a parabolic/ballistic based trajectory toward a
footprint target calculated based on the current creature
speed and orientation (Figure 3). This foot 3D trajectory
can be more complex and incorporates environment and
obstacle avoidance like in [AGM∗12]. For the stance feet,
the character controller simply blocks their 3D position on
the ground.

The 2D movement of the pelvis on the ZX-plane
(assuming the Y -axis is up) is calculated using only the speed
and orientation. The computation of the pelvis height is more
complex as will be explained in Section 4. By fixing the
pelvis height based on the user preferred height only, the
character controller produces an animation where the pelvis
floats in un-natural way (see Figure 3).

CCD IK

System Foot Parabolic

Trajectory

Pelvis Trajectory

Figure 3: The locomotion generated for a 5-legged robot.
Notice the un-natural floating-like pelvis trajectory.

The gait manager organizes and visualizes the pattern
of the feet’s cycle. Since locomotion is cyclic, it seemed
natural to represent the gait with circles. As illustrated in
Figure 4, each circle represents a foot, with the colored
sectors representing the swing phase portion of the foot
movement. The feet needle activates sectors and deactivates
others based on its current position, while turning clockwise.
Activating a sector means that the corresponding foot should
enter its swing phase.

The final animation is generated based on the input
parameters that the user provides and controls in real-time.

• Gait/Tempo: using our interface, the user designs each
foot cycle (stance and swing phases). These cycles
describe the tempo of the feet movement. The final gait
can be symmetrical or asymmetrical.
• Locomotion speed: speed of the movement in

meters per second.
• Locomotion direction: the needed orientation on the ZX-

plane.

Foot Currently

in Swing

Phase

Feet Needle

Next Feet to enter

Swing Phase

Un-active

phases

Foot 0
Foot 1

Foot 2
Foot 3

Needles

Rotation

Direction

Figure 4: An example of a four feet gait as shown by the gait
manager. With this interface, the user can edit the pattern
creating the needed gait.

• Preferred height: the preferred height of the creature
pelvis in meter.

• Joints limits: the leg and spine joints limits in radian.

We use the Cyclic Coordinate Descent (CCD) method
proposed in [Lue84, WC91] to calculate the position and
orientation of the intermediate leg joints (see Figure 3). The
CCD iterates through the joints, typically starting with the
one closest to the end-effector, and varies one joint variable
at a time based on a heuristic. Unlike the Jacobian Inverse
method, which distributes joint rotation changes equally
along the chain, CCD has a preference of moving distal links
first. We chose this CCD IK system thanks to its simplicity
and the ability to integrate joint constraints easily.

4. Pelvis Movement Using Pseudo Physics

The previous character controller moves the pelvis based on
the user needs: speed, orientation and preferred height. But
by only doing so, the pelvis floats above the ground in an
unnatural way, as shown in Figure 5(a).

a)

b) Pelvis Trajectory

2D Side View

Figure 5: Possibilities of pelvis movement for a spider
model. a) A fixed pelvis movement producing a straight line.
b) More realistic sinusoidal-like ballistic pelvis movement
produced implicitly by the feet gait pattern. Frequency of
oscillations is exaggerated on purpose in (b) to illustrate the
controllability of our system.

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

On the other hand, many biomechanics based stud-
ies and observations show that the pelvis trajectory
in humans [INM66] (see Figure 6) and in most an-
imals [Muy57] (see Figure 7) is sinusoidal-like. The
amplitude and frequency of this movement vary based on
several criteria’s, like the creature morphology, the overall
speed, the gait pattern, the style and so on. The goal of
this section is to implicitly generate this sinusoidal-like
ballistic pelvis movement observed in nature, as shown in
Figure 5(b).

Figure 6: The pelvis trajectory of a walking human, courtesy
of [INM66].

Figure 7: The pelvis trajectory of a galloping dog, original
image courtesy of [Muy57].

