

Accelerated Dictionary Learning with GPU/Multi-

core CPU and Its Application to Music Classification

Boyang Gao, Emmanuel Dellandréa, Liming Chen

 Université de Lyon, CNRS, Ecole Centrale Lyon, LIRIS, UMR5205, F-69134, France

E-mail: {Boyang.Gao, Emmanuel.Dellandrea, Liming.Chen}@ec-lyon.fr

Abstract— K-means clustering and GMM training, as dictionary

learning procedures, lie at the heart of many signal processing

applications. Increasing data scale requires more efficient ways

to perform this process. In this paper a new GPU and multi-core

CPU accelerated k-means clustering and GMM training is

proposed. We show that both methods can be concisely

reformulated into matrix multiplications which allows the

application of NVIDIA Compute Unified Device Architecture

(CUDA) implemented Basic Linear Algebra Subprograms

(CUBLAS) and AMD Core Math Library (ACML) that are

highly optimized matrix operation libraries for GPU and multi-

core CPU. Experimentations on music genre and mood

representation and classification have shown that the

acceleration for learning dictionary is achieved by factors of 38.0

and 209.5 for k-means clustering and GMM training, compared

with single thread CPU execution while the difference between

the average classification accuracies is less than 1%.

Keywords-GPU acceleration; k-means; GMM; bag-of-words

I. INTRODUCTION

Digitalized audio data has exploded with the development
of information technology. For example only in the on-line
music store of iTunes, there have been over 20 million songs

1

available and the number is still growing fast. Such a huge
amount of audio data drives the development of automatic
analysis and retrieval methods. Audio data like music contains
various information, however, hidden under signal appearance.
Automatic analysis seeks to extract effective features to
describe the essence of the signal. Many signal level or low
level features for example MFCC are developed to transform
waves into parameterized vectors which still preserve complete
information of the signal. However, low level feature itself
contains too much detail of signal’s randomness so that another
layer of model has to be built to depict low level feature’s
characteristic.

K-means or GMM based bag-of-words framework has been
demonstrated to have superior ability to model low level
features and has been successfully applied to many
classification tasks [1][2]. Bag-of-words method first construct
clusters of assembled low level features through k-means or
GMM training, then provide cluster information based on the
feature distribution. This procedure helps translate signal level
information into meaningful audio word, that is k-means
clusters and Gaussian mixtures, which convey more definite
information for example genre or mood for music signal. In re-

1 http://www.apple.com/itunes/features/

representation of low level features, k-means clustering and
GMM training are the most crucial and computational
expensive steps. The quality of dictionary learnt also
determines for example final classification performance. With
drastically increased data scale, the dictionary learning
becomes computational bottle neck. When scrutinizing k-
means clustering and GMM training process carefully we can
find that both processes contain massive repeated calculations
between feature vectors and words in dictionary, in which huge
parallelizability is hidden. GPU and multi-core CPU naturally
come and fit into the picture. GPU has successively accelerated
many problems which contains parallelizable calculations for
example [3][4]. GPU’s efficiency is attributed to its multiple
core structure and parallelable instruction execution ability.

There are several previous works employing GPU to
accelerate k-means clustering and EM for GMM training. [5-10]
have implemented EM algorithm on CUDA to train GMM. Wu
in [10] also mentioned to use individual CUBLAS function to
update means and variance matrix. Azhari in [7] implemented
MFCC extraction in CUDA too. Gonina in [8] also provided
Python interface to GPU based GMM training. Machlica in [9]
used cached textual memory and carefully configured memory
usage to elevate performance. In previous works user defined
kernel functions undertake main computation work. However,
GPU kernel function requires careful design; hardware related
tuning and is hard to translate into other languages. In this
paper we shows that k-means clustering and GMM training
with EM algorithm can be mostly transformed into two
standard matrix multiplications so that highly optimized matrix
operation library CUBLAS or ACML can be employed to
speedup overall calculations. The proposed computation
structure can also be easy translated into other languages with
BLAS support for example MATLAB and FORTRAN.

The rest of the paper is organized as follow: section II
shows matrix multiplication format of k-means clustering and
EM algorithm for GMM. Section III introduces performance
tuning for GPU implementations. In experiment section, music
genre and mood classification tasks are performed with
ACML-based and CUBLAS-based implementations. The
execution speed and quality of learnt dictionary are then
examined. Final conclusion is drawn in section VI.

