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Abstract Low-cost and high-accuracy 3D face measure-
ment is becoming increasingly important in many computer
vision applications including face recognition, facial ani-
mation, games, orthodontics and aesthetic surgery. In most
cases fringe projection based systems are used to over-
come the relatively uniform appearance of skin. These sys-
tems employ a structured light camera/projector device and
require explicit user cooperation and controlled lighting
conditions. In this paper, we propose a 3D acquisition so-
lution with a 3D space-time non-rigid super-resolution ca-
pability, using three calibrated cameras coupled with a non
calibrated projector device, which is particularly suited to
3D face scanning, i.e. rapid, easily movable and robust to
ambient lighting variation. The proposed solution is a hybrid
stereovision and phase-shifting approach, using two shifted
patterns and a texture image, which not only takes advan-
tage of stereovision and structured light, but also overcomes
their weaknesses. The super-resolution scheme involves a
shape+texture 3D non-rigid registration for 3D artifacts cor-
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rection in the presence of small non-rigid deformations as
facial expressions.
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1 Introduction

Recently, low-cost and high-accuracy 3D face measurement
systems are increasingly demanded for many applications
like face recognition, facial animation, games, orthodontics
and aesthetic surgery. In most cases fringe projection based
systems are used to overcome the relatively uniform ap-
pearance of skin. These systems employ a structured light
camera/projector device and require explicit user coopera-
tion and controlled lighting conditions [22, 24]. Depth in-
formation is recovered by decoding patterns of the projected
structured light. Current solutions mostly utilize more than
three phase-shifted sinusoïdal patterns to recover the depth
information, thus impacting the acquisition delay; they fur-
ther require projector-camera calibration whose accuracy is
crucial for phase to depth estimation step; and finally, they
also need an unwrapping stage which is sensitive to ambient
light, especially when the number of patterns decreases [23].
An alternative to projector-camera systems consists of re-
covering depth information by stereovision using a multi-
camera system as proposed in [5, 24]. A stereo matching
step finds correspondence between stereo images and the
3D information is obtained by optical triangulation [13, 24].
However, the model computed in this way generally is quite
sparse. To upsample and denoise depth images, researchers
looked into super-resolution techniques. Kil et al. [10] ap-
plied super-resolution for laser triangulation scanners by
regular resampling from aligned scan points with associated
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Fig. 1 3D Sequence
Acquisition Framework of a
textured moving face.

Gaussian location uncertainty. Super-resolution was espe-
cially proposed for time-of-flight cameras which have very
low data quality and a very high random noise.

Rajagopalan et al. [14] proposed a Markov-Random-
Field scheme which formulates the upsampled 3D geome-
try as the most likely surface given several low resolution
measurements. Schuon et al. [16] suggested LidarBoost,
a 3D depth superresolution method based on an energy min-
imization framework tailored to the specific characteristics
of flash lidars. The framework jointly employs a data fidelity
term and a geometry prior term enforcing similarity between
the input and output images, and a bilateral regularization
term for edge-preserving smoothness. Cui et al. [6] carried
out a 3D super-resolution processing pipeline for the 3D
Kinect scanner to enhance its reliability. The authors applied
a loop closure alignment to deal with the rigid and non-rigid
deformations.

In this paper, we propose a 3D acquisition solution with a
3D space-time and non-rigid super-resolution capability, us-
ing three calibrated cameras coupled with a non calibrated
projector device, which is particularly suited to 3D face
scanning, i.e. rapid, easily movable and robust to ambient
lighting variation. The proposed solution is a hybrid stere-
ovision and phase-shifting approach which not only takes
advantage of stereovision and structured light, but also over-
comes their weaknesses. Figure 1 presents our 3D face scan-
ning scheme. According to our method, first an automatic
primitives sampling is performed from stereo-matching to
provide a 3D facial sparse model with a fringe-based resolu-

tion and a subpixel precision. Second, an intra-fringe phase
estimation densify the 3D sparse model using the two si-
nusoïdal fringe images and a texture image, independently
from the left, middle and right cameras. The left, middle
and right 3D dense models are merged to produce the fi-
nal 3D model which constitutes a spatial super-resolution.
Also, we propose to carry out a shape+texture temporal
super-resolution to correct the 3D information and to com-
plete the 3D scanned view. Our temporal super-resolution
scheme is based on a non-rigid registration step to deal with
facial expression deformations. In contrast to conventional
structured-light methods, the use of stereo in the first stage
of the approach replaces the phase unwrapping stage. Also,
it does not require a camera-projector off-line calibration
which constitutes a tedious and expensive task. Moreover,
our approach is applied only to the region of interest which
reduces the total processing time.