We generate this movement by applying on the pelvis
a pseudo particle-based physics. We have deliberately
chosen this simplified approach for ease of implementation,
performance and controllability. We must emphasize that
more sophisticated physical approaches like in [CKJ∗11]
provide realistic results but with many control restrictions.
This particle motion on the sagittal plane (the up Y -axis)
is governed by the gravity force (pushing downward) and
the feet force (pushing upward), shown in Figure 8. While
in the horizontal and coronal plane (ZX-plane) the pelvis
particle movement is governed by the character controller
commands.

For the purpose of clarity, let us study the case of having
only one foot (n = 1). In this case, the foot and the pelvis

particle can be seen as a pogo stick†, shown in Figure 8,
with the foot (leg) supporting the whole mass m of the
pelvis alone. This foot pushes the pelvis particle upward
with certain amount of force when the pogo stick spring is
compressed. We will later discuss the case of a multi-legged
character.

Y-axis

Ground
Time

Pelvis Particle

Leg

Spring

Gravity

Foot

Touching

the Ground

Leg

Compression

Leg Max

Compression

Spring Force

Release

Air Phase

Foot

Force

Figure 8: The trajectory of the pelvis particle when a pogo
stick is used to represent its relationship with one leg.

To calculate the force that this foot is exerting on the
pelvis particle, we use the gait pattern set by the user as
follows. Each foot has two phases: stance and swing phase.
In swing phase the foot cannot participate in pushing the
pelvis, as it does not have any contact with the ground.
While in stance phase it can push the pelvis upward. We
decompose this stance phase into two other distinctive
phases, as shown in Figure 9: reception phase where the
foot decelerates the downward movement of the pelvis to
a stop, propulsion phase where the foot starts pushing the
pelvis upward in order to prepare for the swing phase. The
duration of the reception phase is equal to the duration of the
propulsion phase and it is half of the stance phase duration
(Treception = Tpropulsion =

1
2 Tstance), a choice we made based

on biomechanics observations [Ale96, Ale03, Muy57].

Swing

Phase

Reception

Propulsion

Stance

Phase
Rotation

Direction

Swing

Phase

Reception

Propulsion

Stance

Phase

(a) (b)

Rotation

Direction

Figure 9: Reception and propulsion phases during the foot
stance phase. In (a) swing phase has the same duration of
the stance phase while in (b) swing phase is longer.

† A pogo stick is a device for jumping off the ground in a standing
position with the aid of a spring, used as a toy or exercise equipment.
It consists of a pole with a handle at the top and footrests near the
bottom, and a spring located somewhere along the pole.

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

For now we are studying the case of having only one foot
supporting the whole mass m of the pelvis. We use Newton
second law’s of motion to calculate the force which this foot
is going to apply on the pelvis particle. We consider only the
Y axis in our computations.

m ·apelvis =W +Ff oot (1)

apelvis is the pelvis acceleration, W is the weight force and
Ff oot is the foot pushing force, all on the Y axis.

m ·apelvis =−m ·g+m ·a f oot (2a)

apelvis =−g+a f oot (2b)

g is the gravity acceleration (which is negative) and a f oot
is the foot acceleration on the Y axis. We now calculate
this foot acceleration (a f oot) based on the gait pattern. This
acceleration represents its actual upward force. We know
that:

apelvis =
vT − vC

T
(3)

With T a duration, vT is the needed velocity to achieve at the
end of that duration (T) and vC is the current velocity. By
replacing apelvis by its value from equation 2b, equation 3
becomes:

−g+a f oot =
vT − vC

T
(4a)

a f oot = g+
vT − vC

T
(4b)

In reception phase, the foot goal is to decelerate the pelvis
into a stall (vpelvis = 0). The beginning of this phase is
the end of a swing phase, which means that the pelvis
will be falling down under the gravity force. So the goal
of this phase is to achieve vT = vpelvis = 0 with T is
the reception phase duration. By replacing the values in
equation 4b we can easily calculate the needed acceleration
a f oot of this foot, which represents this foot pushing upward
force (Figure 10).

