
Simplifying ConvNets for Fast Learning

Franck Mamalet1 and Christophe Garcia2

1 Orange Labs, 4 rue du Clos Courtel, 35512 Cesson-Sévigné, France,
franck.mamalet@orange.com

2 LIRIS, CNRS, Insa de Lyon, 17 avenue Jean Capelle, 69621 Villeurbanne, France,
christophe.garcia@liris.cnrs.fr

Abstract. In this paper, we propose different strategies for simplifying
filters, used as feature extractors, to be learnt in convolutional neural
networks (ConvNets) in order to modify the hypothesis space, and to
speed-up learning and processing times. We study two kinds of filters that
are known to be computationally efficient in feed-forward processing:
fused convolution/sub-sampling filters, and separable filters. We compare
the complexity of the back-propagation algorithm on ConvNets based on
these different kinds of filters. We show that using these filters allows to
reach the same level of recognition performance as classical ConvNets for
handwritten digit recognition, up to five times faster.

1 Introduction

Convolutional Neural Networks (ConvNets), proposed by LeCun et al. [1], have
shown great performances in various computer vision applications, such as hand-
written character recognition [1, 2], facial analysis [3–5], videoOCR [6, 7], or
vision-based navigation [8]. ConvNets consist of a pipeline of convolution and
pooling operations followed by a multi-layer perceptron. They tightly couples
local feature extraction, global model construction and classification in a single
architecture where all parameters are learnt conjointly using back-propagation.

Constructing efficient ConvNets to solve a given problem requires exploring
several network architectures by choosing the number of layers, the number of
features per layer, convolution and sub-sampling sizes, and connections between
layers, which impact directly training time.

Several approaches have been proposed to improve learning speed and gen-
eralization by reducing or modifying the hypothesis space, i.e. the network
architecture. Pruning neural networks has been broadly studied for MLPs, and
a survey is given in [9]. Concerning ConvNets, Jarrett et al. [10] have proposed to
add sophisticated non-linearity layers such as rectified sigmoid or local contrast
normalization to improve network convergence. Mrazova et al. [11] proposed
to replace convolution layers by Radial Basic Functions -RBF- ones leading to
faster learning when associated with a ”winner-takes-all” strategy.

Optimization methods for efficient implementation on processors or hard-
ware systems have also been proposed to accelerate learning. Some studies were
carried out on fractionnal transformation of back-propagation [12], others on



2 Franck Mamalet and Christophe Garcia

Fig. 1. (a) a typical ConvNet architecture with two feature extraction stages; (b) Fusion
of convolution and sub-sampling layers.

parallelization schemes (comparisons are given in [13]). Recent works have been
targeting graphic processing units -GPU- to speed-up back-propagation [2, 14].

In this paper, we will focus on ConvNet hypothesis space modifications, using
simplified convolutional filters to accelerate epoch processing time. In section 2,
we describe the reference ConvNet architecture, detail the proposed equivalent
convolutional filters, and compare their back-propagation complexity. Section 3
presents in-depth experiments on handwritten digit recognition using different
kinds of convolutional filters, and compares both generalization performances
and training time. Finally, conclusions and perspectives are drawn in section 4.

2 Simplifying convolutional filters

In this section, we first describe the classical ConvNet LeNet-5 [1], proposed
by LeCun et al.. Then, we propose several equivalent networks architectures
using simplified convolutional filters, and compare the complexity of the back-
propagation algorithm on these layers.

The original model of ConvNet, illustrated in Figure 1.(a), is based on convo-
lutional filters layers interspersed with non-linear activation functions, followed
by spatial feature pooling operations such as sub-sampling. Convolutional layers
Ci contain a given number of planes. Each unit in a plane receives input from
a small neighborhood (local receptive field) in the planes of the previous layer.
Each plane can be considered as a feature map that has a fixed feature detec-
tor, that corresponds to a convolution with a trainable mask of size Ki × Ki,
applied over the planes in the previous layer. A trainable bias is added to the
results of each convolutional mask, and a hyperbolic tangent function, used as
an activation function, is applied. Multiple planes are used in each layer so that
multiple features can be detected. Once a feature has been detected, its exact lo-
cation is less important. Hence, each convolutional layer Ci is typically followed
by a pooling layer Si that computes the average (or maximum) values over a
neighborhood in each feature map, multiplies it by a trainable coefficient, adds
a trainable bias, and passes the result through an activation function.