Mainly, two practical applications can be tackled with
our 3D scanning approach. First, it can be useful for fa-
cial animation and identification. Second, it finds its appli-
cation in the medical field for orthodontics and reconstruc-
tive surgery. For orthodontics, the scanner should be easily
movable to capture plaster dental arch models. A camera-
projector system has the problem of measurement shadow
caused by projector and occlusion caused by the camera.
Therefore, using two cameras with a mobile projector as
we propose solves these problems. Also, our scanner can
capture facial motion and help facial mimics study after
a maxillofacial surgery or a rhinoplasty. Section 2 details
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Fig. 2 Pattern-based face
localization

the primitives sampling to generate the 3D sparse model.
In Sect. 3, we high-light the spatial super-resolution from
the three calibrated cameras. Section 4 explains how the 3D
non-rigid temporal super-resolution is carried out. Section 5
discusses the experimental results and Sect. 7 concludes the
paper.

2 Primitives Sampling for 3D Sparse Model Generation

First, an offline strong stereo calibration computes the in-
trinsic and extrinsic parameters of the cameras, estimates the
tangential and radial distortion parameters, and provides the
epipolar geometry as proposed in [21]. In online process,
two π -shifted sinusoïdal patterns and a third white pattern
are projected onto the face. Three sets of left, middle and
right images are captured, undistorted and rectified. The pro-
posed model is defined by the system of Eqs. (1). It consti-
tutes a variant of the mathematic model proposed in [23].

Ip(s, t) = Ib(s, t) + Ia(s, t) · sin(φ(s, t)),

In(s, t) = Ib(s, t) + Ia(s, t) · sin(φ(s, t) + π),

It (s, t) = Ib(s, t) + Ia(s, t).

(1)

At time t , Ip(s, t), In(s, t), It (s, t) constitute the intensity
term of the pixel s on respectively the positive image, the
negative one and the texture one. Ib(s, t) represents the tex-
ture information and the lighting effect. φ(s, t) is the local

phase defined at each pixel s. Solving (1), Ib(s, t) is com-
puted as the average intensity of Ip(s, t) and In(s, t). Ia(s, t)

is then computed from the third equation of the system (1)
and φ(s, t) is estimated by Eq. (2).

φ(s, t) = arcsin

[
Ip(s, t) − In(s, t)

2 · It (s, t) − Ip(s, t) − In(s, t)

]
. (2)

Also, we suggest an automatic region-of interest localization
to reduce the total processing time. The idea is to benefit
from the contrast variation and carry out a spectral analysis
to localize the low frequencies on captured images. First, we
compute FFT on a sliding window for each epiline which
provides for each pixel a 2D curve of FFT frequency am-
plitudes. A 3D spectral distribution is obtained which high-
lights the facial region for the current epiline as shown in
Fig. 2.b. We propose to keep only pixels belonging to this
highlighted region. Thus, for each pixel in the epiline, we
consider a weighted sum of only the low-frequency ampli-
tudes and we apply an adequate thresholding to obtain the
region-of-interest as illustrated by Fig. 2.d.

