
Rapport de Recherche - LIRIS (), pp. 1–7

Implicit Tensor-Mass solver on the GPU

X. Faure1,† and F. Zara1 and F. Jaillet1,2 and J-M. Moreau1

1Université de Lyon, CNRS, Université Lyon 1, LIRIS, SAARA team, UMR5205, F-69622, France
2Université de Lyon, IUT Lyon 1, Computer Science Department, F-01000, France

Abstract
The realist and interactive simulation of deformable objects has become a challenge in Computer Graphics. For
this, the Tensor-Mass model enables local solving of mechanical equations, making it easier to handle local
control, like collisions, tool interaction, etc. In this paper, we propose the GPU implementation of this model to
achieve interactive time. Moreover, the use of an implicit integration scheme will help to guarantee stability at any
time step, leading to a true alternative to Mass-Spring or Finite Element methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation and Virtual Reality I.6.8 [Simulation And Modeling]: Types of Simulation—Parallel

1. Introduction

Following the increasing demand of realism in Computer
Graphics, physically-based simulation has become a very ac-
tive research field over the last decade. This is particularly
apparent in cloth and hair animation, medical simulation, in-
teractive entertainment, and more generally in all Virtual Re-
ality applications where animation, interaction or alteration
of deformable objets is required in interactive time.

The Tensor-Mass approach, introduced in 1999, is a good
candidate to handle deformable objects within the context
of interactive complex physically-based simulations. Thus,
in the proposed work, we present a GPU implementation
of the deformation simulation based on this model us-
ing an implicit integration scheme to ensure the uncondi-
tional stability of our simulation. The paper is organized
as follows: section 2 gives some pointers to previous work
about the Tensor-Mass approach and GPU programming of
physically-based animation. Section 3 illustrates the main
steps of the Tensor-Mass formulation for the computation of
forces and the induced movement on the object. Section 4
presents our parallel implementation on the GPU, with a
highlight on the implicit integration scheme. Finally, sec-
tion 5 shows our results and a conclusion may be found in
section 6.

† This work is partly financed by the PRRH (Rhône-Alpes Re-
search Program on Hadrontherapy) for ETOILE (National French
Hadrontherapy Centre).

2. Previous work

Several methods have been published to model the physical
behavior of deformable objects [NMK∗06].

Among them, the Finite Element Method (FEM) allows
the resolution of the differential equations systems driving
the movements of objects [NP05]. It is based on the dis-
cretization of each object into elements (tetrahedra, for ex-
ample), and the global solution is then obtained by solv-
ing equations on each element and assembling the results
in a global matrix. As the physical properties are directly
integrated in this mechanical formulation, realistic simula-
tions of the deformation are possible. But this is generally
achieved at the expense of a high computation time, espe-
cially when non-linear behaviors are required.

On the other hand, the Mass-Spring System is considered
as the most direct and intuitive model. Interactive compu-
tation time is easily achieved even for complex scenes, but
unfortunately, mass repartition and stiffness parameters of
the springs are difficult to adjust.

The Tensor-Mass model was introduced by Delingette,
Cotin and Picinbono [CDA00, PDA00, Pic03], and extended
by Schwartz [SDR∗05]. This model may be considered as
an alternative to the FEM method. It combines all the ad-
vantages of the previously cited models, that is, the defor-
mation forces are derived from the FEM mechanical formu-
lation, but are next computed locally and iteratively for each
discretized element. Besides, this allows to handle more di-

submitted to Rapport de Recherche - LIRIS ()

2 X. Faure & F. Zara & F. Jaillet & J-M. Moreau / Implicit Tensor-Mass solver on the GPU

rectly and easily topological changes and external interac-
tions as in the case of Mass-Spring Systems.