II. K-MEANS AND EM ALGORITHM IN MATRIX FORMAT

In this section k-means and EM algorithm are shown in
matrix multiplication format. Block-wise training structure is
also developed to fit huge data matrix into limited GPU

http://www.apple.com/itunes/features/

memory, for example in NVIDIA’s GTX 285 used in this
paper only 750MB display memory can be used for
computation. Because block-wise training divide computation
into independent unit, with multiple graphic cards installed,
the calculation load can be yet arranged parallelly onto
multiple devices even onto local or remote GPU or CPUs,
which can further boost overall computation speed. In
following sections II.A and II.B data block based k-means and
GMM training in matrix format are introduced in detail.

Several symbol are firstly defined: is number of
dimension for feature vectors, k-means cluster centers and
Gaussian mixtures; is the number of feature vector; is
number of k-means clusters or GMM mixtures; is feature
matrix in which each column represents one feature vector; is
k-means cluster centers matrix in which each column
represents one center; is variance matrix, in contrast to
covariance matrix , is the variance of dimension for
cluster or mixture . In GMM,

 denotes
the priori probabilities or weights of every mixture,
 is the means matrix, is the
covariance matrix set. Other symbols are defined when used.

A. K-means in Matrix Format

K-means clustering iteration contains two steps: cluster
decision and cluster center updating. The first is to find the
nearest center to which each feature vector is closed. The
second is to re-estimate cluster centers according to the nearest
relationship.

To measure the closeness between data set and centers ,
squared Euclid distance is commonly used, defined as

In matrix format, squared distance matrix can be written as

where

 and

For the center updating step the new center matrix can be
written as , where occupation matrix is
defined as

 is the number of associated feature vector to center .

Variance matrix can be computed similarly as

 , where and

 .

For large data set, feature matrix is too large to entirely
load into limited display memory. Therefore large is cut into

blocks . In each iteration, sub-

results on are computed and then aggregated to form the
overall new cluster centers.

The block-wise cluster center updating step is as follow.

For each feature block, define occupation matrix as

For each feature block, weight feature vector in which
indicates the number of related feature vector for center ,

center matrix and variance matrix are computed as

The overall accumulated vector and matrices for feature

blocks are

 ,

 and

 . In the end of an iteration the updated cluster center

 is calculated as

 and variance vector

, where

. Note that does not

affect cluster center updating; therefore it is only computed in
the last iteration. The matrix version k-means clustering main
steps are summarized as follows.

 For each iteration

 For each feature block

 Calculate
 with one sgemm()

 Calculate from

 Calculate and with one sgemm()

 Aggregate and to update new

B. EM for GMM in Matrix Format

In GMM, probability of feature vector is defined as

where is the GMM parameter set and
 is the probability of feature vector under single
Gaussian mixture , defined as

Like k-means, EM iteration for GMM training includes

two main steps: probability calculation and parameter
updating. The first step decides relation between feature vector
and Gaussian mixtures in terms of probability; the second step
updates GMM parameters with feature matrix according to
how likely each mixture can generate observed feature vectors.

In the first step are computed. To avoid
floating point number overflow, the natural logarithm of
 is preserved during calculation

where

 In practice covariance matrix is often treated
as diagonal, in order to simplify computation. Let
 denotes the GMM
variance matrix; Let denote corresponding logarithm

probability matrix in which , then

can be written as

where

 , is the reciprocal matrix of in
which and is weighted mean
matrix in which . Then
is computed according to Bayes’ rule

Posterior probability is firstly computed in logarithm scale,

that is ,

and then converted into linear scale when needed.
 are also aggregated directly in logarithm. When
posterior probability is ready EM updating procedure can be
performed to re-estimate GMM parameters as follow

Let denote posterior probability matrix, in which

 and let denote the occupation matrix

for all mixtures, in which

The EM updating formulas then can be written as

where is the squared data matrix in which
 and is the squared mean matrix of just updated.

To deal with large feature matrix the similar block-wise
scheme as for k-means is used. For each feature block, weight
vector, mean matrix and variance matrix are computed as

The overall accumulated matrices for feature blocks are

 ,

 and

 .
The updated GMM parameters are finally calculated as
weights , mean

 and

variance

, where

. The matrix version main

steps are summarized as follow.