Finally, the sparse 3D model is generated through a stere-
ovision scenario. It is formed by the primitives situated on
the fringe change-over which is the intersection of the si-
nusoïdal component of the positive image and the second
π -shifted sinusoïdal component of the negative one [13].
Therefore, the primitives localization has a sub-pixel pre-
cision. Corresponding multi-camera primitives necessarily
have the same Y -coordinate in the rectified images. Thus,
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stereo matching problem is resolved in each epiline sepa-
rately using Dynamic Programming. The 3D sparse point
cloud is then recovered by computing the intersection of op-
tical rays coming from the pair of matched features. When
projecting vertical fringes, the video projector can be con-
sidered as a vertical adjacent sources of light. Such a con-
sideration provides for each epiline a light source point OPrj

situated on the corresponding epipolar plane. The sparse 3D
model is a serie of adjacent 3D vertical curves obtained by
the fringes intersection of the positive and the negative im-
ages. Each curve describes the profile of a projected verti-
cal fringe distorted on the 3D facial surface. We propose to
estimate the 3D plane containing each distorted 3D curve
separately. As a result, the light source vertical axis of the
projector is defined as the intersection of all the computed
3D planes. This estimation can be performed either as an
offline or online process unlike conventional phase-shifting
approaches where the projector is calibrated on offline and
cannot change its position when scanning the object.

3 3D Multi-Camera Spatial Super-Resolution

We need to find the 3D coordinates for each pixel situ-
ated between two successive fringes in either left, middle
or right camera images to participate separately on the 3D
model elaboration. Thus, a 3D point cloud is obtained from
each camera set of images. The spatial super-resolution con-
sists of merging the left, middle and right 3D point clouds.
A phase-shifting analysis allows an estimation of the 3D
coordinates of each pixel separately. Conventional phase-
shifting techniques estimates the local phase in [0 ..2π] for
each pixel on the captured image. Local phases are defined
as wrapped phases. Absolute phases are obtained by phase
unwrapping. In the proposed approach, the sparse model lets
us retrieve 3D intra-fringe information from wrapped phases
directly. In fact, each point Pi in the sparse model consti-
tutes a reference point for all pixels situated between Pi and
its next neighbor Pi+1 on the same epiline of the sparse
model. For a pixel Pk situated between Pi(Xi,Yi,Zi) and
Pi+1(Xi+1, Yi+1,Zi+1), we compute its local phase value
φk using Eq. (2). The phase value of Pi is φi = 0 and the
phase value of Pi+1 is φi+1 = π .

The phase φk which belongs to [0 .. π] has monotonous
variation if [PiPi+1] constitutes a straight line on the
3D model. When [PiPi+1] represents a curve on the 3D
model, the function φk describes the depth variation inside
[PiPi+1]. Therefore, the 3D coordinates (X(φk), Y (φk),

Z(φk)) of Pk corresponding to the pixel point Gk are com-
puted by a geometric reconstruction as shown in Fig. 3.

The 3D intra-fringe coordinates computation is carried
out for each epiline i separately. An epipolar plane is de-
fined for each epiline and contains the optical centers OL,

Fig. 3 Intra-fringe 3D information retrieval scheme

OM and OR of respectively left, middle and right cameras
and all 3D points situated on the current epiline i. Each 3D
point Pk is characterized by its own phase value φ(Pk). The
light ray coming from the light source into the 3D point Pk

intersects the segment [PiPi+1] in a 3D point Ck having the
same phase value φ(Ck) = φ(Pk) as Pk . To localize Ck , we
need to find the distance PiCk . This distance is computed by
applying the sine law in the triangle OPrjPiCk as described
in Eq. (3).

PiCk

sin(θC)
= OPrjPi

sin(π − (θC + α))
. (3)

The distance OPrjPi and the angle α between (OPrjPi) and
(PiPi+1) are known. Also, the angle θ between (OPrjPi)

and (OPrjPi+1) is known. Thus, the angle θC is defined by
Eq. (4). After localizing Ck , the 3D point Pk is identified as
the intersection between (ORGk) and (OPrjCk).

θC = π

θ
· φ(Ck). (4)

Conventional super-resolution techniques carry out a regis-
tration step between low-resolution data, a fusion step and
a deblurring step. Here, the phase-shifting analysis provides
a matched left, middle and right point clouds since their 3D
coordinates are computed based on the same 3D sparse point
cloud. Also, left, middle and right point clouds present ho-
mogeneous 3D data and need only to be merged to retrieve
the high-resolution 3D point cloud.
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4 3D Non-rigid Temporal Super-Resolution

We propose to perform a 3D temporal super-resolution to
correct the 3D information provided by the spatial super-
resolution and to deal with 3D artifacts caused by either an
expression variation, an occlusion or even a facial surface re-
flectance. First, our temporal super-resolution approach per-
forms a non-rigid shape+texture registration for each couple
of successive 3D point sets Mt−1 and Mt at each moment t .
Once registered, the 3D point sets Mt−1 and Mt and also
their corresponding 2D texture images are used as a low res-
olution data to create a high resolution 3D point set and its
corresponding texture.