In propulsion phase, the foot goal is to achieve a
vpelvis at the end of the stance phase, that ensures the
ballistic movement of the pelvis during this foot swing
phase (Figure 10). To do so, we use the following basic
motion equation:

yt =
1
2

at2 + v0t + y0 (5a)

a =−g (5b)

v0 =
yT − y0

T
− 1

2
gT (5c)

v0 = vpelvis is the needed velocity (Figure 10), T is the
(propulsion + swing) phase duration, y0 is the current
height and yT is the preferred height fixed by the user.
By replacing the values in equation 4b we calculate the
needed acceleration a f oot of this foot. These calculations are
done on each simulation step, giving us the punctual force
(acceleration) that this foot is going to exert on the pelvis

Reception

Decelerate

Propulsion

Accelerate

Preferred

Height

Needed

Swing

Y-axis

Time

Ground

Preferred Height

Ground

Reception Propulsion Swing

Time

Needed

(a

(b

Figure 10: Sinusoidal-like ballistic pelvis movement
generated implicitly using the foot force calculated based
on the reception and propulsion phases. Preferred height is
the one fixed by the user. a) Trajectory is generated using the
Gait Pattern (a) from Figure 9(a). b) Trajectory is generated
using the Gait Pattern (b) from Figure 9(b).

particle on each simulation step. Again, during swing phase
the foot acceleration is null (a f oot = 0).

In the case of a multi-legged character n > 1, meaning
that we have several feet interacting with the pelvis particle.
Let ai be the acceleration of the foot i calculated using
the previous equations, which was denoted a f oot previously.
This acceleration is calculated for each foot using the
postulate that it is alone and using its gait pattern. So the
pelvis particle needs to integrate all forces (ai) of each
foot to calculate its final apelvis. In our system we use the
postulate that m = n×mi where n is the number of feet
and mi is the share of mass that each foot supports. As if
the feet share equally the mass of the pelvis particle. Thus,
apelvis = ∑

n
i=1 ai/n and the resulting sinusoidal-like ballistic

movement of the pelvis is shown in Figure 11. A weighted
average can also be used in order to give more importance to
legs with more masses (heavy feet), back legs or any other
user needs.

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

Foot 0

Foot 1
Foot 2
Foot 3
Foot 4

Reception Mode

Propulsion

Mode

Swing Phase

Current Gait

Gait Needle

Final Pelvis

Trajectory

Trajectory of Each Foot

Figure 11: The trajectory per foot and the final pelvis
sinusoidal-like ballistic movement.

If the gait pattern is symmetrical as in Figure 11 (swing
phase duration is equal to the stance phase duration) the
resulting pelvis movement is a sinusoid. But with other gait
patterns, the pelvis movement can be totally different as
phases duration can be different. Like a gait pattern with 2

3
swing phase and 1

3 stance phase, illustrated in Figure 9(b)
with the resulting trajectory in Figure 10(b). The user has
a total control over this movement through the gait pattern
with no need to set any extra values. On top of that,
these pseudo physics calculations are used to validate the
plausibility of the gait pattern designed by the user. As with
a badly designed gait pattern the forces calculated will be too
large and not natural. We must note that any change in the
character speed can occur only during the propulsion phase,
as it is the only phase where a foot is virtually propelling the
multi-legged character forward.

5. Spine Model

Quadruped animals like mammals (dog, horse, wolf, etc.)
and reptiles (crocodile, lizard, gecko, etc.) have a flexible
spine, which is an essential component for these type
of animals during locomotion and other types of move-
ments [Ale96, Ale03, Muy57]. They use the flexibility of
this structure into their advantage (see Figure 12) to achieve
a high variety of locomotion styles, as it gives them more
agility and more Degrees of Freedom (DOF).

A variety of kinematic quadruped systems [SRH∗08,
SRH∗09] implement a flexible spine in order to achieve
more realism in the final generated animation. In [CKJ∗11],
Coros et al. show how the produced motion of their
quadruped (a dog) loses its plausibility and naturalness when
a rigid spine is used. By adding a flexible spine model, the
animated wolf illustrated in Figure 13 looks more natural as
it turns in a more realistic way.