 For each iteration

 For each feature block

 Calculate with one sgemm()

 Calculate
 from

 Calculate , and with one sgemm()

 Aggregate , and to update new

GMM parameters

III. PERFORMANCE TUNING

ACML based implementation for k-means and GMM is
quite straight forward. To take full advantage of multi-core

system, calculation of and
 is implemented with

OpenMP
2
 which takes charge of dividing for-loop into multiple

threads. Similarly on GPU version, calculation of and

 is implemented with CUDA kernel function. However,

kernel functions need to be well tuned to achieve peak
performance.

CUDA adopts single instruction multiple threads (SIMT)
architecture. 32 threads form one warp which is unit of GPU
thread management. When GPUs are idle thread manager tries
to arrange one or half warp of threads to execute at same time
with the same instruction. Therefore dividing problem into
threads block whose dimension is multiple of warp will run
faster, otherwise some threads will be wasted when computing
the edge cases of problem.

Memory in CUDA can roughly be divided into local and
global category. Local memory is faster, however, of too
limited size for example GTX285 has only 16KB. Local
memory is only accessible within thread block and may cause
bank conflicts. Despite of the limitations, local memory should
be used whenever shared data exists within thread block in
order to boost memory throughput. Compared with local
memory, global memory is larger, up to hundreds mega bytes,
yet slower. For our tasks, most memory access happens in
global domain and for computation ability less than 2.0 the

2 http://openmp.org/wp/

global memory does not have cache (GTX285 has computation
ability of 1.3). Therefore memory access pattern affects
computation throughput tremendously. In many scenarios
memory access becomes the computational bottle neck. In
CUDA, global memory access is divided into memory
transactions which can load up to 16 bytes at one time.

Memory access scheme and SIMT architecture determines
coalesced memory access is the fastest way which requires
neighbor threads in a block access neighbor data. Although
threads block can be configured in 2D or 3D, the memory
neighborhood is still confined in linear due to lack of cache.

TABLE I. EXECUTION TIME AND ACCURACY OF DIFFERENT IMPLEMENTATION FOR MUSIC GENRE CLASSIFICATION.

Centers/# Mixtures

Vectors

Dimension

= 2048

= 2.7M

= 39

K-means GMM

time per
iteration (sec)

 speed-up
(times)

GTZAN
genre (%)

time per
iteration (sec)

speed-up
(times)

GTZAN
genre (%)

1 thread CPU 278.2 1.0 n/a 2,288.4 1.0 n/a

32-cored CPU Yael(INRIA) 37.2 7.5 68.1 153.2 14.9 78.0

32-cored CPU (this paper) 7.3 38.0 69.6 70.1 32.6 78.7

240-cored GPU 9.1 30.4 69.5 10.9 209.5 77.8

UWB[9]

9.1*

 *only kernel execution time counted for GMM with 2048 mixtures trained by 3.125M 40-dimensional vectors

To determine minimum distance for each feature vector
from matrix , we have tested calculation performance on
and on its transpose

 . It can be observed that same kernel
function runs 7 times faster on than on

 . In former case
the computation task is parallelized on each vector so that
speed gain is obtained from coalesced memory access.

Another example is to compute posterior probability matrix
 from . Thread block dimension of (1, 256) is 30% faster

than of (16, 16). This is also due to coalesced memory access.
Because although take exponential for each matrix element is a
2D parallelable operation, the matrix data is actually stored
linearly in global memory. Therefore (16, 16) configuration
causes non-consecutive global memory access whereas (1,256)
does.

In calling CUBLAS SDK functions, using non-transposed
matrix function call whenever possible can improve the
execution speed, because transpose operation is expensive and
from NVIDIA’s profiler we can find when cublasSgemm() is
performed on matrix who needs to transpose the multiplication
is actually performed by a CUDA kernel function, which is
slower. In experiments we observe 4 times speed-up when
calling cublasSgemm() with non-transposed arguments.

Merging matrix operations whenever possible, like
multiplication, can save overhead caused by function calling
and repeated memory access. For example when block mean
and variance matrix updating is combined into one matrix
multiplication 10% execution time is saved.

IV. MUSIC GENRE AND MOOD CLASSIFICATION

To evaluate speed and quality of our implementations,
music genre and mood classification have been conducted on
both GPU and multi-core CPU systems.

A. Experiment setups

The single thread implementation based on clapack
3
 ran on

a pc with Intel
®
 Core™ i7-940 2.93GHz as a baseline. The

3 http://www.netlib.org/clapack/

implementation based on ACML ran on a server with 4 8-cored
AMD Opteron™ Processor 6128 2GHz. The implementation
based on CUBLAS ran on 240-cored NVIDIA GTX 285. Yael

4

is also tested on the server as a benchmark for multi-threading
implementation.

