
Majority-Rule-Based Web Service Selection

Karim Benouaret1, Dimitris Sacharidis2, Djamal Benslimane1, and
Allel Hadjali3

1 Claude Bernard Lyon1 University, LIRIS, 69622 Villeurbanne, France
{karim.benouaret, djamal.benslimane}@liris.cnrs.fr
2 IMIS, Athena Research Center, Marousi 15125, Greece

dsachar@imis.athena-innovation.gr
3 Enssat, University of Rennes 1, IRISA, 22305 Lannion, France

allel.hadjali@enssat.fr

Abstract. Determining the appropriate service for a user request is a
two step process. Initially, the available services whose description agrees
with that of the request service are discovered. Then, the service selection
process assists users in choosing the service that better matches their in-
tention. In many practical situations, the responsibility to decide which
is the appropriate service is shared among multiple parties, e.g., among
the department heads of a university. The standard approach to such a
service selection problem, is to discard services which are unanimously
inappropriate, and return the rest. However, as the involved parties may
have conflicting interests, it is possible that only few services are elim-
inated, and thus almost all discovered services need to be considered.
This work addresses this shortcoming, by enforcing the majority rule: a
service is discarded if the majority of the parties find it inappropriate. We
formulate the majority-rule-based service selection problem based on the
notions of dominance relationship and skyline. Furthermore, we propose
an algorithm that (1) returns a more manageable set of services, elimi-
nating many inappropriate ones, and (2) is more efficient that standard
skyline techniques.

1 Introduction

Web data services, as a key technology for the development, deployment and
management of Web services-based access to information systems, promise to
enable maximal mashup, reuse, and sharing of structured data (e.g., relational
tables), semi-structured information (e.g., XML documents) and unstructured
information (e.g., commercial data from online business sources). Thereby, en-
abling users to perform several operations, e.g., data analysis, searches, pur-
chases.

Consequently, it becomes apparent that the Web services paradigm rapidly
gains popularity constituting an integral part of many real-world applications.
For these reasons, several techniques for discovering Web services have been
recently proposed. However, as Web data services (or services for short) and ser-
vice providers proliferate, there will be a large number of candidate, most likely

competing, services for fulfilling a desired task. Thus, service selection is becom-
ing important for helping users to identify desirable services. User preferences
play a key role during the selection process [1–3]. However, in many practical
situations, the responsibility to decide which is the appropriate service is shared
among multiple parties, e.g., among the department heads of a university.

The following running example illustrates such a scenario, where a university
decides to obtain a software license of a cloud-based data analytics service.

Table 1: User Preferences
User Budget Processes Redundancy Nodes

u1 [7000, 10000] [5, 10] — —
u2 — — [3, 5] —
u3 — [8, 12] — [80, 100]

Example 1. Consider a set of cloud-based data analytics Web services, and as-
sume that several departments within a university wish to buy a license for
one of them. The services are described by their annual Cost, the number of
allowed simultaneous Processes, the level of data Redundancy, and the number
of computing Nodes.

The users, in this case the department heads, have different preferences with
respect to the service descriptions, as depicted in Table 1. User u1, has a bud-
get of [7000, 10000] and expects to run simultaneously [5, 10] processes; user u2
cares much about data redundancy and expects a redundancy level of [3, 5]; user
u3 expects to run simultaneously [8, 12] processes requiring [80, 100] computing
nodes. ut

The service selection process follows two phases. In the first, given the user’s
preferences on service description attributes, the degrees of match between a
requested and an available service (see e.g., [4–6]) are computed. In this work,
we assume the Jaccard coefficient for matching service descriptions. If I1, I2 are

two intervals, their Jaccard coefficient is J(I1, I2) = |I1∩I2|
|I1∪I2| , where |I| measures

the length of the interval [7].