To add this flexible spine model, we decompose the multi-
legged character morphology into several virtual pelvis
nodes (shoulders), seen in red in Figure 12 and in Figure 14.

Figure 12: The deformation of the dog flexible spine
structure (in green) while galloping, original image courtesy
of [Muy57].

Current Orientation

Needed

Orientation

Rigid Spine Flexible Spine

Simulation Possibilities a) b)

Figure 13: The visual difference of adding a spine model
when executing a change in orientation command. a)
Without a spine, the wolf model turns in a rigid way. b) With
a flexible spine, the wolf model turns in a more natural way.

Each foot is connected to one of these nodes, except for
the head node which has no foot connected to it. These
virtual pelvis nodes (pelvis nodes for shortening) are quite
independent in regard to height control, pitch control,
footprint placement, etc. and are connected by the flexible
spine model.

We calculate this spine model using four successive
steps, described in Figure 15). Firstly, on the horizontal and
coronal plane (ZX-plane) then on the sagittal plane (Y -axis)
for simplification. On the ZX-plane we concentrate on the
2D orientation (Section 5.1) and translation (Section 5.2),
while on the sagittal plane we concentrate on the elevation
and pitch control (Section 5.3). In Section 5.4, we put
everything together to calculate the final 3D spine model.

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

Foot Trajectory

Virtual Pelvis Node:

Head

Virtual Pelvis Node: feet

Spine

Spine

Spine
Up Pitch

Feet

2D Side View

Ground

Figure 14: The pelvis virtual nodes extracted from the
morphology of a fictional 6-legged creature.

Step 1: On ZX

Rotation

Step 2: On ZX

Translation

Step 4: In 3D

Hermite Curve

Step 3: On Y

Elevation and Pitch

Final

Spine

Model

New Orientation and position in

2D after Rotation

Elevation and Pitch of

2D Pelvis Nodes

New Orientation and position in

2D after Advancing

Figure 15: A workflow explaining the different steps used to
calculate the flexible spine model.

5.1. Step 1: Spine Orientation

In Figure 16, we explain how the rotation (orientation
change) is achieved. The spine nodes are nodes between the
virtual pelvis nodes and part of the spine model with no foot
attached to them. An exception is the head node which is
considered as a virtual pelvis node. We need to calculate the
final position and orientation of the spine nodes as they are
part of the original multi-legged character spine morphology.

When a new orientation is needed (on the ZX-plane), we
propagate this needed orientation on the pelvis nodes from
the head node toward the back pelvis node. Each pelvis node
will try to satisfy its share based on its relative angular limits,
sending the unsatisfied rest in the propagation direction (the
joints limits are fixed by the user). When all pelvis nodes
are constrained, as in Figure 16 - Step 1.3, we rotate the
whole spine around one of the pelvis nodes in order to
satisfy the needed orientation. In our animation system we
always choose the pelvis node just before the head node,
a preference that we observed in real-life animal videos.
In all previous steps, bones length is always satisfied. So
after calculating the position of the pelvis nodes, we place
the spine nodes between them based on this bones length
constraint.

We must note that a pelvis node can be constrained by
joints angular limits and by the feet attached to it. For
example, a pelvis node with a fully extended foot in stance

Head Node

Pelvis Node

Pelvis Node

Back Pelvis Node

Spine Nodes

Needed

Orientation

Turn Around

Previous Pelvis

Node

Turn Around

Previous

Pelvis Node
Respect

Bones

Lengths

All Pelvis Nodes are

still constrained

Turn Spine around

a Pelvis Node

Head Node

Step 1.1 Step 1.2 Step 1.3

Needed

Orientation

X

Z

Back Pelvis

Node

Turn

Around

Self

Fixed

Fixed

Fixed

All Pelvis Nodes are

constrained now

Current

Orientation

X

Z

2D Top View

Angular

Limit:

Cannot

turn

Step 1.4

Figure 16: A step by step illustration that shows how the
change of spine orientation is computed on the ZX-plane.

phase cannot move without breaking the leg bone length
limit. These kind of constraints are processed in the final
step of our method (Section 5.4).