Hence, several formulations have been proposed to ac-
count for various mechanical behaviors: the linear model,
based on Hooke’s law [CDA00]; the non-linear geometri-
cal model based on the Saint Venant-Kirchhoff’s elasticity
model [PDA00], or anisotropic material [Pic03]. Moreover,
Schwartz [SDR∗05] presented another extension for non-
linear visco-elastic deformations. In this latter work, some
tensors are pre-computed to accelerate the process.

Concerning parallelized physically-based animation on
the GPU, work was proposed for non-linear FEM soft tissue
modeling based on CUDA [CTAO08], FEM cloth simula-
tion [RNSS∗06], implicit FEM solver for deformation sim-
ulation [ACF11], or Mass-Springs Systems [GW05]. But, as
far as we know, the problem of the parallel implementation
has not yet been addressed for the Tensor-Mass model. Thus,
in this paper, we propose a GPU implementation of this
model considering both linear and non-linear mechanical
behaviors (based on Hookean and Saint Venant-Kirchhoff’s
elasticity models, that are the most employed in interactive
simulations).

3. Simulation of the deformation of an object

Continuum mechanics concerns the description of an object
moving or deforming under the action of stress. The defor-
mation Φ may be formulated according to the displacement
U(X) of a point X of the object by Φ(X) = X +U(X). The
strain-tensor ε enables the quantification of this deformation
and depends on the gradient of the deformation defined by
∇Φ = I +∇U . Thus, ε may be expressed according to ∇U
and depends on the material’s properties. Moreover, the de-
formation of the object, induced by external forces, gener-
ates a deformation energy W which naturally depends on the
material. Then, the derivative of this energy gives the corre-
sponding deformation force.

Finally, the movement of the deformable object may be
expressed by the following differential equations system:

M
d2U
dt2 +D

dU
dt

+KU = F, (1)

with U the displacement of the object, and M, D, K the mass,
damping and stiffness matrices of the simulated object, re-
spectively.

3.1. Tensor-Mass approach

As explained in the previous section, the Tensor-Mass for-
mulation (TM) represents an alternative to the FEM to solve
mechanical equations [CDA00]. As for the FEM, the domain
is discretized into several elements. However, the equations
are next solved locally, involving the following main steps
for each element:

• Discretization of the displacement UE with the definition

of interpolation functions Λ according to the chosen type
of elements (hexahedron, tetrahedron, etc.);

• Computation of the deformation energy WE according to
the displacement of the element’s nodes;

• Computation of the elasticity force FE by calculating the
derivative of the deformation energy WE .

Then, dynamical equations based on Newton’s laws of
motion are formulated to compute the deformation and dis-
placement of the object via an integration scheme according
to its acceleration.

3.2. Interpolation functions for a P1 element

The displacement of a point X of coordinates (x,y,z) inside
a element of the discretized domain is defined by:

UE(X) =
n−1

∑
j=0

Λ j(X)U j, (2)

with n the number of nodes of the element, Λ j(X) interpola-
tion functions, and U j =UPj the displacement from its initial
position of node Pj, defined by its coordinates (Pjx,Pjy,Pjz).
Note that the interpolation functions Λ j are defined accord-
ing to the kind of element used for the discretization. More-
over, considering an element of volume Vol0, the following
relationship may be expressed:

n−1

∑
j=0

Λ j(X) =Vol0. (3)

P1 tetrahedral elements correspond to a subdivision of
the domain by setting a node at each vertex (n = 4). The
interpolation functions are then linear and correspond to
the barycentric coordinates of X inside the tetrahedron, for
j = 0..3:

Λ j(X) = α j ·X +β j (4)

= α jx x+α jy y+α jz z +β j (5)

with {
α j = (−1) j(Pj+2−Pj+1)× (Pj+3−Pj+1)

β j = (−1) jPj+1 · (Pj+2×Pj+3)

where Pj corresponds to vector OPj, with O the origin.

P1 elements are usually used to simulate an object with
a linear relation between the stress σ applied on the object
and the induced strain ε. Furthermore, the relationship be-
tween the strain ε and the gradient of displacement∇U may
be non-linear. Thus, this kind of element is valid for both
Hookean and Saint Venant-Kirchhoff’s materials.

