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Abstract— K-means clustering and GMM training, as dictionary 

learning procedures, lie at the heart of many signal processing 

applications. Increasing data scale requires more efficient ways 

to perform this process. In this paper a new GPU and multi-core 

CPU accelerated k-means clustering and GMM training is 

proposed. We show that both methods can be concisely 

reformulated into matrix multiplications which allows the 

application of NVIDIA Compute Unified Device Architecture 

(CUDA) implemented Basic Linear Algebra Subprograms 

(CUBLAS) and AMD Core Math Library (ACML) that are 

highly optimized matrix operation libraries for GPU and multi-

core CPU. Experimentations on music genre and mood 

representation and classification have shown that the 

acceleration for learning dictionary is achieved by factors of 38.0 

and 209.5 for k-means clustering and GMM training, compared 

with single thread CPU execution while the difference between 

the average classification accuracies is less than 1%. 
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I.  INTRODUCTION 

Digitalized audio data has exploded with the development 
of information technology. For example only in the on-line 
music store of iTunes, there have been over 20 million songs
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available and the number is still growing fast. Such a huge 
amount of audio data drives the development of automatic 
analysis and retrieval methods. Audio data like music contains 
various information, however, hidden under signal appearance. 
Automatic analysis seeks to extract effective features to 
describe the essence of the signal. Many signal level or low 
level features for example MFCC are developed to transform 
waves into parameterized vectors which still preserve complete 
information of the signal. However, low level feature itself 
contains too much detail of signal’s randomness so that another 
layer of model has to be built to depict low level feature’s 
characteristic.  

K-means or GMM based bag-of-words framework has been 
demonstrated to have superior ability to model low level 
features and has been successfully applied to many 
classification tasks [1][2]. Bag-of-words method first construct 
clusters of assembled low level features through k-means or 
GMM training, then provide cluster information based on the 
feature distribution. This procedure helps translate signal level 
information into meaningful audio word, that is k-means 
clusters and Gaussian mixtures, which convey more definite 
information for example genre or mood for music signal. In re-
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representation of low level features, k-means clustering and 
GMM training are the most crucial and computational 
expensive steps. The quality of dictionary learnt also 
determines for example final classification performance. With 
drastically increased data scale, the dictionary learning 
becomes computational bottle neck. When scrutinizing k-
means clustering and GMM training process carefully we can 
find that both processes contain massive repeated calculations 
between feature vectors and words in dictionary, in which huge 
parallelizability is hidden. GPU and multi-core CPU naturally 
come and fit into the picture. GPU has successively accelerated 
many problems which contains parallelizable calculations for 
example [3][4]. GPU’s efficiency is attributed to its multiple 
core structure and parallelable instruction execution ability.  

There are several previous works employing GPU to 
accelerate k-means clustering and EM for GMM training. [5-10] 
have implemented EM algorithm on CUDA to train GMM. Wu 
in [10] also mentioned to use individual CUBLAS function to 
update means and variance matrix. Azhari in [7] implemented 
MFCC extraction in CUDA too. Gonina in [8] also provided 
Python interface to GPU based GMM training. Machlica in [9] 
used cached textual memory and carefully configured memory 
usage to elevate performance. In previous works user defined 
kernel functions undertake main computation work. However, 
GPU kernel function requires careful design; hardware related 
tuning and is hard to translate into other languages. In this 
paper we shows that k-means clustering and GMM training 
with EM algorithm can be mostly transformed into two 
standard matrix multiplications so that highly optimized matrix 
operation library CUBLAS or ACML can be employed to 
speedup overall calculations. The proposed computation 
structure can also be easy translated into other languages with 
BLAS support for example MATLAB and FORTRAN.  

The rest of the paper is organized as follow: section II 
shows matrix multiplication format of k-means clustering and 
EM algorithm for GMM. Section III introduces performance 
tuning for GPU implementations. In experiment section, music 
genre and mood classification tasks are performed with 
ACML-based and CUBLAS-based implementations. The 
execution speed and quality of learnt dictionary are then 
examined. Final conclusion is drawn in section VI. 