5.2. Step 2: Spine Advancing

In Figure 17, we explain how we translate the spine model.
Based on the current orientation and the needed distance,
a new head node position is calculated (the target head
node in red). The needed distance is calculated using the
needed pelvis speed fixed by the user. To maintain a coherent
movement of the spine model, we place the virtual pelvis
nodes (in blue) on the previous step spine model (in black)
in a way that respects the bones length constraint. In this
way, the last step spine model is considered as a support
model that helps in maintaining the fluidity of the movement.
In Figure 17(b), we re-calculate the relative orientation
between pelvis nodes based on the new positions and the
support model. For the back pelvis node, we change the
relative orientation in way that relaxes the constraints (in
green) in a temporal way. The duration of this relaxation
is based on empirical data. At the end of this step, we
obtain the position and orientation of the spine model on
the ZX-plane and 3D calculations begin. In Figure 22 and
in the accompanying video we show the animated creatures
reacting to external pushes. To achieve that, we integrate
these pushes in this step by varying the 2D position of a
pelvis node based on the external push.

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

X

Z

No change in

relative

orientation

Change in relative orientation

Head

Node

Back Pelvis Node

Target Head

Node

Length

Constraint

Change in

relative

orientation

a) b)

Pelvis

Node

Pelvis

Node

Back Pelvis Node

Place Spine Nodes

2D Top View

Target

Head

Node

Figure 17: Illustration on how we translate the pelvis and
spine nodes, on the ZX-plane, based on the orientation and
needed distance.

5.3. Step 3: Spine Elevation and Pitch

As we decomposed the character pelvis into several virtual
nodes, we decompose the height and pitch calculations into
its respective nodes, as shown in Figure 18. We integrate the
pseudo physics system in each virtual pelvis nodes to add
realism to the spine model. By doing so, the final needed
pelvis node elevation is calculated using the pseudo particle-
based physics instead of the preferred height only. We must
emphasize that the final visual position of each pelvis node
is independent from the height calculated by the pseudo
particle-based physics system. This is explained in the final
step.

Foot Induced Pitch

Spine

Pelvis Node

Ground

Foot Induced

Pitch

Pseudo

Physics

Pseudo

Physics

Figure 18: Computation of each node’s height using the
pseudo-physics system and computation of each virtual
pelvis node pitch.

For the pitch angle of each pelvis node, we calculate
it using the relative position of each foot. Let

−→
Vi be the

vector that connects the current pelvis node with the foot
i (in orange in Figure 18). We calculate the perpendicular
vector on

−→
Vi in the direction of the creature progression. This

perpendicular vector represents how much this foot affects
the pitch angle of its pelvis node. We call this perpendicular
vector the foot induced pitch, and the final angle of the pelvis
node is an average of all the feet induced pitches.

5.4. Step 4: Final 3D Spine

Using the 2D positions calculated in Step 1-2 (Section 5.1
& 5.2) and elevations calculated in Step 3 (Section 5.3), we
obtain a preliminarily 3D position for each virtual pelvis

node. And using the 2D orientations calculated in Step 1-2
and pitches calculated in Step 3, we obtain a preliminarily
tangent direction for each of them. We construct a B-Spline
(Hermite) curve between these 3D positions using the
previous tangents data. We sample this curve using the
bones length constraint in order to calculate the final pelvis
and spine nodes position and 3D orientation. By doing so,
the visual representation of each pelvis node can have a
different 3D position from the one calculated in the previous
steps. We consider the 3D positions calculated until Step 3
as guidelines for the Hermite curve, making the pseudo
particle-based physics system independent from the visual
system. Sometimes, the final position of the virtual pelvis
nodes can not be satisfied by the CCD IK system because
of joints constraints. In this case, Step 4 is repeated based
on the closer position that the IK system can ensure from
the needed one. In Figure 19, we show the final generated
flexible spine model on an abstract lizard model. Its spine
consists of 3 pelvis nodes and 9 spine nodes.