Table 2: Discovered Services
Service Cost Processes Redundancy Nodes

s1 [7000, 11000] [7, 12] [3.5, 5.5] [60, 110]
s2 [5000, 10000] [5, 11] [4, 6] [70, 115]
s3 [6000, 12000] [1, 10] [4, 6] [70, 110]
s4 [8000, 12000] [2, 12] [3.5, 5] [75, 130]
s5 [9000, 15000] [9, 12] [4, 7] [90, 130]

Example 2. Returning to our example, consider that the set of relevant Web
services are the ones depicted on Table 2. Each service is shown along with
their description attributes. For instance service s1 offers license plans that cost

[7000, 11000] per year, allows [7, 12] simultaneous processes, offers a redundancy
level of [7 :2, 11:2], and allocates [60, 110] computing nodes.

Based on the set of relevant service in Table 2 and the user requirements in
Table 1, the service selection process computes the matching degrees between
each user’s specified preference and the corresponding service characteristic. For
instance, the matching degree of service s1 with respect to the Cost and Processes

requirements of user u1 are |[7000,10000]||[7000,11000]| = 0.75 and |[7,10]||[5,12]| = 0.43, respectively.
ut

Table 3: Matching Degrees of Services w.r.t. Users
Service u1: (Cost, Processes) u2: Redundancy u3: (Processes, Nodes)

s1 (0.75, 0.43) 0.62 (0.83, 0.41)
s2 (0.67, 0.86) 0.35 (0.57, 0.47)
s3 (0.57, 0.54) 0.35 (0.23, 0.51)
s4 (0.50, 0.54) 0.76 (0.45, 0.38)
s5 (0.57, 0.25) 0.27 (0.80, 0.27)

The second phase of service selection is to identify the most interesting ser-
vices w.r.t. users preferences. Most of service selection approaches focus on com-
puting a score for each service as an aggregate of its individual matching degrees.
Various approaches for aggregating the matching degrees exist. A common direc-
tion is to assign weights over different preference attributes; e.g., [8]. However,
when multiple users are involved, it would be difficult to make tradeoffs between
different weights. The natural option is to use the skyline operator [9–14] to
determine an objectively good set of services. We refer to this set as the unan-
imous service skyline, and it contains all services which are not unanimously
dominated. A service unanimously dominates another, if the former has higher
matching degrees than the latter in all users’ preferences.

Example 3. In our running example, service s1 unanimously dominates service
s5, as s1’s matching degrees are higher. On the other hand, no other service
is unanimously dominated. Hence, the skyline comprises services s1, s2, s3 and
s4. ut

Computing the unanimous service skyline frees users from assigning relative
importance over different preference attributes. However, a major drawback is
that, when multiple parties are involved, the number of services in the skyline
becomes very large and no longer offers any interesting insights. The reason is
that as the number of users and preferences increase, for any services si, sj ,
it is more likely that si and sj are incomparable, i.e., better than each other
in different matching degree. It is thus crucial to further reduce the size of the
service skyline.

The core of the above drawback is in the definition of dominance, which
requires a unanimous verdict. To mitigate this, we choose to follow the majority
rule. Informally, a service majority-dominates another, if the former has higher

matching degrees than the latter in the majority of users’ preferences. Then,
we naturally define the majority service skyline, as the services which are not
majority-dominated.

To compute the majority service skyline, we make the observation that con-
ventional skyline computation algorithms, with the exception of [15], cannot be
adapted, due to the intransitivity of the majority-dominance relationship. There-
fore, an extension of the algorithms in [15] can be used to compute the majority
service skyline. However, we propose a novel algorithm for the service selection
problem and show that it most cases it outperforms the extended algorithms.

Our main contributions are summarized as follows:

– We introduce a new concept for service selection when multiple preferences
are involved, which is based on the majority rule, and is called the majority
service skyline.

– We extend existing algorithms and propose a novel algorithm to efficiently
compute the majority service skyline.

– We evaluate both the effectiveness of the proposed concept and the efficiency
of our algorithm through a comprehensive experimental study.

The rest of the paper is structured as follows. Section 2 reviews related work.
Section 3 introduces the problem of majority service skyline. Section 4 describes
the majority service skyline computation algorithm. Section 5 presents our ex-
perimental study. Finally, Section 6 concludes the paper.