II. K-MEANS AND EM ALGORITHM IN MATRIX FORMAT 

In this section k-means and EM algorithm are shown in 
matrix multiplication format. Block-wise training structure is 
also developed to fit huge data matrix into limited GPU 
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memory, for example in NVIDIA’s GTX 285 used in this 
paper only 750MB display memory can be used for 
computation. Because block-wise training divide computation 
into independent unit, with multiple graphic cards installed, 
the calculation load can be yet arranged parallelly onto 
multiple devices even onto local or remote GPU or CPUs, 
which can further boost overall computation speed. In 
following sections II.A and II.B data block based k-means and 
GMM training in matrix format are introduced in detail. 

Several symbol are firstly defined:   is number of 
dimension for feature vectors, k-means cluster centers and 
Gaussian mixtures;   is the number of feature vector;   is 
number of k-means clusters or GMM mixtures;   is feature 
matrix in which each column represents one feature vector;   is 
k-means cluster centers matrix in which each column 
represents one center;   is variance matrix, in contrast to 
covariance matrix  ,        is the variance of dimension   for 
cluster or mixture  . In GMM,             

  denotes 
the priori probabilities or weights of every mixture,   
           is the means matrix,              is the 
covariance matrix set. Other symbols are defined when used. 

A. K-means in Matrix Format 

K-means clustering iteration contains two steps: cluster 
decision and cluster center updating. The first is to find the 
nearest center to which each feature vector is closed. The 
second is to re-estimate cluster centers according to the nearest 
relationship.  

To measure the closeness between data set   and centers  , 
squared Euclid distance is commonly used, defined as 

                 
 
        

   
       

      
    

 
In matrix format, squared distance matrix can be written as  
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For the center updating step the new center matrix can be 
written as         , where occupation matrix   is 
defined as 

 

        

 

  
      

                         

                                        

  

 
   is the number of associated feature vector to center  . 

Variance matrix can be computed similarly as         
    

   , where                 and   
         

          . 

For large data set, feature matrix   is too large to entirely 
load into limited display memory. Therefore large   is cut into 

blocks                      . In each iteration, sub-

results on      are computed and then aggregated to form the 
overall new cluster centers.  

The block-wise cluster center updating step is as follow. 

For each feature block, define occupation matrix      as  
 

           
        

                         

                                        
  

 

For each feature block, weight feature vector      in which    
indicates the number of related feature vector for center  , 

center matrix      and variance matrix      are computed as 
 

 
       

    

    
   

  

    

  
   
       

 
The overall accumulated vector and matrices for   feature 

blocks are         
    

   ,         
    

    and      
   

    
   . In the end of an iteration the updated cluster center 

  is calculated as   
      

       and variance vector 
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. Note that      does not 

affect cluster center updating; therefore it is only computed in 
the last iteration. The matrix version k-means clustering main 
steps are summarized as follows. 

 

 For each iteration 

 For each feature block      

 Calculate   
    with one sgemm() 

 Calculate      from   
    

 Calculate      and      with one sgemm() 

 Aggregate      and      to update new    
 

B. EM for GMM in Matrix Format 

In GMM, probability of feature vector    is defined as  

                     

 

   

 

 
where           is the GMM parameter set and 
          is the probability of feature vector    under single 
Gaussian mixture  , defined as 
 

          
 

          
  

 
 
          

         
 

 
Like k-means, EM iteration for GMM training includes 

two main steps: probability calculation and parameter 
updating. The first step decides relation between feature vector 
and Gaussian mixtures in terms of probability; the second step 
updates GMM parameters with feature matrix according to 
how likely each mixture can generate observed feature vectors.  