4.1 Shape+Texture Based Non-rigid Registration

The 3D non-rigid registration problem is formulated as a
maximum-likelihood estimation problem since the deforma-
tion between two successive 3D faces is non rigid in general.
We carry out a shape+texture registration based on the 3D
non-rigid CPD registration algorithm (Coherent Point Drift)
proposed in [12] to match two successive 3D frames Mt−1

and Mt by deforming Mt−1. Our algorithm considers the
alignment of two textured point sets source Msrc and des-
tination Mdst as a probability density estimation problem
and apply an iterative deformation of Msrc to minimize its
spatial deviation with Mdst . Nsrc is the number of textured
points of Msrc and Msrc = {sn|n = 1, . . . ,Nsrc}. Ndst con-
stitutes the number of textured points of Mdst and Mdst =
{dn|n = 1, . . . ,Ndst }. Each textured point P ∈ Msrc ∪ Mdst

is a 1 × 6 vector which concatenates shape and texture in-
formation P(XYZRGB).

The algorithm suggests first of all to represent each tex-
tured point sn of Msrc by a centroid Ctroid(sn) of a Gaus-
sian mixture model GMM, Ctroid(sn) being a multi-variate
Gaussian centered on sn. Thereby, the whole point set Msrc

can be considered as a Gaussian Mixture Model character-
ized by the probability density function p(x) as defined by
Eq. (5).

p(x) =
Nsrc+1∑

v=1

P(v)p(x|v),

p(x|v) = 1

(2πσ 2)3
exp− ‖x−sv‖2

2σ2 .

(5)

Also, a uniform distribution p(x|Nsrc + 1) is added to the
mixture model to account for noise and outliers, p(x|Nsrc +
1) = 1

Ndst
. We use equal isotropic covariances σ 2 and equal

membership probabilities P(v) = 1
Nsrc

for all GMM compo-
nents (v = 1, . . . ,Nsrc). Denoting the weight of the uniform
distribution as w, 0 ≤ w ≤ 1, the mixture model takes the

form:

p(x) = w
1

Ndst

+ (1 − w)

Nsrc∑
v=1

1

Nsrc

p(x|v). (6)

Core to this method is to fit the GMM centroids representing
Msrc to the point set Mdst and to force the GMM centroids
to move coherently as a group to preserve the topological
structure of the point sets [11]. The GMM centroid loca-
tions are reparameterized by a set of non-rigid parameters θ

and estimate them by maximizing the likelihood or, equiv-
alently, by minimizing the negative log-likelihood function
E(θ,σ 2) defined by Eq. (7).

E(θ,σ 2) = −
Ndst∑
u=1

log
Nsrc+1∑

v=1

P(v)p(du|v). (7)

The correspondence probability between two points sv and
du is defined as the posterior probability of the GMM cen-
troid given the data point: P(v|du) = P(v)p(du|v)/p(du)

and we use the EM algorithm [4, 7] to find θ and σ 2. The
idea of EM is first to guess the values of parameters (“old”
parameter values) and then use the Bayes theorem to com-
pute a posteriori probability distributions P old(v|du) of mix-
ture components, which is the expectation or E-step of the
algorithm. The “new” parameter values are then found by
minimizing the expectation of the complete negative log-
likelihood function [4] with respect to the “new” parame-
ters, which is called the maximization or M-step of the algo-
rithm. The Q function, called the objective function, is also
an upper bound of the negative log-likelihood function((8)).