2 Related Work

In this section, we discus related work in the areas of preference-based service
selection and skylines. We also highlight our contribution in these areas.

2.1 Preference-Based Service Selection

During the last years, the problem of preference-based service selection has re-
ceived a lot of attention. The main objective is to provide users with the most
relevant services, i.e., those that better satisfy their preferences, among the ser-
vices retrieved by service discovery. Agarwal and Lamparter [16] propose an
approach for an automated selection of services for service composition. Ser-
vice compositions can be compared with each other and ranked according to
the user preferences, where preferences are modeled as fuzzy IF-THEN rules.
The IF part contains fuzzy descriptions of the various properties of a service,
while the THEN part is one of the fuzzy characterizations of a special concept
called Rank. A fuzzy rule describes which combination of attribute values a
user is willing to accept to which degree, where attribute values and degree of
acceptance are fuzzy sets. In [8], the authors indicate that they model service
configurations and preferences more compactly using utility function policies,
which allows drawing from multi-attribute decision theory methods to develop

an algorithm for optimal service selection. The authors also present the OWL
ontology for the specification of configurable service offers and requests, and
a flexible and extensible framework for optimal service selection that combines
declarative logic-based matching rules with optimization methods, such as linear
programming. In [2], the authors use a qualitative graphical representation of
preferences, CP-nets, to deal with services selection in terms of user preferences.
This approach can reason about users incomplete and constrained preferences.
In [17], the authors propose a system for conducting qualitative service selec-
tion in the presence of incomplete or conflicting user preferences. The paradigm
of CP-nets is used to model user preferences. The system utilizes the history
of users to amend the preferences of active users, thus improving the results
of service selection. In our recent work [1, 3], we propose an approach to auto-
matically compose services, while taking into account the user preferences. User
preferences are modeled using fuzzy sets. Different methods are investigated to
compute the degrees of relevance of discovered services w.r.t. user’s preferences.
In order to select the most relevant services, a multi-criteria fuzzy dominance re-
lationship is proposed to rank-order services. The selected services are then used
to find the top-k service compositions. We propose also a method to improve
the diversity of returned service compositions.

In the above line of work, the problem of reconciling multiple users prefer-
ences is not addressed. It is the focus of this work to propose a service selection
solution that is both effective, i.e., it does not overwhelm the users, and efficient,
i.e., it outperforms straightforward extensions of existing algorithms.

2.2 Skyline Computation

Skyline computation is related to problems from various fields, including the
contour problem [18], maximal vectors [19] and convex hull [20]. The concept
was re-introduced in the data management community by Börzsönyi et al. [21],
where three external memory algorithms are presented, BNL, D&C and B-tree.
Since then, several algorithms have been developed to compute the skyline. They
can be categorized into non-index-based algorithms, e.g., SFS [22], LESS [23],
SaLSa [24] and OSP [25], and index-based algorithms, e.g., Index [26], NN [27],
BBS [28] and ZSearch [29].

As the size of the skyline may become too large, several variations have been
investigated. Papadias et al. [30] propose the concept of k-dominating query,
which retrieves the k points that dominate the largest number of other points.
However, a k-dominating query does not always return skyline points. To re-
solve this, Lin et al. propose in [31] the top-k representative skyline, so that
the k skyline points with the maximal number of dominated points can be pro-
duced. However, this approach often return similar points [32]. For diversifying
the result, Tao et al. propose in [32] the distance based representative skyline. A
similar approach is adapted in [10] for selecting services based on QoS. However,
these approaches are only useful with anti-correlated datasets [10]. In [33], the
authors propose the top-k skyline frequency. The skyline frequency of a point p
is the number of subspaces where p is a skyline point. In a recent work [12], we

propose the concept of α-dominant skyline, which gives preference to services
with a good compromise between QoS attributes. It also gives users the flexi-
bility to control the size of the skyline. However, the problem of multiple users
preferences is not addressed in these works. In [15], the authors relax the notion
of dominance to k-dominance, so that more points are dominated. A point p is
said to k-dominate another point q iff there are k dimensions on which p dom-
inates q. The k-dominant skyline then consists of the subset of points that are
not k-dominated.