In the first step           are computed. To avoid 
floating point number overflow, the natural logarithm of 
          is preserved during calculation 
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      In practice covariance matrix    is often treated 
as diagonal, in order to simplify computation. Let   
                             denotes the GMM 
variance matrix; Let   denote corresponding logarithm 

probability matrix in which                     , then   

can be written as 
 

   
 

 
              

     

  
 

 
        

    
  

    

  

  

 
where             

 ,    is the reciprocal matrix of   in 
which                  and    is    weighted mean 
matrix in which                       .  Then           
is computed according to Bayes’ rule 

 

          
           

            
 
   

 

 
Posterior probability is firstly computed in logarithm scale, 

that is                                          , 

and then converted into linear scale when needed. 
             are also aggregated directly in logarithm. When 
posterior probability is ready EM updating procedure can be 
performed to re-estimate GMM parameters as follow 

 

  
    

 

 
        

 

   

   

  
    

            
 
   

          
 
   

 

  
    

                
          

      
   

          
 
   

 

 

Let    denote posterior probability matrix, in which 

                  and let   denote the occupation matrix 

for all mixtures, in which  
 

       
         

          
 
   

 

 
The EM updating formulas then can be written as 
 

   
 

 
      

      

          

where    is the squared data matrix in which         
        and    is the squared mean matrix of   just updated. 

To deal with large feature matrix   the similar block-wise 
scheme as for k-means is used. For each feature block, weight 
vector, mean matrix and variance matrix are computed as  

 

 
       

    

    
   

  

    

  
   
    

    

 
The overall accumulated matrices for   feature blocks are 
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The updated GMM parameters are finally calculated as 
weights            , mean   

      
     

     and 

variance   
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. The matrix version main 

steps are summarized as follow. 
 

 For each iteration 

 For each feature block      

 Calculate      with one sgemm() 

 Calculate   
    from      

 Calculate        ,      and      with one sgemm() 

 Aggregate        ,      and      to update new 

GMM parameters  

 

III. PERFORMANCE TUNING 

ACML based implementation for k-means and GMM is 
quite straight forward. To take full advantage of multi-core 

system, calculation of      and   
    is implemented with 

OpenMP
2
 which takes charge of dividing for-loop into multiple 

threads. Similarly on GPU version, calculation of      and 

  
    is implemented with CUDA kernel function. However, 

kernel functions need to be well tuned to achieve peak 
performance.  

CUDA adopts single instruction multiple threads (SIMT) 
architecture. 32 threads form one warp which is unit of GPU 
thread management. When GPUs are idle thread manager tries 
to arrange one or half warp of threads to execute at same time 
with the same instruction. Therefore dividing problem into 
threads block whose dimension is multiple of warp will run 
faster, otherwise some threads will be wasted when computing 
the edge cases of problem. 

Memory in CUDA can roughly be divided into local and 
global category. Local memory is faster, however, of too 
limited size for example GTX285 has only 16KB. Local 
memory is only accessible within thread block and may cause 
bank conflicts. Despite of the limitations, local memory should 
be used whenever shared data exists within thread block in 
order to boost memory throughput. Compared with local 
memory, global memory is larger, up to hundreds mega bytes, 
yet slower. For our tasks, most memory access happens in 
global domain and for computation ability less than 2.0 the 
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global memory does not have cache (GTX285 has computation 
ability of 1.3). Therefore memory access pattern affects 
computation throughput tremendously. In many scenarios 
memory access becomes the computational bottle neck. In 
CUDA, global memory access is divided into memory 
transactions which can load up to 16 bytes at one time. 

Memory access scheme and SIMT architecture determines 
coalesced memory access is the fastest way which requires 
neighbor threads in a block access neighbor data. Although 
threads block can be configured in 2D or 3D, the memory 
neighborhood is still confined in linear due to lack of cache. 

TABLE I.  EXECUTION TIME AND ACCURACY OF DIFFERENT IMPLEMENTATION FOR MUSIC GENRE CLASSIFICATION. 

# Centers/# Mixtures  

# Vectors          

# Dimension                

= 2048 

= 2.7M 

= 39 

K-means GMM 

time per  
iteration (sec) 

 speed-up 
(times) 

GTZAN  
genre (%) 

time per  
iteration (sec) 

speed-up 
(times) 

GTZAN  
genre (%) 

1 thread CPU 278.2 1.0 n/a 2,288.4 1.0 n/a 

32-cored CPU Yael(INRIA) 37.2 7.5 68.1 153.2 14.9 78.0 

32-cored CPU (this paper) 7.3 38.0 69.6 70.1 32.6 78.7 

240-cored GPU  9.1 30.4 69.5 10.9 209.5 77.8 

UWB[9] 
   

9.1* 

  
                                                                                                                          *only kernel execution time counted for GMM with 2048 mixtures trained by 3.125M 40-dimensional vectors  

 

To determine minimum distance for each feature vector 
from matrix   , we have tested calculation performance on    
and on its transpose   

 . It can be observed that same kernel 
function runs 7 times faster on    than on   

 . In former case 
the computation task is parallelized on each vector so that 
speed gain is obtained from coalesced memory access. 