3.3. Deformation energy for a P1 element

Different elasticity models exist depending on the expected
mechanical behavior of the material. These models are de-
fined by the formulation of the strain-tensor ε, the energy
induced by the deformation and the associated elasticity
forces.

submitted to Rapport de Recherche - LIRIS ()

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / Implicit Tensor-Mass solver on the GPU 3

Linear mechanical behavior. If the elastic deformation is
reversible, i.e. the deformable object returns into its initial
shape when the stress is removed, the elasticity is consid-
ered as linear. This assumption is especially valid for small
displacements – usually less than 10% of the size of the ob-
ject. For modeling such behavior, only the linear part of the
Green-St Venant strain-tensor has to be considered:

εl(X) =
1
2

(
∇UT (X)+∇U(X)

)
. (6)

The energy of deformation is then defined by:

Wl(X) =
λ

2
(tr εl(X))2 +µ tr εl(X)2, (7)

with λ and µ the Lamé coefficients characterizing the mate-
rial stiffness, defined by:

λ =
ν E

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

with E Young’s modulus and ν the Poisson ratio.

Non-linear mechanical behavior. For displacements larger
than 10% of the object’s size, we have to consider a
non-linear elasticity behavior. Hyper-elasticity provides a
means of modeling such materials. The simplest hyper-
elastic model is an extension of the linear elastic material,
based on Green-St Venant strain-tensor εnl , and its associ-
ated energy Wnl defined by:{

εnl(X) = 1
2

(
∇UT (X)+∇U(X)+∇UT (X)∇U(X)

)
Wnl(X) = λ

2 (tr εnl(X))2 +µ tr εnl(X)2

(8)

Generalization. The geometrical characteristics of any el-
ement of the discretized domain may be linked to its defor-
mation energy WE , by:

WE(X) =Wlaw(X)
1

Vol0
, (9)

with Vol0 its volume and Wlaw(X) defined according to the
chosen elasticity model (equation (7) or (8)). Moreover, we
may note that the fact to have constant ∇U and ∇UT for
a given P1 element, would imply that WE , its deformation
energy, is also constant inside the tetrahedron (i.e. does not
depend on X).

3.4. Forces and derivatives forces computation

Considering an element of the discretized domain, the force
applied on its node Pi is given by:

FE(Pi) =
∂WE(Pi)

∂Ui
(10)

for i ∈ [0,n− 1], with WE(Pi) the energy of deformation
of the considered element evaluated at node Pi. But, if the
knowledge of the forces is sufficient for an explicit integra-
tion scheme, the computation of its derivatives is mandatory

when implicit integration is used (see below, equation (15)).
So, the derivative of the force is given by:

dF j
E(Pi) =

∂FE(Pi)

∂U j
, j ∈ [0,n−1]. (11)

Finally, if we consider the whole object and EPi , the set
of elements containing node Pi, the force applied on Pi is
defined by:

F(Pi) = Fi = ∑
k | Ek∈EPi

FEk (Pi) = ∑
k | Ek∈EPi

∂WEk (Pi)

∂Ui
, (12)

and its derivative follows, for j ∈ [0,n−1]:

dF j(Pi) = dF j
i = ∑

k | Ek∈EPi

dF j
Ek
(Pi) = ∑

k | Ek∈EPi

∂FEk (Pi)

∂U j
.

(13)

Moreover, an incompressibility constraint may be intro-
duced to guaranty the volume preservation of the object, as
suggested by Picinbono for Saint Venant-Kirchhoff’s elas-
ticity model [Pic03].