The problem of computing the majority service skyline can be solved by an
adaptation of the algorithms proposed in [15], since the majority-dominance rela-
tionship exhibits similar properties, most particularly intransitivity, with the k-
dominance relationship. However, as our experimental evaluation demonstrates,
our algorithm is more efficient that such an adaptation.

3 Problem Definition

In this section, we provide the basic notions used throughout this paper, and
formalize the notion of majority service skyline.

We assume a set of users U = {u1, u2, . . . , um}, and a set of discovered
services S = {s1, s2, . . . , sn}. We use si.uk to denote the matching degrees of
service si w.r.t. user uk. For instance, the matching vector of s1 w.r.t. u1 is
s1.u1 = (0.75, 0.43).

Definition 1. (Weak Dominance)
Given a user uk, we say that service si weakly dominates sj w.r.t. uk, denoted as
si.uk � sj .uk, iff si has better matching degrees than sj on all specified preference
attributes.

Definition 2. (Dominance)
Given a user uk, we say that service si dominates sj w.r.t. uk, denoted as
si.uk � sj .uk, iff si has better matching degrees than sj on all specified pref-
erence attributes, and strictly better matching degree on at least one.

Definition 3. (Unanimous Dominance)
Given a set of users U , we say that service si unanimous-dominates sj, denoted
as si �U sj, iff si weakly dominates sj w.r.t. all users, i.e., ∀uk ∈ U si.uk �
sj .uk, and there exists one user, say u′k, for which si dominates sj, i.e., ∃u′k ∈
U si.u

′
k � sj .u′k.

Definition 4. (Unanimous Service Skyline)
Given a set of discovered services S and a set of users U , the unanimous service
skyline USS(S,U) comprises the set of services that are not dominated by any
other.

In the following, we introduce the concept of majority rule in the service
selection process and alter the definitions of dominance and skyline.

Definition 5. (Majority Dominance)
Given a set of users U , we say that service si majority-dominates sj, denoted
as si �M sj, iff (1) there exists a subset U ′ ⊆ U containing more than half of
the users such that si weakly dominates sj w.r.t. all users in this subset, i.e.,
|U ′| > b|U|/2c and ∀uk ∈ U ′ si.uk � sj .uk, and (2) there exists one user, say
u′k, for which si dominates sj, i.e., ∃u′k ∈ U si.u

′
k � sj .u′k.

Definition 6. (Majority Service Skyline)
Given a set of discovered services S and a set of users U , the majority service
skyline MSS(S,U) comprises the set of services that are not majority-dominated
by any other.

Example 4. Returning to our example, s1 majority-dominates services s3, s4 and
s5, while, services s1 and s2 are not majority-dominated by any other service.
Thus, services s1 and s2 form the majority service skyline. Recall that the unan-
imous service skyline comprises services s1, s2, s3 and s4. Observe that the MSS
has smaller cardinality than the USS. ut

We now provide the formal definition for the service selection problem for
multiple users.

Problem statement: Given a set of users U and a set of discovered services
S, compute the majority service skyline.

4 Computing the Majority Service Skyline

In this section, we first introduce some important observations regarding the
problem at hand. We then develop an algorithm based on these observations for
efficiently computing the majority service skyline.

4.1 Observations

We make some observations regarding the majority dominance relationship.

Lemma 1. If si unanimous-dominates sj, then si majority-dominates sj. i.e.,
si �U sj ⇒ si �M sj.

Proof. Proof follows from Definition 1 and Definition 3, setting U ′ = U .

Theorem 1. The majority service skyline is a subset of the unanimous service
skyline. i.e., MSS(S,U) ⊆ USS(S,U).

Proof. Assume that there exists a service si, such that si ∈ MSS(S,U) and
si /∈ USS(S,U). Since si /∈ USS(S,U), there must exist a service sj , such that
sj �U si. Thus, by Lemma 1, we have sj �M si. Which leads to a contradiction,
as si ∈MSS(S,U).