Q = −
Ndst∑
u=1

Nsrc+1∑
v=1

P old(v|du) log(P new(v)P new(du|v)). (8)

The EM algorithm proceeds by alternating between E- and
M-steps until convergence. Ignoring the constants indepen-
dent of θ and σ 2, we rewrite Eq. (8) as Eq. (9) where
Ndst,p = ∑Ndst

u=1

∑Nsrc

v=1 P old(v|du) ≤ Nsrc (with Ndst =
Ndst,p only if w = 0). τ(sv, θ) denotes Transformation τ

applied to sv regarding to the set of the non-rigid transfor-
mation parameters θ .

Q(θ,σ 2) = − 1

σ 2

Ndst∑
u=1

Nsrc∑
v=1

P old(v|du)‖du − τ(sv, θ)‖2

+ 3Ndst,p

2
log(σ 2). (9)

P old denotes the posterior probabilities of GMM compo-
nents calculated using the previous parameter values as de-
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scribed by Eq. (10).

P old(v|du) = exp− 1
2 ‖ du−τ (sv ,θold )

σold ‖2

∑Nsrc

k=1 exp− 1
2 ‖ du−τ (sk ,θold )

σold ‖2 +C

(10)

where C = (2πσ 2)3 w
1−w

Nsrc

Ndst
. Minimizing the function Q,

we necessarily decrease the negative log-likelihood func-
tion E unless it is already at a local minimum. In order to
deal with the non-rigid problem, Tikhonov regularization
framework is used [11, 17]. The transformation τ is de-
fined as the initial position plus a displacement function V ,
τ(Msrc,V ) = Msrc +V . The displacement function V is es-
timated using variational calculus and the norm of V is reg-
ularized to enforce the smoothness of the deformation [11].

4.2 Fusion and Deblurring Steps

we propose a fusion and deblurring approach based on the
2D super-resolution technique proposed in [8, 16]. The 3D
model Mt cannot be represented by only one 2D disparity
image since the points situated on the fringe change-over
have sub-pixel precision. Also, the left, middle and right
pixels participate separately in the 3D model since the 3D
coordinates of each pixel is retrieved using only its phase
information as described in Sect. 3. Thus, we propose to cre-
ate for each camera three 2D maps defined by the X, Y and
Z coordinates of the 3D points. The optimization algorithm
and the deblurring are applied for each camera separately to
compute high-resolution images of X,Y,Z and texture from
the low-resolution images.

To achieve this, we need to solve an optimization prob-
lem which jointly employs a data fidelity term Edata(H) and
a regularization energy term Eregular (H).

minimize Edata(H) + Eregular (H). (11)

Edata(H) is defined by Eq. (12) and measures agreement
of the reconstruction H with the aligned low resolution
data. Here, .* denotes element-wise multiplication. Wk is
a banded matrix that encodes the positions of Ik assigned
for the resampling step on the high resolution target grid H .
Gk is a diagonal matrix containing 0 entries for all sam-
ples from Ik which are unreliable according to the non-rigid
registration result. In fact, the non-rigid registration process
provides a dense correspondancy list which characterizes
the spatial deviation between each point in Mt with its near-
est point in the deformed model Md

t−1. We employ a thresh-
old term q to affect 0 in the matrix Gk for each couple of cor-
responding 3D points which have a spatial deviation greater
than q .

Edata(H) =
N∑

k=1

‖Wk. ∗ Gk. ∗ (Ik − H)‖2. (12)

Eregular (H) is a regularization energy term that guides the
optimizer towards credible reconstruction H . It is defined as
a sum of norms as described by Eq. (13).

Eregular (H) =
∑
u,v

‖∇Hu,v‖2,

∇Hu,v =

⎛
⎜⎜⎜⎝

Qu,v(0,1)

Qu,v(1,0)
...

Qu,v(l,m)

⎞
⎟⎟⎟⎠ . (13)

∇Hu,v is a combined vector of finite difference spatial gra-
dient approximations at different scales (l,m) at a pixel po-
sition (u, v). Qu,v(l,m) is a finite difference computed as
shown in Eq. (14).

Qu,v(l,m) = Hu,v − Hu+l,v+m√
l2 + m2

. (14)

We obtain for each camera a high-resolution 3D point cloud
using high-resolution data of X,Y and Z. The final high-
resolution 3D point cloud is retrieved by merging the left,
middle, and right obtained 3D models which are already
matched since all of them contain the 3D sparse point cloud.