Another example is to compute posterior probability matrix 
   from  . Thread block dimension of (1, 256) is 30% faster 

than of (16, 16). This is also due to coalesced memory access. 
Because although take exponential for each matrix element is a 
2D parallelable operation, the matrix data is actually stored 
linearly in global memory. Therefore (16, 16) configuration 
causes non-consecutive global memory access whereas (1,256) 
does. 

In calling CUBLAS SDK functions, using non-transposed 
matrix function call whenever possible can improve the 
execution speed, because transpose operation is expensive and 
from NVIDIA’s profiler we can find when cublasSgemm() is 
performed on matrix who needs to transpose the multiplication 
is actually performed by a CUDA kernel function, which is 
slower. In experiments we observe 4 times speed-up when 
calling cublasSgemm() with non-transposed arguments.  

Merging matrix operations whenever possible, like 
multiplication, can save overhead caused by function calling 
and repeated memory access. For example when block mean 
and variance matrix updating is combined into one matrix 
multiplication 10% execution time is saved. 

IV. MUSIC GENRE AND MOOD CLASSIFICATION 

To evaluate speed and quality of our implementations, 
music genre and mood classification have been conducted on 
both GPU and multi-core CPU systems. 

A. Experiment setups 

The single thread implementation based on clapack
3
 ran on 

a pc with Intel
®
 Core™ i7-940 2.93GHz as a baseline. The 
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implementation based on ACML ran on a server with 4 8-cored 
AMD Opteron™ Processor 6128 2GHz. The implementation 
based on CUBLAS ran on 240-cored NVIDIA GTX 285. Yael
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is also tested on the server as a benchmark for multi-threading 
implementation. 

GTZAN [11] data set is used for genre classification. 
GTZAN contains 10 genres of music. Each genre contains 100 
30-sec segments. MFCC with delta and delta delta features are 
extracted. MFCC analysis window shift is 10ms long, resulting 
100 39-dimensional feature vectors per second. To test k-
means clusters and GMM quality 10-fold cross validation is 
performed. In each fold K-means and GMM with 2048 clusters 
and mixtures are trained by 2.7 million 39-dimentional feature 
vectors. 

Music mood classification is performed on the dataset 
provided by Xiao et al. [12] consists of 416 16s long pure 
classical music segments, manually divided into 4 moods as 
shown in Table II. OpenSMILE [13] large emotional feature 
set is used which contains 57 low level features plus delta and 
delta delta. In mood classification experiments, 5 times 2-fold 
cross-validation is performed in order to compare with result in 
previous literature. Before dictionary learning, 171 dimensional 
feature vectors are normalized by training set global mean and 
standard derivation to avoid different scale effect. In each fold, 
GMM with 1024 mixture is trained by 0.33 million 171-
dimentional feature vectors for 1024 mixtures.  

After dictionary learning, low level features of each music 
segments are converted to dictionary words histogram and 
normalized. The normalized histograms as final feature vectors 
are used to train one-versus-others SVM classifier. To compare 
the mood classification performance, standard OpenSMILE 
low level feature with statistic functions are extracted and used 
to train SVM as benchmark. The running time and accuracy 
results of the two experiments are shown in Table I and Table 
IV-VI. 
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TABLE II.  CLASSICAL MUSIC DATASET MOOD DISTRIBUTION 

 Anxious Content Depressed Exuberant 

# music 81 124 120 91 

B. Results and Analysis 

From Table I, we can find that 1) high performance library 
based implementations proposed in this paper achieve up to 5 
times faster than multi-threading based implementation (Yael). 
2) GPU based implementation executes 5 times faster than 
multi-core CPU based one on GMM training whereas multi-
core version outperforms GPU on k-means clustering by 22% 
in terms of speed. GPU based k-means is slower than multi-
core CPU in that CPU version executes       operations for 

     calculation while GPU version actually executes matrix 
multiplication containing        operations. We choose 

matrix multiplication for      calculation in GPU because 
      operations consume as twice time as         matrix 
multiplication on GPU architecture. This abnormal 
phenomenon is due to random memory access pattern of 
      operations on GPU. Therefore in this scenario matrix 
multiplication is the optimal but still slower way for GPU.  