Table 4: Example of Cyclic Majority Dominance
Service u1: (Cost, Processes) u2: Redundancy u3: (Processes, Nodes)

sa (0.76, 0.69) 0.74 (0.58, 0.80)
sb (0.56, 0.64) 0.70 (0.78, 0.86)
sc (0.80, 0.88) 0.68 (0.72, 0.76)
sd (0.78, 0.86) 0.61 (0.75, 0.89)

Moreover, observe that the majority dominance relationship does not main-
tain the transitive property, as services can exhibit a cyclic majority dominance
relationship.

Theorem 2. It is possible to have a set of users U and a set of discovered
services S = {s1, s2, . . . , sn} such that s1 majority-dominates s2, s2 majority-
dominates s3, . . . , sn−1 majority-dominates sn and sn majority-dominates s1,
i.e., forming a cyclic majority dominance relationship.

Proof. The example in Table 4, where sa �M sb, sb �M sc, sc �M sd, and
sd �M sa, proves the claim.

The above theorem shows that the majority dominance relationship shares
the cyclic property of the k-dominance relationship introduced in [15]. Therefore,
a service cannot be discarded even if it is majority-dominated because it might
be needed for excluding other services. This justifies why the existing algorithms
for computing the skyline are not applicable for computing the majority service
skyline. However, the one scan algorithm (OSA) and two scan algorithm (TSA)
of [15], can be adapted to compute the majority service skyline, by exchanging
k-dominance checks for majority dominance checks as defined in Section 3. In
the following, we denote as OSA and TSA the adaptations of the algorithms in
[15] to computing the majority service skyline.

4.2 Majority Service Skyline Algorithm

In this section, we introduce the Majority Service Skyline Algorithm (MSA),
which improves on OSA by employing the following properties.

Lemma 2. if si unanimous-dominates sj and sj majority-dominates sk, then
si majority-dominates sk. i.e., si �U sj ∧ sj �M sk ⇒ si �M sk.

Proof. As sj majority-dominates sk means that sj dominates sk w.r.t. more
than half of users, and si unanimous-dominates sj means that si dominates sj
w.r.t. all users. Thus, si dominates sk w.r.t. more than half of users. Hence, si
majority-dominates sk.

Lemma 3. Let f : S → R+ be a monotone function aggregating the matching
degrees of si for all users. If si unanimous-dominates sj, then f(si) > f(sj).
i.e., si � sj ⇒ f(si) > f(sj).

Proof. The fact that si unanimous-dominates sj means that si is better than
or equal to sj with respect to all preference attributes of all users. This implies
that a monotone aggregate function over the matching degrees of si has a greater
value than that function over the matching degrees of sj . Hence, f(si) > f(sj).

From Lemma 1 and Lemma 2, we can see that it is sufficient to compare each
service against the unanimous skyline services to detect if it is part (or not) of
the majority service skyline. This essentially reduces the number of comparisons.
Specifically, if a service si is unanimous-dominated, then discard it as (1) it is
not part of the majority service skyline (Lemma 1), and (2) it is unnecessary for
eliminating other services (Lemma 2).

Lemma 3 also helps reduce unnecessary comparisons. In fact, to exploit this
property, we sort the services in non-ascending order of the sum of their matching
degrees. Then, given a service si, searching for services by which si is unanimous-
dominated can be limited to the part of the service before si. This is the idea
behind the SFS algorithm [22], which in this context we apply it for cyclic
dominance relationships.

The MSA algorithm leverages the observations made above to compute ef-
ficiently the majority service skyline. Based on Lemma 1 and Lemma 2, MSA
maintains two sets R and T , containing respectively the set of intermediate
majority service skyline services and the set of intermediate unanimous skyline
services that are not in R. Thus, R∪T constitutes the intermediate unanimous
skyline.