5 Experimental Results

The stereo system hardware is formed by three network
cameras with 30 fps and a 480 × 640 pixel resolution and
a LCD video projector. The computed 3D models have a
resolution of approximately 30000 points. Figure 4 presents
the primitives extracted and the reconstruction steps to cre-
ate one facial 3D view with neutral expression from only
two cameras.

Fig. 4 Reconstruction steps to create one facial 3D view from two
cameras
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Fig. 5 The spatial deviation distributions and color cards to evaluate both Rigid and non-rigid CPD registrations

The precision of the reconstruction is estimated using a
laser 3D face model scanned by a MINOLTA VI-300 non-
contact 3D digitizer. We perform a point-to-surface variant
of the 3D rigid registration algorithm ICP (Iterative Closest
Point) between a 3D face model provided by our approach
and a laser 3D model of the same face. The mean deviation
obtained between them is 0.3146 mm.

5.1 Non-rigid Registration Evaluation

The proposed approach needs a non-rigid registration step
between the 3D frame Ft and its preceding 3D frame Ft−1.
The CPD performs an efficient registration in the presence
of non-rigid deformations. To evaluate the CPD non-rigid
registration, we propose to map a color card on the 3D frame
Ft in which the color of each 3D point describes the spatial
deviation separating it from its corresponding 3D point in
the frame Ft−1 after registration. Thereby, Fig. 5 illustrates
the spatial deviation after rigid and non-rigid registration of
Ft and Ft−1.

Also, Fig. 5 shows the spatial deviation distribution
for both rigid and non-rigid process. The rigid registra-
tion provides a mean spatial deviation of 0.0616 mm/pixel
and a standard deviation of 0.0566 mm/pixel. The non-
rigid registration provides a mean spatial deviation of
0.0387 mm/pixel and a standard deviation of 0.0371 mm/

pixel. Moreover, the color cards the non-rigid registration
efficiency to deal with expression variation by minimizing
locally and smoothly the spatial deviation in the mouth re-
gion.

We suggest to study the physical consistency of the pro-
posed non-rigid scheme in the sense that each point of the
first point cloud is the same physical point as its homolo-
gous point in the second point cloud elected by the non-
rigid registration or not. To achieve this, we propose to use a
standard 3D video face database mostly because our actual
3D scanning system is not designed for database acquisition.
We use the BU database which consists of 101 people with
58 women and 43 men. The database is characterized by an
ethnic variety: 28 Asian, 8 black, 3 Latino and 62 white sub-
jects with ages between 18 and 45 years [19, 20].

The BU database has six types of facial expressions for
each subject and a textured 3D video for each facial expres-
sion and each subject. Expressions are classified under six
categories: happiness, sadness, fear, disgust, anger and sur-
prise. Thus, the database contains 606 3D textured video
in AVI format. Each 3D video has a resolution of approx-
imately 35,000 points and its corresponding texture video
has a resolution of 1040 × 1329 pixels per frame.

To check the validity of the physical correspondence after
a non-rigid registration of two successive 3D frames Ft and
Ft−1, we locate manually a set of landmarks on Ft . Ft−1 is
considered as a source model and Ft is considered as a des-
tination model. Thereby, the registration process consists on
deforming Ft−1 to minimize its spatial deviation from Ft .
We suggest to track the landmarks location on Ft−1 before
and after its non-rigid deformation. Figure 6 shows the land-
marks locations on both the destination model Ft and the
source model Ft−1 before its deformation. Figure 7 shows
the landmarks locations on the source model Ft−1 after its
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Fig. 6 Landmarks locations for BU database 3D data on both the destination model Ft and the source model Ft−1 before its deformation

Fig. 7 Landmarks locations for BU database 3D data on the source model Ft−1 after its deformation, the spatial deviation color card and distri-
bution after the non-rigid registration

deformation, the spatial deviation color card and distribu-
tion after the non-rigid registration. Before the non-rigid
registration, the landmarks locations on Ft−1 are defined by
their coordinates on Ft . Thereby, the landmarks are not sit-

uated on their legitimate physical locations on Ft−1. After
the non-rigid registration, the landmarks locations on Ft−1

are defined by the correspondancy list between Ft and the
deformed Ft−1. Figure 7 shows that the landmarks locations
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Fig. 8 Sampled primitives on
left, middle and right views for
two successive frames with an
expression variation

Fig. 9 3D space-time super-resolution results

on deformed Ft−1 correspond to their legitimate physical
positions.