3.5. Time integration methods

Once the forces applied on each node have been computed,
Newton’s equation governing the movement of the object
may be used. At time t, we have:

mi
d2

dt2 Ui(t) = Fi(t)−κ
d
dt

Ui(t) (14)

with mi and Fi the mass and force at node Pi, and κ the envi-
ronment damping. This equation enables the computation of
the acceleration of the object according to the applied forces.
This equation is linked to the differential equation system
(equation (1)) by considering the matrices M, D and K as
diagonal by applying mass and damping on each node of the
discretized domain.

A numerical integration scheme is then used to obtain the
velocity (according to the acceleration) and position (accord-
ing to the velocity) of the nodes through the simulation time.
The simplest integration method is Euler’s explicit scheme,
with: {

d
dt Ui(t +h) = d

dt Ui(t)+h d2

dt2 Ui(t)
Ui(t +h) = Ui(t)+h d

dt Ui(t)

with h the time step. But to obtain a stable simulation, h
has to be reduced, especially when stiffness increases. So,
to enable larger time steps, an implicit integration scheme
is mandatory. By example, Euler’s implicit scheme may be
defined as:{

d
dt Ui(t +h) = d

dt Ui(t)+h d2

dt2 Ui(t +h)
Ui(t +h) = Ui(t)+h d

dt Ui(t +h)

Noting M, F , V and U the mass matrix, forces, velocities

submitted to Rapport de Recherche - LIRIS ()

4 X. Faure & F. Zara & F. Jaillet & J-M. Moreau / Implicit Tensor-Mass solver on the GPU

and displacements vectors, respectively, this scheme may be
reformulated [BW98]:(

M−h
∂F
∂V
−h2 ∂F

∂U

)
︸ ︷︷ ︸

A

∆V︸︷︷︸
x

= h F(t)+h2 ∂F
∂U

V (t)︸ ︷︷ ︸
b

(15)

with ∆V = d
dt U(t+h)− d

dt U(t) and ∂F
∂U , ∂F

∂V the matrices en-
coding the variation of forces resulting from displacements
and velocity change. Consequently, we have to resolve this
linear system to obtain ∆V and then update the velocity
with d

dt U(t + h) = ∆V + d
dt U(t) and the displacement with

U(t +h) =U(t)+h d
dt U(t +h).

The Conjugate Gradient method, presented in Algo-
rithm 1, is usually favored to solve this linear system with
a few number of iterations [BW98]. Note that the sparse ma-
trix ∂F

∂U has not to be explicitly computed (direct computing
of its multiplication by a vector) and that the matrix ∂F

∂V is
null (as only internal forces are considered).

Algorithm 1 Conjugate Gradient Algorithm to solve the
Ax = b system from Euler’s implicit integration scheme

1: b = h F(t)+h2 ∂F
∂U V (t)

2: x = 0
3: d = r = b
4: ρ0 = dot(r,r)
5: for i = 1 to n do
6: d f = ∂F

∂U d
7: A = Md−h2d f
8: α =

ρi−1
dot(d,A)

9: x = x+α d
10: r = r−α A
11: ρi = dot(r,r)
12: β = ρi

ρi−1

13: d = r+β d
14: if (ρi > ε

2
ρ0)

15: break
16: end for

4. Implementation in SOFA

The Open Source Framework SOFA was used for the im-
plementation of the Tensor-Mass model. This framework,
written in C++ and using the XML script language, en-
ables comparisons between models and methods proposed
by research groups in medical simulation (http://www.sofa-
framework.org, [ACF∗07]).

The objects simulated in SOFA are defined by their topol-
ogy, geometry and visual model (by loading OBJ files, for
example), their mechanical state (position, velocity, acceler-
ation, force stored into vectors), their mechanical behavior
(constitutive laws) as well as the collision model. Then, the
simulation loop is executed, involving in our case four main

steps for each node of the discretized domain: (1) compu-
tation of the forces, (2) computation of the acceleration ac-
cording to Newton’s second law of motion, (3) integration
of the acceleration to obtain velocity, (4) integration of the
velocity to obtain position. Note that Euler’s implicit integra-
tion scheme is used to unconditionaly guarantee the stability
of the simulation.