Algorithm 1: MSA

Input: set of users U ; set of discovered services S;
Output: majority service skyline R;

1 sort S in a non-ascending order of the sum of services’ matching degrees;
2 R← ∅; T ← ∅;
3 while S is not empty do
4 extract the top service si from S;
5 if si is unanimous-dominated by any service in R∪ T then
6 discard si;
7 else
8 if si majority-dominates any service sj in R then
9 remove sj from R to T ;

10 if si is majority-dominated by any service in R∪ T then
11 insert si into T ;
12 else
13 insert si into R;

14 return R;

The details of MSA depicted in Algorithm 1 are as follows. First, services in
S are sorted in a non-ascending order of the sum of their matching degrees, and
both sets R and T are initialized to empty sets. Then, the top service (i.e., the
service with the maximum sum of matching degrees), say si, is extracted from
S. Service si is compared against services in R∪ T , i.e., the set of services that
may unanimous-dominate si (as the other services cannot dominate si from
Lemma 3). If si is unanimous-dominated, then it is removed from S as it is
not part of the majority service skyline (Lemma 1) and it is unnecessary for
eliminating other services (Lemma 2). Otherwise, i.e., when si is not unanimous-
dominated by any service in R ∪ T , if si majority-dominates any service sj in
R (i.e., sj is not a service in MSS), then sj is removed from R to T , as it
is a unanimous skyline service, thus useful for eliminating other services. For
the same reason, if si is majority-dominated by any service in R ∪ T , it is
inserted into T as it is not part of the majority service skyline. Else, si is an
intermediate MSS service and is thus inserted into R. Once all services in S have
been examined, i.e., S is empty, services in R form the majority service skyline,
and R is returned.

Example 5. Applying MSA on our example, services s1 and s2 will be inserted
into R, while, services s3 and s4 will be inserted into T since they are both
majority-dominated by service s1, but they are skyline services. On the other
hand, service s5 is discarded as it is dominated by service s1. Thus, the algorithm
correctly returns services s1 and s2 as the majority service skyline. ut

5 Experimental Evaluation

In this section, we present an extensive experimental evaluation of our approach.
Our objective is to prove the effectiveness of the majority service skyline and the
efficiency of the proposed algorithm. More specifically, we focus on two issues.
(1) The size of the majority service skyline (denoted as MSS). To demonstrate
that the majority service skyline further reduces the size of the (traditional)
skyline, we also compute the size of the unanimous skyline (denoted as USS) to
compare how their sizes varies. (2) The performance of our algorithm in terms
of elapsed time for computing the majority service skyline. For comparison pur-
poses, we also implemented the adaptations of OSA and TSA [15] for computing
the majority service skyline.

Table 5: Parameters and Examined Values
Parameter Symbol Range Default

Number of discovered services n [2, 10]K 5K
Number of users m [3, 7] 5

Number of preferences per user d [3, 7] 5

5.1 Experimental Setup

It is worth noting that, due to the limited availability of real-world service data,
most existing skyline-based service selection approaches, e.g., [9, 11–14], use syn-
thetic datasets for their evaluation. For ease of comparison, we also follow this
direction. The service generator we use takes as input a (real-world) model ser-
vice and its associated constraints, representing the requested service and the
multiple users preferences, and produce a set of synthetic services, as well as
their associated constraints, representing the set of discovered services. The Jac-
card coefficient is used for computing the matching degrees between discovered
service’ constraints and users preferences. The generation of the sets of synthetic
services is controlled by the parameters in Table 5, which displays the param-
eters under investigation, their corresponding ranges and their default values.
In each experimental setup, we investigate the effect of one parameter, while
setting the remaining ones to their default values.

The service generator and the algorithms, i.e., MSA, OSA and TSA were
implemented in Java, and all experiments were conducted on a 2.3 GHz Intel
Core i5 processor.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

2 4 6 8 10

S
iz

e
 (

s
e

rv
ic

e
)

Number of discovered services (K)

MSS
MSS

(a) Size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 2 4 6 8 10

E
la

p
s
e

d
 t

im
e

 (
m

s
e

c
)

Number of discovered services (K)

OSA
TSA
MSA

(b) Elapsed time

Fig. 1: Effects of n.