In [9] Machlica et al. reported a faster result of comparable 
data set, however, the duration profile in [9] only recorded 
kernel function’s running time without data IO and data 
preparation duration. If only GPU execution duration is 
considered, our method consumes 7 seconds compared with 9.1 
in [9]. From genre classification accuracy column in Table I, 
we can find that the quality of dictionary trained by CPU is 
little better than GPU by less than 1% in terms of average 
classification accuracy. This is due to the less floating point 
error of CPU and double precision floating point numbers used 
during summation procedure on CPU. 

From Table III, we can find that with the same number of 
mixture; the same types of GPU and comparable data scale in 
[7], our CUBLAS based implementation is 10 times faster than 
CUDA kernel implementation described in [7]. From Table IV-
VI we can find 1024 dimensional bag-of-words histogram 
features outperforms standard 6552 dimensional OpenSMILE 
emotional features by 3% in terms of average classification 
accuracy. 

TABLE III.  RUNNING TIME PER ITERATION FOR MOOD GMM TRAINING 

 

32-cored CPU 240-cored GPU  Azhari [7] 

time (sec) 9.6 2.9 30.0 

TABLE IV.  CUBLAS MOOD CLASSIFICATION CONFUSION MATRIX 

% Anx Con Dep Exu 

Anx 81.0±8.9 1.2±2.0 1.0±1.7 16.8±7.4 

Con 0.0±0.0 91.1±2.9 8.7±2.9 0.2±0.5 

Dep 0.0±0.0 8.8±3.7 90.5±3.2 0.7±1.5 

Exu 10.2±4.7 3.8±2.0 0.0±0.0 86.0±4.2 

Average 87.2 

 

TABLE V.  ACML MOOD CLASSIFICATION CONFUSION MATRIX 

% Anx Con Dep Exu 

Anx 81.0±7.8 1.2±2.0 1.2±1.7 16.5±6.2 

Con 0.0±0.0 91.9±3.0 8.1±3.0 0.0±0.0 

Dep 0.0±0.0 8.3±3.5 91.0±3.2 0.7±1.5 

Exu 11.3±5.3 3.6±1.8 0.0±0.0 85.1±5.0 

Average 87.3 

TABLE VI.  OPENSMILE MOOD CLASSIFICATION CONFUSION MATRIX 

% Anx Con Dep Exu 

Anx 85.5±7.1 2.5±1.6 0.5±1.0 11.5±6.8 

Con 5.5±4.7 86.9±4.2 6.3±3.0 1.3±2.7 

Dep 9.0±6.3 6.2±3.9 83.5±7.9 1.3±3.0 

Exu 17.6±5.0 2.2±1.4 0.2±0.7 80.0±5.9 

Average 84.0 

V. CONCLUSION 

In this paper we have proposed to use GPU and multi-core 
CPU to accelerate bag-of-words method especially dictionary 
learning of k-means clustering and GMM training. To employ 
high performance matrix operation library of ACML and 
CUBLAS we propose to reformulate k-means and EM 
algorithm into matrix multiplications, which is also convenient 
to implement with other languages for example MATLAB and 
FORTRAN. Experiments on music genre and mood 
classification tasks show that the proposed implementations 
achieve 38 to 209 times acceleration, compared with single 
threaded CPU version. 240-cored GPU can run up to 5 times 
faster than 4 8-cored CPUs with just less 1% performance 
decline.  

As k-means and GMM training are widely used for learning 
dictionaries in many applications, we will propose to the 
community our optimized implementation of these procedures 
presented in this paper within an open-source toolbox that will 
be freely available to the public. 
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