To integrate the Tensor-Mass model in SOFA, we only
need to implement two functions, namely addForce()
and addDforce(), enabling the forces computation and
their derivatives (only required for Euler’s implicit scheme)
for each node. But, as the initial GPU implementation of
SOFA is based on CUDA [CTAO08], we also parallelized
the different steps of the simulation loop to obtain a GPU
implementation using the OpenCL language [SGS10].

4.1. Force computation on the GPU

To parallelize the computation of the forces on the GPU, we
divide it into two tasks, involving a set of kernels:

1. First, we compute and store the forces applied on
each node of a considered element. This computation
(kernel1) is made for each element of the domain.

2. Next, we sum these partial forces to obtain the total forces
applied on each node, involved by the different elements
of the domain. This computation (kernel2) is made for
each node of the domain.

Moreover, three specific data structures are defined for a dis-
cretization of a domain into N elements involving m nodes
(with n the number of nodes of each element and Nn the
maximal number of neighbor elements for a node):

• index (of size N×n) stores the relationship between lo-
cal and global indexation for each node of each element.
For example, index[e][v] gives the global indexation
for node v of element e.

• PartialForce (of size Nn×m×3) enables the storage
of 3D coordinates of partial forces for each node consider-
ing its global indexation. Thus, PartialForce[][v]
gives partial forces of node v of the domain.

• TotalForce (of size m× 3) stores the sum of the par-
tial forces for each node considering its global indexation.
Thus, TotalForce[v] gives the forces of node v of the
domain.

• ForceIndex (of size N × n) stores the index of data
structure PartialForce. For example, ForceIn-
dex[e][v] indicates where the forces applied on ver-
tex v involved by the element e are stored in Partial-
Force.

Finally, Algorithm 2 presents the parallel algorithm for
force computation (SOFA function addForce()). In this
algorithm, function Force() enables the force computa-
tion FE(Pi) of each node Pi in an element. It depends on
constant values (Lamé coefficients λ,ν; coefficients of inter-
polation functions α j,β j for j = 0..3) and some variables
(initial and current positions of nodes).

submitted to Rapport de Recherche - LIRIS ()

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / Implicit Tensor-Mass solver on the GPU 5

Algorithm 2 addForce() function on the GPU
1: {N : number of elements}
2: {n : number of nodes per element}
3: {m : total number of nodes}
4: {Nn : max number of neighbor elements for a node}
5: // Task 1- Computation of partial forces
6: for e = 0 to N−1 do
7: // Execution of N kernel1
8: for v = 0 to n−1 do
9: PartialForce[ForceIndex[e][v]][index[e][v]]=Force(...);

10: end for
11: end for
12: // Task 2 - Sum of partial forces
13: for i = 0 to m do
14: // Execution of m kernel2
15: for j = 0 to Nn−1 do
16: TotalForce[i] += PartialForce[i][j];
17: end for
18: end for

4.2. Illustration

To illustrate this parallelization, consider a deformable ob-
ject divided into 2 tetrahedra (N = 2,n = 4,m = 5,Nn = 2).
Fig. 1 points out the local and global indexations of nodes.
Fig. 2 presents the data structures filled for our example.

(a) Tetrahedra with local vertex indexation.

(b) Tetrahedra with global vertex indexation.

Figure 1: Illustration of the parallel computation of forces
considering an object discretized into 2 tetrahedral elements
(N = 2,n = 4,m = 5,Nn = 2).

Consider node P2 of element E0, and node P1 of element
E1. We have index[0][2] = index[1][1] = 2. Con-
sequently, node P2 in global indexation is a common vertex
of elements E0 and E1. Then, we have to compute the partial
forces applied on this node involved by these two elements.