Garcia et al. [3, 5, 7] have shown that, for different object recognition tasks,
state-of-the-art solutions can be achieved without non-linear activation functions
in convolutional layers. Thus, in the rest of this paper, we will only consider Ci



Simplifying ConvNets for Fast Learning 3

layers with identity activation function. We will also consider average pooling
layers Si performing a sub-sampling by two. For a Ci layer, its input map size
Win × Hin, its output map size Wi × Hi, and the following Si sub-sampled
output map size SWi ×SHi are connected to the convolution kernel size Ki by:
(Wi, Hi) = (Win −Ki + 1, Hin −Ki + 1) and (SWi, SHi) = (Wi/2, Hi/2).

Since these layers rely on local receptive fields, the complexity of the back-
propagation delta-rule algorithm for a given element is proportional to its output
map size and the cardinal of its connections with the following layer, that is,
proportional to (Wi ×Hi) for Ci layers and (SWi × SHi ×K2

i+1) for Si layers.
Weight sharing in these layers implies a complexity of the weight update

algorithm that is proportional to output map and kernel sizes: i.e. (Wi×Hi×K2
i )

for Ci layers, and in (SWi × SHi) for Si layers.
In the remainder of this section, we present our proposition to learn modified

ConvNets where Ci and Si layers are replaced by equivalent convolutional filters,
and compare the back-propagation complexity of these layers.

2.1 Fused convolution and sub-sampling filters

It has been shown by Mamalet et al. [15, 16], that a convolutional layer Ci

with linear activation followed by a sub-sampling layer Si can be replaced in
the feed-forward pass (when the learning phase is achieved) by an equivalent
fused convolutional/sub-sampling layer CSi which consists of single convolutions
of (Ki + 1) × (Ki + 1) kernel size applied with horizontal and vertical input
steps of two pixels, followed by a non-linear activation function (this two pixels
step serves as sub-sampling, see Figure 1.(a)), leading to speed-up factors up
to 2.5 [15, 16]. Kernel weights w̃ and bias b̃ are obtained respectively by linear
combination of original weights w and bias b.

In this paper, we propose to learn directly these fused convolution/sub-sam-
pling layers, i.e. convolution maps of kernel size (Ki + 1) × (Ki + 1) with an
input step of two pixels. One can notice that the hypothesis space represented
by fused convolution/sub-sampling layers CSi is larger than the one represented
by the pair (Ci, Si).

The output map size of a layer CSi is SWi×SHi and is connected to a CSi+1

convolution with a step of two pixels. The complexity of the back-propagation
algorithm for such a CSi layer is proportional to (SWiSHi(Ki+1 + 1)2/4). The
update weight algorithm complexity is is proportional to (SWiSHi(Ki + 1)2).

2.2 Separable convolution filters

Another special case of convolutional filters are separable ones, i.e. convolutions
that can be expressed as the outer product of two vectors: Ci = Chi ∗ Cvi =
Cvi ∗ Chi, where Chi (resp. Cvi) is a row (resp. column) vector of size Ki.

Figure 2.(a) shows a separable Ci feature map split into two successive 1D-
convolutions. In feed-forward computation applied over a Win×Hin input image,
this transformation leads to a K2

i /(2Ki) speedup factor. If separable filters are



4 Franck Mamalet and Christophe Garcia

Fig. 2. (a) Separable convolution layers; (b) Fused separable convolution and sub-
sampling layers.

broadly used in image processing, as far as we know, no study has been published
on learning separable filters within ConvNet architectures.

We thus propose to restrict the hypothesis space using only separable con-
volutions in ConvNets, and directly learn two successive 1D-filters. If in the
feed-forward application, horizontal and vertical filters are commutative, back-
propagation in ConvNets may lead to different trained weights. Thus, we will
evaluate either a horizontal convolution Chi whose output map size is Wi×Hin,
followed by a vertical one Cvi (Figure 2.(a)), or a vertical convolution Cvi whose
output map size is Win × Hi, followed by a horizontal one Chi. No activation
function is used in Chi and Cvi layers.