5.2 Effect of n

Figure 1 depicts the effect of n. As shown in Figure 1a, the size of the majority
service skyline increases slightly with n. This is because as n varies, it is be-
coming more difficult to find services which are majority-dominated. Figure 1a
shows also that the size of the majority service skyline is very smaller then that
of the skyline, which is almost equal to the number of discovered services, as
the skyline cannot discard all inappropriate services, while the majority service
skyline includes only the most interesting ones. As depicted in Figure 1b, the
execution time of the algorithms increases with n. However, MSA consistently
outperforms OSA and TSA.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3 4 5 6 7

S
iz

e
 (

s
e

rv
ic

e
)

Number of users

MSS
USS

(a) Size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7

E
la

p
s
e

d
 t

im
e

 (
m

s
e

c
)

Number of users

OSA
TSA
MSA

(b) Elapsed time

Fig. 2: Effects of m.

5.3 Effect of m

Figure 2 shows the effect of m. Figure 2a shows a fluctuation in the size of
the majority service skyline. The fluctuation is related to the definition of the
majority dominance relationship (Definition 5). Indeed, we can distinguish two
trend. One for the even values of m, and the second for the odd values of m; each
trend increases with the increase of m. This is because, if we have an odd value
of m, say mo, and an even value of m, say me, such that mo = me + 1, then the
percentage of most of users for me is greater than that of mo. For example, for
m = 4, the percentage is 3

4 = 0.75%, and for m = 5 the percentage is 3
5 = 0.60%.

When this percentage is large, small number of services is discarded, and vice
versa. Also, note that the size of the majority service skyline is very smaller
then that of the unanimous service skyline, which approximates the number of
discovered services for m ≥ 4. As shown in Figure 2b, when m increases, the
performance of TSA deteriorates due to the second scan performed. However,
the execution time of OSA and MSA increases slightly with m. Still, MSA is
better.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3 4 5 6 7

S
iz

e
 (

s
e

rv
ic

e
)

Number of preferences per user

MSS
USS

(a) Size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7

E
la

p
s
e

d
 t

im
e

 (
m

s
e

c
)

Number of preferences per user

OSA
TSA
MSA

(b) Elapsed time

Fig. 3: Effects of d.

5.4 Effect of d

Figure 3 shows the effect of d. As depicted in Figure 3a, the size of the majority
service skyline increases significantly with the increase of d. This is because as
d increases, a service has increased probability not to be dominated in all pref-
erence attributes w.r.t. a given user. However, the size of the majority service
skyline remains smaller than that of the unanimous service skyline, which ap-
proximates the number of discovered services for d ≥ 4. As shown in Figure 3b,
TSA is better than OSA and MSA for d ≤ 4 since the size of the majority service
skyline is small, thus a large number of services can be eliminated in the first
scan. However, TSA does not scale with d as the size of the majority service
skyline becomes large, thus the second scan is very time consuming. The execu-
tion time of OSA and MSA, on the other hand, increases slightly with d. Also,
observe that MSA consistently performs better than OSA.

6 Conclusion

In this paper, we deal with the problem of preference-based Web service selection
under multiple users preferences. We introduce a novel concept for this problem
based on the majority rule. This allows users to make a “democratic” decision
on which services are the most appropriate. We develop a suitable algorithm
for the majority-rule-based Web selection problem. Our experimental evaluation
demonstrates the effectiveness of the concept and the efficiency of the algorithm.

References

1. K. Benouaret, D. Benslimane, A. Hadjali, and M. Barhamgi, “Fudocs: A web ser-
vice composition system based on fuzzy dominance for preference query answering,”
PVLDB, vol. 4, no. 12, pp. 1430–1433, 2011.

2. H. Wang, J. Xu, and P. Li, “Incomplete preference-driven web service selection,” in
IEEE SCC (1), 2008, pp. 75–82.

3. K. Benouaret, D. Benslimane, A. Hadjali, and M. Barhamgi, “Top-k web service
compositions using fuzzy dominance relationship,” in IEEE SCC, 2011, pp. 144–151.