2D Spine Model on

ZX-Plane

Final 3D Spine

Step1,2

2D Model

Sampled

Hermite

Curve

Pitch

Elevation Elevation

2D

ordination

Figure 19: Final generated flexible spine model in an
abstract lizard model.

6. Results and Conclusion

In the accompanying video we show the capabilities of
our system in animating multi-legged characters in life-like
way using the components presented in this article. Final
simulation is real-time (30fps) even with several creatures
at the same time.

In Figures 20, we show a frame by frame snapshot of a
wolf running with a gallop like gait. With the integration of
the pseudo physics and the flexible spine, the wolf moves in
a quite natural and life-like way, relatively similar to Figure 7
and 12.

In Figures 21, we show a frame by frame snapshot of
a lizard running upward. By adding a visual yaw effect to
the spine model tangents, the animated lizard moves in a
believable way compared to a real life lizard. We calculate
the yaw value for each foot based on its current position (in
white in Figures 21) and its rest position (in green). The
value of the final visual yaw effect is the average yaw for
all feet.

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

In Figures 22, we show a frame by frame snapshot of a
wolf reacting to an external push. The presented spine model
is quite generic and capable of integrating external forces
in its own movement. These push forces are integrated in
Step 3 (Section 5.3).

We presented two totally controllable components that
can be added easily to any locomotion system in order
to generate believable and life-like locomotion animations
for virtual creatures. The presented pseudo-physics system
and spine model use the minimum calculation possible in
order to generate the needed effects, without the need for
complex physics or anatomic based simulations. We do not
implement any balance strategies when the system reacts to
external pushes. Plus, there can be some leg intersection as
our character controller generates the parabolic trajectory
of the feet with no special avoidance treatment. Adding
these balance strategies, using more morphology specific IK
system and doing 3D planning for feet trajectory to avoid
leg collision are our main focus in future works, as they add
more believability to the animated creatures.

Spine Pitch
IK

Systems

a) b)

Figure 20: A wolf running to the left with its spine model
being deformed based on the pseudo physics and the pitch
control. a) 3D mesh. b) spine model and IK systems

Visual Yaw

Effect

Figure 21: A lizard running upward in a believable way
compared to a real life lizard, the top image is courtesy
of [Mar93]. The visual yaw effect is calculated using the
current position of the feet on the ZX-Plane.

1) 2) 3)

4) 5) 6)

7) 8) 9)

Normal Run

Push

Starting Push

Integration

Back To

Normal Run

Figure 22: A wolf reacting to an external push on the
shoulder level.

c© The Eurographics Association 2012.

A. Abdul Karim, A. Meyer, T. Gaudin, A. Buendia & S. Bouakaz / Pseudo-Physics & Spine Model

References
[aCT12] AP CENYDD L., TEAHAN B.: An embodied approach to

arthropod animation. Journal of Computer Animation and Virtual
Worlds (July 2012). 2

[AGM∗12] ABDUL KARIM A., GAUDIN T., MEYER A.,
BUENDIA A., BOUAKAZ S.: Procedural Locomotion of Multi-
Legged Characters in Dynamic Environments. Journal of
Computer Animation and Virtual Worlds (July 2012). 2, 3

[Ale96] ALEXANDER R.: Optima for animals. Princeton
paperbacks. Princeton University Press, 1996. 4, 6

[Ale03] ALEXANDER R.: Principles of animal locomotion.
Princeton University Press, 2003. 4, 6

[BHW96] BARZEL R., HUGHES J. F., WOOD D. N.: Plausible
motion simulation for computer graphics animation. In
Proceedings of the Eurographics workshop on Computer
animation and simulation ’96 (New York, NY, USA, 1996),
Springer-Verlag New York, Inc., pp. 183–197. 1

[CKJ∗11] COROS S., KARPATHY A., JONES B., REVERET
L., VAN DE PANNE M.: Locomotion skills for simulated
quadrupeds. In ACM SIGGRAPH 2011 papers (New York, NY,
USA, 2011), SIGGRAPH ’11, ACM, pp. 59:1–59:12. 2, 4, 6