We denote the first (resp. second) configuration Chi ∗Cvi (resp. Cvi ∗Chi).
The delta-rule complexity of the Chi ∗ Cvi configuration is proportional to
(WiHinKi + WiHi), since the Chi layer is connected to the Cvi layer, which
is itself connected to the Si layer. The weight update algorithm is proportional
to (Wi(Hin +Hi)Ki). The complexity of the Cvi ∗Chi configuration is obtained
by replacing H and W .

The hypothesis space represented by these separable convolutional filters is
a more restricted set than the one of classical ConvNets.

2.3 Fused separable convolution and sub-sampling filters

Our third proposition is to combine the two previous kinds of filters to learn
fused separable convolution and sub-sampling layers, which consist in either a
horizontal convolution CShi with a horizontal step of two, whose output map
size is SWi × Hin, followed by a vertical one CSvi with a vertical step of two
and an activation function, or a vertical convolution CSvi with a vertical step
of two, whose output map size is Win ×SHi, followed by a horizontal one CShi

with a horizontal step of two and an activation function.
We denote the first configuration CShi ∗CSvi and the second CSvi ∗CShi.

The CShi∗CSvi configuration is described in Figure 2.(b), underlining its equiv-
alence with a traditional (Ci, Si) couple or a CSi layer.



Simplifying ConvNets for Fast Learning 5

Table 1. Complexity comparison of back-propagation algorithm for different filters

(Wi, Hi, Ki, Ki+1) (40, 50, 7, 5) (28, 28, 5, 5)

Ci WiHiK
2
i 98000 19600

Si WiHiK
2
i+1/4 12500 4900

CSi (4(Ki + 1)2 + (Ki+1 + 1)2)
WiHi

16 36500 8820
Speedup factor 16K2

i +4K2
i+1

4(Ki+1)2+(Ki+1+1)2
3.0 2.8

(Ci, Si)/CSi

Chi ∗ Cvi KiWi(2Hin + Hi) 45360 12880
Speedup factor KiHi

2Hin+Hi
2.2 1.5

Ci/(Chi ∗ Cvi)
Cvi ∗ Chi KiHi(2Win + Wi) 46200 12880

Speedup factor KiWi
2Win+Wi

2.1 1.5
Ci/(Cvi ∗ Chi)

CShi ∗ CSvi (Ki + 1)(3Hin + Hi)Wi/4 17440 5208
Speedup factor Hi(4K

2
i +K2

i+1)

(Ki+1)(3Hin+Hi)
6.3 4.7

(Ci, Si)/(CShi ∗ CSvi)
CSvi ∗ CShi (Ki + 1)(3Win + Wi)Hi/4 17800 5208
Speedup factor Wi(4K

2
i +K2

i+1)

(Ki+1)(3Win+Wi)
6.2 4.7

(Ci, Si)/(CSvi ∗ CShi)

The CShi ∗ CSvi delta-rule complexity is proportional to (SWiHin(Ki +
1)/2 + SWiSHi(Ki+1 + 1)/2) and its weight update complexity is proportional
to (SWiHin(Ki + 1) + SWiSHi(Ki + 1)). The complexity of the CSvi ∗ CShi

configuration is obtained by replacing H and W .
The hypothesis space represented by these fused separable convolution and

sub-sampling filters is larger than the one represented by separable convolutional
ones (section 2.2), but smaller than the ones presented in section 2.1.

2.4 Comparison of the Back-propagation complexity for these filters

Table 1 gathers the complexity of the learning phase for each filter type de-
scribed in this section. It also gives speedup factors compared to traditional
Ci, Si ConvNet layers, for some parameter values.

We can see in Table 1 that the back-propagation complexity of CSi layers
is up to three times lower than traditional ConvNet (Ci, Si) layers. Separable
convolution Chi ∗ Cvi or Cvi ∗ Chi learning is only two times faster, and fused
separable convolution and sub-sampling CShi ∗ CSvi or CSvi ∗ CShi can lead
to a speedup factor of up to six.