4. M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara, “Semantic matching
of web services capabilities,” in International Semantic Web Conference, 2002, pp.
333–347.

5. L. Li and I. Horrocks, “A software framework for matchmaking based on semantic
web technology,” in WWW, 2003, pp. 331–339.

6. X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Simlarity search
for web services,” in VLDB, 2004, pp. 372–383.

7. R. O. Duda and P. E. Hard, Pattern Classifcation and Scene Analysis. New York:
A Wiley-Interscience Publication, 1973.

8. S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm, “Preference-based selection
of highly configurable web services,” in WWW, 2007, pp. 1013–1022.

9. Q. Yu and A. Bouguettaya, “Computing service skyline from uncertain qows,” IEEE
T. Services Computing, vol. 3, no. 1, pp. 16–29, 2010.

10. M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for qos-based web
service composition,” in WWW, 2010, pp. 11–20.

11. Q. Yu and A. Bouguettaya, “Computing service skylines over sets of services,” in
ICWS, 2010, pp. 481–488.

12. K. Benouaret, D. Benslimane, and A. Hadjali, “On the use of fuzzy dominance for
computing service skyline based on qos,” in ICWS, 2011, pp. 540–547.

13. Q. Yu and A. Bouguettaya, “Multi-attribute optimization in service selection,”
World Wide Web, vol. 15, no. 1, pp. 1–31, 2012.

14. Q. Yu and A. Bouguettaya, “Efficient service skyline computation for composite
service selection,” IEEE Transactions on Knowledge and Data Engineering, vol. 99,
no. PrePrints, 2011.

15. C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang, “Finding
k-dominant skylines in high dimensional space,” in SIGMOD Conference, 2006, pp.
503–514.

16. S. Agarwal and S. Lamparter, “User preference based automated selection of web
service compositions,” in ICSOC Workshop on Dynamic Web Processes, K. V. A. S.
M. Z. C. Bussler, Ed. Amsterdam, Netherlands: IBM, Dezember 2005, In proceed-
ings, pp. 1–12.

17. H. Wang, S. Shao, X. Zhou, C. Wan, and A. Bouguettaya, “Web service selection
with incomplete or inconsistent user preferences,” in ICSOC/ServiceWave, 2009, pp.
83–98.

18. D. H. McLain, “Drawing contours from arbitrary data points,” Comput. J., vol. 17,
no. 4, pp. 318–324, 1974.

19. H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of
vectors,” J. ACM, vol. 22, no. 4, pp. 469–476, 1975.

20. F. P. Preparata and M. I. Shamos, Computational Geometry - An Introduction.
Springer, 1985.

21. S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in ICDE,
2001, pp. 421–430.

22. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in
ICDE, 2003, pp. 717–719.

23. P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector computation in large data
sets,” in VLDB, 2005, pp. 229–240.

24. I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline evaluation,”
ACM Trans. Database Syst., vol. 33, no. 4, 2008.

25. S. Zhang, N. Mamoulis, and D. W. Cheung, “Scalable skyline computation using
object-based space partitioning,” in SIGMOD Conference, 2009, pp. 483–494.

26. K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline computation,”
in VLDB, 2001, pp. 301–310.

27. D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An online
algorithm for skyline queries,” in VLDB, 2002, pp. 275–286.

28. D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm
for skyline queries,” in SIGMOD Conference, 2003, pp. 467–478.

29. K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee, “Approaching the skyline in z
order,” in VLDB, 2007, pp. 279–290.

30. D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline computation in
database systems,” ACM Trans. Database Syst., vol. 30, no. 1, pp. 41–82, 2005.

31. X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k most represen-
tative skyline operator,” in ICDE, 2007, pp. 86–95.

32. Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-based representative skyline,” in
ICDE, 2009, pp. 892–903.

33. C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang, “On high
dimensional skylines,” in EDBT, 2006, pp. 478–495.