[CR06] CLAUZEL G., REVÉRET L.: Animation 3D En
Temps-Réel De Quadrupèdes Par Simulation Physique Rapport.
Master’s thesis, INRIA Rhône-Alpes, 2006. 2

[FRDC04] FAVREAU L., REVERET L., DEPRAZ C., CANI M.-
P.: Animal gaits from video. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, SCA (Grenoble, France,
2004). 2

[Gir87] GIRARD M.: Interactive design of 3-d computer-
animated legged animal motion. In Proceedings of the 1986
workshop on Interactive 3D graphics (New York, NY, USA,
1987), I3D ’86, ACM, pp. 131–150. 2

[GM85] GIRARD M., MACIEJEWSKI A. A.: Computational
modeling for the computer animation of legged figures. In
Proceedings of the 12th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1985),
SIGGRAPH ’85, ACM, pp. 263–270. 2

[HRE∗08] HECKER C., RAABE B., ENSLOW R. W., DEWEESE
J., MAYNARD J., VAN PROOIJEN K.: Real-time motion
retargeting to highly varied user-created morphologies. ACM
Trans. Graph. 27 (August 2008), 27:1–27:11. 2

[INM66] INMAN V. T.: Human locomotion. Canadian Medical
Association (1966). 2, 4

[KRFC09] KRY P., REVÉRET L., FAURE F., CANI M.-P.: Modal
locomotion: animating virtual characters with natural vibrations.
Comput. Graph. Forum 28, 2 (2009), 289–298. Special Issue:
Eurographics 2009. 2

[Lue84] LUENBERGER D. G.: Linear and Nonlinear Program-
ming. Addison-Wesley, 1984. 3

[Mar93] MAREY E.-J.: Locomotion comparée chez les différents
animaux, nouvelles applications de la chronophotographie. La
Nature (1893), 215–218. 9

[MFCD99] MULTON F., FRANCE L., CANI M.-P., DEBUNNE
G.: Computer animation of human walking: a survey. Journal
of Visualization and Computer Animation (JVCA) 10 (1999), 39–
54. Published under the name Marie-Paule Cani-Gascuel. 2

[Muy57] MUYBRIDGE E.: Animals in Motion. Dover
Publications, Inc., 1957. 4, 6

[MZ90] MCKENNA M., ZELTZER D.: Dynamic simulation
of autonomous legged locomotion. In Proceedings of the

17th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1990), SIGGRAPH ’90, ACM,
pp. 29–38. 2

[RBNP08] RAIBERT M., BLANKESPOOR K., NELSON G.,
PLAYTER R.: Bigdog, the rough-terrain quadruped robot. The
17th World Congress The International Federation of Automatic
Control (2008). 2

[SRH∗08] SKRBA L., REVERET L., HÉTROY F., CANI M.-P.,
O’SULLIVAN C.: Quadruped animation. In Eurographics State-
of-the-Art Report (Hersonissos, Creete, Greece, 2008), pp. 1–17.
2, 6

[SRH∗09] SKRBA L., REVERET L., HÉTROY F., CANI M.-
P., O’SULLIVAN C.: Animating Quadrupeds: Methods and
Applications. Computer Graphics Forum 28 (2009). 2, 6

[TCHL12] TING-CHIEH HUANG Y.-J. H., LIN W.-C.: Real-
time Horse Gait Synthesis. Journal of Computer Animation and
Virtual Worlds (July 2012). 2

[vWvBE∗10] VAN WELBERGEN H., VAN BASTEN B. J. H.,
EGGES A., RUTTKAY Z., OVERMARS M. H.: Real time
animation of virtual humans: A trade-off between naturalness
and control. Computer Graphics Forum, Eurographics 2010 29
(2010). 2

[WC91] WANG L. C. T., CHEN C. C.: A combined
optimization method for solving the inverse kinematics problems
of mechanical manipulators. Robotics and Automation, IEEE
Transactions on 7, 4 (1991), 489–499. 3

c© The Eurographics Association 2012.