5.2 3D Super-Resolution Results

Figure 8 presents two sets of three 2D views captured by the
left, middle and right cameras. The first set is captured at
time t − 1 and the second one at time t . Each view is rep-

resented by a set of three images containing respectively the
positive pattern, the π -shifted pattern and the white pattern.
These 2D stereo images provide two 3D facial views. Some
artifacts can be generated as shown in Fig. 9 especially for
the left 3D view of the second 3D frame shown in Fig. 9.d.
Here, these reconstruction errors are caused by occlusion.

To correct the 3D data, the first complete 3D frame Ft−1

is used to correct the left and right 3D views F l
t and F r

t and
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Fig. 10 Landmarks locations for our 3D data on both the destination model F l
t and the source model Ft−1 before its deformation

Fig. 11 Landmarks locations for our 3D data on the source model Ft−1 after its deformation, the spatial deviation color card and distribution after
the non-rigid registration

their non-rigid deformation is considered thanks to the non-
rigid registration proposed in Sect. 4.1. Then, F l

t and F r
t

are merged to make up Ft . Figure 10 shows the landmarks
locations on both the destination model F l

t and the source

model Ft−1 before its deformation. Figure 11 presents the
landmarks locations on the source model Ft−1 after its de-
formation, the spatial deviation color card and distribution
after the non-rigid registration.
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Fig. 12 Rigid registration
between the true 3D model and
the erroneous artifacted 3D
model

The non-rigid registration algorithm CPD matchs effi-
ciently the preceeding 3D frame Ft−1 with the current 3D
left view F l

t with a mean deviation of 0.0493 mm/pixel.
Also, the non-rigid registration localizes and clears the arti-
facts which represent a high spatial deviation with the pre-
ceeding 3D frame Ft−1.

To quantify the efficiency of the super-resolution process
and to estimate the corrected error rate on the 3D data, we
consider a 3D model without artifacts and introduce some
artifacts and errors on it. Then, we carry on our super-
resolution process to correct it. Three models are obtained:
the original one, the erroneous one and the corrected one.
We perform a rigid registration between the original model
and the erroneous one and a rigid registration between the
original model and the corrected one, as shown respectively
in Figs. 12 and 13.

To generate an erroneous 3D face model, we need to sim-
ulate artifacts and noise that can appear during a real acqui-
sition process. In our experiments, we found that areas of
high curvature such as the nose are more sensitive to occlu-
sion and can often introduce artifacts and errors generated
by stereo matching. Thus, to simulate artifacts on the origi-
nal model, we delete manually some left or right primitives
before the stereo matching step. This disrupts the conver-
gence of stereo matching and generates false matches and
3D artifacts or spikes. For example, deleting left primitives

on the nose region simulates an occlusion and generates an
artifact on the left side of the 3D scanned nose.

The spatial deviation distribution for the first rigid regis-
tration is characterized by a mean deviation of 0.0369 mm,
a standard deviation of 0.0294 mm, a minimum deviation
of 8.4894e-004 mm and a maximum value of 0.1997 mm.
The relative mean deviation is estimated at 18.129 %. The
spatial deviation between the first model and the corrected
model has mean deviation of 0.0311 mm, a standard devi-
ation of 0.0290 mm, a minimum deviation of 5.3265e-004
mm and a maximum deviation of 0.1999. The relative mean
deviation is estimated at 15.332 %. Figure 14 shows some
3D frames computed using our proposed technique.