In the next section, we present two experiments showing that using such
modified convolutional layers leads to comparable classification and recognition
performances, and enable epoch processing acceleration closed to those given
in Table 1.

3 Experiments

The main goal of these experiments is not to propose novel convolutional ar-
chitectures for the following tasks, but to compare learning capabilities with



6 Franck Mamalet and Christophe Garcia

modified filters. We thus use a reference ConvNet architecture similar to the
well-known LeNet-5 proposed by LeCun et al. [1] for handwritten digit recogni-
tion. From now on, we denote networks with the corresponding filter notation,
i.e. a CSi network stands for a ConvNet with CSi layers.

3.1 Handwritten digit recognition

This experiment is based on the MNIST database introduced by LeCun et al. [1]
which comprises 60,000 training and 10,000 test 28×28 images. State-of-the-art
methods achieves a recognition rate of 99.65% [14] using a deep MLP trained on
GPUs and elastic distortions on training images.

In this paper, we use a reference ConvNet architecture inspired by LeNet-
5 [1], and do not apply any distortion to the training images. As in [1], ConvNet
inputs are padded to 32 × 32 images and normalized so that the background
level corresponds to a value of −0.1 and the foreground corresponds to 1.175.
For each network, we launch six training on 25 epochs and save the network
after the last epoch (no overlearning is observed as in [1]). Then, generalization
is estimated on the test set, and we retain the best one.

The 32× 32 input image is connected to six C1 5× 5 kernel size convolution
maps, followed by six S1 sub-sampling maps. C2 layers consists in fifteen 5 × 5
kernel size convolution maps which take input from one of the possible pairs of
different feature maps of S1. These maps are connected to fifteen S2 sub-sampling
layer maps. The N1 layer has 135 neurons: each of the fifteen S2 feature maps
is connected to two neurons, and each of the remaining 105 neurons takes input
from one of the possible pairs of different feature maps of S2. N2 is a fully
connected 50 neurons layer. The ten N3 fully connected output neurons use a
softmax activation function. This network comprises 14,408 trainable weights.

We train networks using modified convolutional filters:

– Fused convolution and sub-sampling network where Ci +Si layers have been
replaced 6 × 6 kernel size CSi filters (Figure 1.(b)). This network has only
five layers and 14,762 trainable weights,

– Separable convolution networks have nine layers, replacing each Ci layer by
two Chi ∗ Cvi or Cvi ∗ Chi ones (Figure 2.(a)). They have 13,814 trainable
weights,

– Fused separable convolution and sub-sampling networks comprise seven lay-
ers, each (Ci, Si) couple is replaced by CShi ∗ CSvi or CSvi ∗ CShi ones
(Figure 2.(b)). They have 13,829 trainable weights.

Figure 3 shows features maps obtained on an ’8’ handwritten digit input
with the learnt networks CSi, CShi ∗ CSvi and Chi ∗ Cvi. Table 2 presents
the results obtained on MNIST training and test databases with different kind
of convolutional filters. The first line gives the reference performance of LeNet-
5 architecture with the same training database (no distortion). Our reference
ConvNet architecture (Ci, Si) has a performance of 1.28% error rate on MNIST
test database. This small rate gap with LeNet-5 results is mainly due to archi-
tecture differences (layer connections and output units).



Simplifying ConvNets for Fast Learning 7

Fig. 3. Feature maps obtained with simplified convolutional filters (upper left: CSi;
bottom left: CShi ∗ CSvi; right: Chi ∗ Cvi).

Table 2. MNIST error rate (ER) for each kind of network

Training ER (%) Test ER (%) Speedup Factor

LeNet-5 (no distortion) [1] 0.35 0.95

(Ci, Si) 0.46 1.28 1.0

CSi 0.07 1.32 2.6

Chi ∗ Cvi 0.68 1.52 1.6

Cvi ∗ Chi 0.44 1.45 1.6

CShi ∗ CSvi 0.36 1.49 3.3

CSvi ∗ CShi 0.14 1.61 2.9

The CSi network obtains the same generalization performances as traditional
ConvNet and require 2.6 times less processing time per epoch, which is compa-
rable to the estimation given in Table 1. Other configurations induce a loss of
performance smaller than 0.4%, and enable speedup factor of 1.6 for separable
filters, and up to 3.3 for fused separable ones. This latter is slightly lower than
the estimation given in Table 1, due to the Ni back-propagation time which
becomes predominant.