GTZAN [11] data set is used for genre classification.
GTZAN contains 10 genres of music. Each genre contains 100
30-sec segments. MFCC with delta and delta delta features are
extracted. MFCC analysis window shift is 10ms long, resulting
100 39-dimensional feature vectors per second. To test k-
means clusters and GMM quality 10-fold cross validation is
performed. In each fold K-means and GMM with 2048 clusters
and mixtures are trained by 2.7 million 39-dimentional feature
vectors.

Music mood classification is performed on the dataset
provided by Xiao et al. [12] consists of 416 16s long pure
classical music segments, manually divided into 4 moods as
shown in Table II. OpenSMILE [13] large emotional feature
set is used which contains 57 low level features plus delta and
delta delta. In mood classification experiments, 5 times 2-fold
cross-validation is performed in order to compare with result in
previous literature. Before dictionary learning, 171 dimensional
feature vectors are normalized by training set global mean and
standard derivation to avoid different scale effect. In each fold,
GMM with 1024 mixture is trained by 0.33 million 171-
dimentional feature vectors for 1024 mixtures.

After dictionary learning, low level features of each music
segments are converted to dictionary words histogram and
normalized. The normalized histograms as final feature vectors
are used to train one-versus-others SVM classifier. To compare
the mood classification performance, standard OpenSMILE
low level feature with statistic functions are extracted and used
to train SVM as benchmark. The running time and accuracy
results of the two experiments are shown in Table I and Table
IV-VI.

4 https://gforge.inria.fr/projects/yael

TABLE II. CLASSICAL MUSIC DATASET MOOD DISTRIBUTION

 Anxious Content Depressed Exuberant

music 81 124 120 91

B. Results and Analysis

From Table I, we can find that 1) high performance library
based implementations proposed in this paper achieve up to 5
times faster than multi-threading based implementation (Yael).
2) GPU based implementation executes 5 times faster than
multi-core CPU based one on GMM training whereas multi-
core version outperforms GPU on k-means clustering by 22%
in terms of speed. GPU based k-means is slower than multi-
core CPU in that CPU version executes operations for

 calculation while GPU version actually executes matrix
multiplication containing operations. We choose

matrix multiplication for calculation in GPU because
 operations consume as twice time as matrix
multiplication on GPU architecture. This abnormal
phenomenon is due to random memory access pattern of
 operations on GPU. Therefore in this scenario matrix
multiplication is the optimal but still slower way for GPU.

In [9] Machlica et al. reported a faster result of comparable
data set, however, the duration profile in [9] only recorded
kernel function’s running time without data IO and data
preparation duration. If only GPU execution duration is
considered, our method consumes 7 seconds compared with 9.1
in [9]. From genre classification accuracy column in Table I,
we can find that the quality of dictionary trained by CPU is
little better than GPU by less than 1% in terms of average
classification accuracy. This is due to the less floating point
error of CPU and double precision floating point numbers used
during summation procedure on CPU.

From Table III, we can find that with the same number of
mixture; the same types of GPU and comparable data scale in
[7], our CUBLAS based implementation is 10 times faster than
CUDA kernel implementation described in [7]. From Table IV-
VI we can find 1024 dimensional bag-of-words histogram
features outperforms standard 6552 dimensional OpenSMILE
emotional features by 3% in terms of average classification
accuracy.

TABLE III. RUNNING TIME PER ITERATION FOR MOOD GMM TRAINING

32-cored CPU 240-cored GPU Azhari [7]