6 Comparisons and Discussion

To clarify the contributions of the proposed approach, we
conducted a comparative study with similar research works
from the state of the art according to the following aspects:
spatial resolution, projector calibration, deformation cap-
ture, and complexity. In [9], Han et al. proposed a 3D scan-
ning technique based on optical triangulation using stereo
matching between the left and right phase images. Unlike
[9], our geometrical reconstruction provides a better resolu-
tion since each pixel of each camera participates separately
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Fig. 13 Rigid registration
between the true 3D model and
the corrected 3D model

Fig. 14 Some 3D frames
computed using our proposed
technique
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Fig. 15 The left and right disparity maps computed for two cameras
640×480

Fig. 16 3D nose scanning

in the 3D model. Two left and right disparity cards are com-
puted as shown in Fig. 15. Figure 16.a shows the 3D point
cloud computed using only the left pixels of the nose region.
Figure 16.b shows the 3D point cloud computed using only
the right pixels. Figure 16.c shows the fusion of the left and
right point clouds for a dense 3D nose scanning.

In [18], Weise et al. introduced a stereo phase-shift tech-
nique for 3D scanning. They performed a phase unwrapping
based on dense stereo matching called stereo-unwrapping
and didn’t precalibrate the projector. Aliaga et al. sug-
gested a self-calibrating and multi-viewpoint framework for
a photogeometric structured light technique [2, 3]. They use
the initial viewing parameters estimated via a photometric
method to help initialize self-calibration of a structured light
system. However, their photogeometric self-calibration suf-
fers from a sensitivity to specularities impacting the scan-
ning precision. Also, self-calibration time ranges from an
average of 15 seconds for a fast and coarse set of points to
an average of 27 minutes when using all points. Unlike [2,
18], the proposed approach allows a real-time projector on-
line localization which can be useful in certain medical and
robotic applications.

Adaskevicius et al. developed a 3D scanning system
based on a structured-light technique [1]. The authors de-
signed a system composed by two calibrated cameras and
a non-calibrated projector. A four step phase-shifting algo-
rithm was chosen with π

2 steps. To avoid phase unwrap-
ping, the special time-encoded binary code known as Gray
code is used [15]. Illumination with a sequence of Gray
code patterns yields absolute distance values, but only with

poor resolution. Using four sinusoïdal and two Gray pat-
terns matches every camera pixel to unique projected pixel.
3D shape information is obtained by optical triangulation
involving left and right cameras. According to our evalu-
ation, their system as our system, has a precision close to
that of the laser scanner since it is based on structured-light
(Sect. 5). However, it is less suitable for motion and defor-
mation capture than ours as it employs more patterns.

The complexity of our stereo matching is significantly
lower than the stereo-matching complexity insured in [1, 2,
9, 18] since it depends only on the number of fringes on the
x-axis in contrast to [1, 2, 9, 18] where all pixels are consid-
ered for the stereo matching. Finally, it allows a sub-pixel
accuracy thanks to the subsampling step while [1, 2, 9, 18]
propose only a pixel resolution involving pairs of homolo-
gous pixels.

7 Conclusion and Future Work

This paper proposes a multi-camera 3D acquisition solution
with a 3D space-time super-resolution scheme, which is par-
ticularly suited to 3D face scanning. It involves a pattern-
based face localization approach to reduce the total pro-
cessing time. This work suggests as well an online projec-
tor parametrization and does not require a camera-projector
off-line calibration which constitutes a tedious and expen-
sive task. We develop a shape+texture non-rigid registration
approach to deal with the facial deformable behavior espe-
cially in the presence of an expression variation.

The proposed 3D scanning solution has its own limita-
tions related to structured-light. Initially designed for face
acquisition, various parameters such as the fringe width, the
distance separating the face to the system, and the lenses
of the cameras and the projector, were optimized for face
and more generally for objects of similar sizes. The reuse of
this technique for objects of different sizes or different dis-
tances from the system requires reconfiguration of some of
these parameters. Second, our technique works only under
controlled illumination. Therefore, an infrared light projec-
tion device will replace the actual visible fringe projection,
which is not only intrusive and disturbing, but also leads to
facial texture degradation. Finally, since we use a temporal
multiplexing by projecting successive patterns onto the face,
high-speed cameras should be used to improve the current
performance and to scan efficiently faces or objects having
a high-speed motion. We will carry out a GPU implemen-
tation of the proposed framework as well. Also, hardware
synchronization between the cameras and the projector will
be performed to get an efficient and real-time 3D video scan-
ning result.
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