4 Summary and future work

In this paper, we have introduced several modifications of the hypothesis space
of Convolutional Neural Networks (ConvNet), replacing convolution and sub-
sampling layers by equivalent fused convolution/sub-sampling filters, separable
convolution filters or fused separable convolution/sub-sampling filters. We have
proposed a complexity estimation of the back-propagation algorithm on these
different kinds of filters which allows evaluating learning speedup-factor. We have
presented experiments on the handwritten digit database MNIST using reference
ConvNets which performed comparably to similar systems in the literature. We
have trained the modified ConvNets using the simplified filters, and proven that
classification and recognition performances are almost the same with a train-
ing time divided by up to five. To enhance convergence and generalization, the



8 Franck Mamalet and Christophe Garcia

proposed convolutional filters could be interspersed with other non-linear units,
such as rectification or local normalization [10], or also to form part of wider
networks enabling to speed-up architecture and space exploration. Furthermore,
we plan to combine these filters optimizations with parallel implementations on
GPU which are known to be efficient in 1D and 2D convolution processing, and
we believe it would allow processing of larger deep-learning networks.

References

1. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. of the IEEE, Nov 1998.

2. K. Chellapilla, S. Puri, and P. Simard, “High Performance Convolutional Neural
Networks for Document Processing,” in Proc. of the Int. Workshop on Frontiers
in Handwriting Recognition (IWFHR’06), 2006.

3. C. Garcia and M. Delakis, “Convolutional Face Finder: a neural architecture for
fast and robust face detection,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, Nov. 2004.

4. M. Osadchy, Y. LeCun, M. L. Miller, and P. Perona, “Synergistic face detection
and pose estimation with energy-based model,” in Proc. of Advances in Neural
Information Processing Systems (NIPS’05), 2005.

5. C. Garcia and S. Duffner, “Facial image processing with convolutional neural net-
works,” in Proc. Int. Workshop on Advances in Pattern Recognition, 2007.

6. M. Delakis and C. Garcia, “Text detection with Convolutional Neural Networks,”
in Proc. of the Int. Conf. on Computer Vision Theory and Applications, 2008.

7. Z. Saidane and C. Garcia, “Automatic scene text recognition using a convolutional
neural network,” in Proc. of Int. Workshop on Camera-Based Document Analysis
and Recognition, 2007.

8. R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavackuoglu, U. Muller, and
Y. LeCun, “Learning long-range vision for autonomous off-road driving,” Journal
of Field Robotics, Feb. 2009.

9. R. Reed, “Pruning algorithms - a survey,” IEEE Trans. on Neural Networks, 1993.
10. K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-

stage architecture for object recognition?,” in Proc. Int. Conf. on Computer Vision
(ICCV’09), 2009.

11. I. Mrazova and M. Kukacka, “Hybrid convolutional neural networks,” in Proc. of
IEEE Int. Conf. on Industrial Informatics (INDIN’08), 2008.

12. J. Holt and T. Baker, “Back propagation simulations using limited precision cal-
culations,” in Proc. of Int. Joint Conf. on Neural Networks (IJCNN’91), 1991.

13. A. Petrowski, “Choosing among several parallel implementations of the backprop-
agation algorithm,” in Proc. of IEEE Int. Conf. on Neural Networks, 1994.

14. D. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Handwritten digit
recognition with a committee of deep neural nets on GPUs,” Computing Research
Repository, 2011.

15. F. Mamalet, S. Roux, and C. Garcia, “Real-time video convolutional face finder
on embedded platforms,” EURASIP Journal on Embedded Systems, 2007.

16. F. Mamalet, S. Roux, and C. Garcia, “Embedded facial image processing with
convolutional neural networks,” in Proc. of Int. Symp. on Circuits and Systems
(ISCAS’10), 2010.