Considering element E0 (resp. E1), ForceIndex[0][2]
= 0 (resp. ForceIndex[1][1] = 1) indicates where the
partial forces computation involved by element E0 (resp. E1)
is stored in PartialForce. Consequently, Partial-
Force[0][2] (resp. PartialForce[1][2]) gives
the partial forces computation involved by element E0 (resp.
E1). Then, the sum of these 2 contributions, stored in To-
talForce[2], gives the total force applied on node P2.

0 1 2 3
0 0 1 2 3
1 3 2 4 1

(a) index.

0 1 2 3
0 0 0 0 0
1 1 1 0 1
(b) ForceIndex.

0 1 2 3 4
0 -2 2 3 2 2
1 4 -1 1

(c) PartialForce.

0 1 2 3 4
-2 6 2 3 2
(d) TotalForce.

Figure 2: Data structure for the GPU forces computation.

4.3. Implicit integration method on the GPU

In section 3.5, we have seen that the use of Euler’s implicit
integration scheme requires computing the derivatives forces
and solving a linear system.

The parallel algorithm of the computation of the deriva-
tive forces (SOFA’s function addDForce()) is similar to
Algorithm 2 of the parallel computation of forces. The only
difference resides in the use of function DForce() instead
of Force(), which depends on the same parameters but
also on the time step h and the current nodes velocity, to di-
rectly compute h2 ∂F

∂U V (t) or h ∂F
∂U ∆V , and consequently

avoid the storage of the sparse matrix ∂F
∂U .

For the resolution of the system, we used the Conju-
gate Gradient method and implemented it on the GPU
into the framework SOFA, with the same parallel strategy
as [ACF11], but using the OpenCL language instead of
CUDA.

5. Results and performances

We compare running times on CPU and GPU, using Linux
Ubuntu 11.04. The CPU is an Intel R© Xeon R© CPU 4 cores
@3.07 GHz. The GPU is a GeForce GTX 560, 2047 MB, 56
cores @1.620 GHz.

Fig. 3 presents the speedup (ratio between GPU and CPU
execution time) obtained considering tetrahedral and trian-
gular elements for the Tensor-Mass model based on linear or
non-linear mechanical behaviors (Fig. 4 - 5). Moreover, sim-
ilar results are presented for SOFA’s FEM implementation:
it corresponds to the corotational FEM model proposed by

submitted to Rapport de Recherche - LIRIS ()

6 X. Faure & F. Zara & F. Jaillet & J-M. Moreau / Implicit Tensor-Mass solver on the GPU

Nesme [NP05] for tetrahedral elements, that considers non-
linear behaviors by computing displacements in a rotated
local coordinate system. Its GPU version is implemented
according to [ACF11]. We obtained a speedup of 25.5 for
SOFA’s FEM implementation and 29.5 for our TM, for a
beam composed of 307,200 elements.

 0

 5

 10

 15

 20

 25

 30

 0 50000 100000 150000 200000 250000 300000 350000

S
p

e
e

d
u

p

Number of elements

Linear Triangle TM
Non Linear Triangle TM

Linear Tetra TM
Non Linear Tetra TM
Rotational Tetra FEM

Figure 3: Speedup between CPU and GPU obtained for the
TM model (for tetrahedral and triangular elements) and the
FEM implemented into SOFA (for tetrahedral elements).

Figure 4: Rendered beam for Hookean and Saint Venant-
Kirchhoff’s material, and its initial state (from left to right).

6. Conclusion and perspectives

In this paper, we presented an original implementation of the
Tensor-Mass model on the GPU that considerably speeds up
the simulation times. Comparisons between running times
on the CPU and the GPU suggest that the parallel imple-
mentation of the model becomes interesting for increasingly
complex computations.

Besides, we used a formal encoding for the equation
forces (function Force()). This allows us to generalize
this technique to almost any existing combination of con-
stitutive law and mesh type, without extensive additional
coding. This is particularly interesting, as it will permit to
easily implement and perform a lot of tests and compar-
isons for various materials on different solvers for an object
within the same framework (SOFA, for example). Moreover,
the derivatives of the forces may also be obtained formally,
which provides an easy way to implement Euler’s implicit

integration scheme that requires the derivative. This com-
putation would otherwise be very fastidious, as the energy
equation must be derived twice; and finally, this solver was
never implemented before for the Tensor-Mass model.