time (sec) 9.6 2.9 30.0

TABLE IV. CUBLAS MOOD CLASSIFICATION CONFUSION MATRIX

% Anx Con Dep Exu

Anx 81.0±8.9 1.2±2.0 1.0±1.7 16.8±7.4

Con 0.0±0.0 91.1±2.9 8.7±2.9 0.2±0.5

Dep 0.0±0.0 8.8±3.7 90.5±3.2 0.7±1.5

Exu 10.2±4.7 3.8±2.0 0.0±0.0 86.0±4.2

Average 87.2

TABLE V. ACML MOOD CLASSIFICATION CONFUSION MATRIX

% Anx Con Dep Exu

Anx 81.0±7.8 1.2±2.0 1.2±1.7 16.5±6.2

Con 0.0±0.0 91.9±3.0 8.1±3.0 0.0±0.0

Dep 0.0±0.0 8.3±3.5 91.0±3.2 0.7±1.5

Exu 11.3±5.3 3.6±1.8 0.0±0.0 85.1±5.0

Average 87.3

TABLE VI. OPENSMILE MOOD CLASSIFICATION CONFUSION MATRIX

% Anx Con Dep Exu

Anx 85.5±7.1 2.5±1.6 0.5±1.0 11.5±6.8

Con 5.5±4.7 86.9±4.2 6.3±3.0 1.3±2.7

Dep 9.0±6.3 6.2±3.9 83.5±7.9 1.3±3.0

Exu 17.6±5.0 2.2±1.4 0.2±0.7 80.0±5.9

Average 84.0

V. CONCLUSION

In this paper we have proposed to use GPU and multi-core
CPU to accelerate bag-of-words method especially dictionary
learning of k-means clustering and GMM training. To employ
high performance matrix operation library of ACML and
CUBLAS we propose to reformulate k-means and EM
algorithm into matrix multiplications, which is also convenient
to implement with other languages for example MATLAB and
FORTRAN. Experiments on music genre and mood
classification tasks show that the proposed implementations
achieve 38 to 209 times acceleration, compared with single
threaded CPU version. 240-cored GPU can run up to 5 times
faster than 4 8-cored CPUs with just less 1% performance
decline.

As k-means and GMM training are widely used for learning
dictionaries in many applications, we will propose to the
community our optimized implementation of these procedures
presented in this paper within an open-source toolbox that will
be freely available to the public.

ACKNOWLEDGMENT

This work is partly supported by the French ANR under the
project VideoSense ANR-09-CORD-026.

REFERENCES

[1] H. Jégou, M. Douze and C. Schmid, “Histopathology image
classification using bag of features and kernel functions”, Artificial
Intelligence in Medicine, pp. 126-135, Springer, 2009.

[2] Y. Zheng, H. Lu, C. Jin, and X. Xue, “Incorporating spatial correlogram
into bag-of-features model for scene categorization”, Proceeding of
Asian Conference on Computer Vision, 2009.

[3] J. Kong, “GPU accelerated face detection”, Proceeding of Intelligent
Control and Information Processing (ICICIP), pp.584-588, 2010.

[4] K. van de Sande and T. Gevers, “Empowering visual categorization with
the GPU,” IEEE Transactions on Multimedia, Volume 13 (1), page 60-
70, 2011.

[5] N. Kumar, S. Satoor and I. Buck, “Fast parallel Expectation Maxi-
mization for Gaussian Mixture Models on GPUs using CUDA,”
Proceeding of 11th IEEE International Conference on High
Performance Computing and Communications, 2009.

[6] A. D. Pangborn, “Scalable data clustering using GPUs,” Masters thesis,
Rochester Institute of Technology, 2010.

[7] M. Azhari and C. Ergün, “Fast Universal Background Model (UBM)
Training on GPUs using Compute Unified Device Architecture (CUDA
),” International Journal of Electrical & Computer Sciences IJECS-
IJENS, vol. 11, no. 4, pp. 49-55, 2011.

[8] E. Gonina, “Fast Speaker Diarization Using a Specialization Framework
for Gaussian Mixture Model Training,” master thesis, University of
California Berkeley, 2011.

[9] L. Machlica, J. Vanek, and Z. Zajic, “Fast Estimation of Gaussian
Mixture Model Parameters on GPU Using CUDA”, Proceeding of 12th
International Conference on Parallel and Distributed Computing
Applications and Technologies, no. 1, pp. 167-172, 2011.

[10] K. Wu, Y. Song and L. Dai, “CUDA-Based Fast GMM Model Training
Method and Its Application,” Journal of Data Acquisition & Processing,
vol. 27, no. 1, pp. 85-90, 2012.

[11] G. Tzanetakis and P. Cook, “Music genre classification ofaudio signals”,
IEEE Transactions on Speech and Audio Processing, 10(5):293–302,
2002.

[12] Z. Xiao, E. Dellandréa, W. Dou and L. Chen, “What is the best segment
duration for music mood analysis ?,” in Proc. International Workshop
on Content-Based Multimedia Indexing (CBMI), London, 2008.

[13] F. Eyben, M. Wöllmer and B. Schulle, “OpenSMILE - the munich
versatile and fast open-source audio feature extractor,” in Proc. ACM
Multimedia (MM), Florence, 2010.