In addition, results have been presented both for triangular
and tetrahedral meshes, but the derivation for other element
types is very easy, as long as interpolation functions Λ exist
for this element (for example: quadrangle, quadratic or cubic
tetrahedron or hexahedron, prism, etc.).

(a) Initial mesh (zoom) (b) Initial undeformed rabbit

(c) Curved left ear (d) Little jump

Figure 5: Simulation of the deformation of a rabbit (Initial
3D mesh courtesy of L. STANCULESCU).

References
[ACF∗07] ALLARD J., COTIN S., FAURE F., BENSOUSSAN P.-

J., POYER F., DURIEZ C., DELINGETTE H., GRISONI L.: Sofa
an open source framework for medical simulation. In MMVR’15
(Long Beach, USA, February 2007).

[ACF11] ALLARD J., COURTECUISSE H., FAURE F.: Implicit
FEM Solver on GPU for Interactive Deformation Simulation.
In GPU Computing Gems Jade Edition. NVIDIA/Elsevier, Sept.
2011, ch. 21.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Proc. of the 25th annual conference on Computer Graph-
ics and Interactive Techniques (1998), ACM, pp. 43–54.

[CDA00] COTIN S., DELINGETTE H., AYACHE N.: A hybrid
elastic model for real-time cutting, deformations, and force feed-
back for surgery training and simulation. The Visual Computer
16, 8 (2000), 437–452.

[CTAO08] COMAS O., TAYLOR Z., ALLARD J., OURSELIN S.:
Efficient Nonlinear FEM for Soft Tissue Modelling and Its GPU

submitted to Rapport de Recherche - LIRIS ()

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / Implicit Tensor-Mass solver on the GPU 7

Implementation within the Open Source Framework SOFA. In
ISBMS 2008, London, UK, July 7-8, 2008: proceedings (2008),
vol. 5104, Springer-Verlag New York Inc, p. 28.

[GW05] GEORGII J., WESTERMANN R.: Mass-spring systems
on the GPU. Simulation Modelling Practice and Theory 13, 8
(2005), 693–702.

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically Based Deformable Models in
Computer Graphics. Computer Graphics Forum 25, 4 (Dec.
2006), 809–836.

[NP05] NESME M., PAYAN Y.: Efficient, physically plausible fi-
nite elements. Eurographics (short papers) (2005), 1–4.

[PDA00] PICINBONO G., DELINGETTE H., AYACHE N.: Real-
Time Large Displacement Elasticity for Surgery Simulation:
Non-linear Tensor-Mass Model. In Proceedings of MICCAI’00
(London, UK, 2000), Springer-Verlag, pp. 643–652.

[Pic03] PICINBONO G.: Non-linear anisotropic elasticity for real-
time surgery simulation. Graphical Models 65, 5 (Sept. 2003),
305–321.

[RNSS∗06] RODRIGUEZ-NAVARRO J., SUSÍN SÁNCHEZ A.,
ET AL.: Non structured meshes for Cloth GPU simulation us-
ing FEM. In VriPhys 2006 (2006).

[SDR∗05] SCHWARTZ J., DENNINGER M., RANCOURT D.,
MOISAN C., LAURENDEAU D.: Modelling liver tissue proper-
ties using a non-linear visco-elastic model for surgery simulation.
Medical Image Analysis 9, 2 (2005), 103–112.

[SGS10] STONE J., GOHARA D., SHI G.: Opencl: A parallel pro-
gramming standard for heterogeneous computing systems. Com-
puting in science & engineering 12, 3 (2010), 66.

submitted to Rapport de Recherche - LIRIS ()

