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a b s t r a c t

Background models are used for object detection in many computer vision algorithms. In this article, we
propose a novel background modeling method based on frequency for spatially varying and time repet-
itive textured background. The local Fourier transform is applied to construct a pixel-wise representation
of local frequency components. We apply our method for object detection in moving background condi-
tions. Experimental results of our frequency-based background model are evaluated both qualitatively
and quantitatively.
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1. Introduction

Unknown object detection in complex backgrounds is one of the
main tasks in automated surveillance systems. It is often the pri-
mary task before higher level analysis, like event understanding
process. In fixed camera surveillance systems, background subtrac-
tion techniques are commonly used for this purpose. Low compu-
tational costs and no requirements of a priori knowledge of target
objects are two prominent features which make this technique
widely popular in the computer vision community. The methods
often use background models, most of them being probabilistic
representations of the background process. The probability of
background color/intensity is usually independently modeled at
each pixel. These background models work well in applications
with limited background perturbations. However, in some cases,
background environment is composed of repetitive moving ob-
jects, for example, water ripples, moving vegetation in the wind,
fire, moving escalators etc. We address object detection in videos
in which background is composed of time repetitive textures
which are observable visually. In such conditions, individual
pixel-based background models are not able to represent these
regional changes. Similarly, standard background models do not
take into account the temporal evolution of background regions.
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Thus, these algorithms produce a lot of false detections when they
are applied in repetitively moving background conditions.

For spatial textures with time extent, one of the methods is to
consider these patterns as time series, which has been referred
to as dynamic texture (Doretto et al., 2003) in the literature. How-
ever, working with videos that contain textures of unknown spa-
tiotemporal extent is different from working with static textured
images. Dynamic textures have proven the interest of considering
patterns in the (2D+T) space. Our method is inspired from fre-
quency based 2D texture segmentation. We propose a pixel-wise
background model based on local spectral analysis, that captures
the frequency components of a spatiotemporal region around each
pixel. We propose to use local Fourier transform on neighborhoods
of pixels (both spatial and temporal). We construct the background
model based on the observations of the background process during
a training period. Once the background model is constructed, then
object detection is performed on incoming frames. To our knowl-
edge, spatiotemporal frequency analysis has not been explored
for background modeling in the literature.

This paper is organized as follows. Previous work on non-
stationary background modeling is presented in Section 2. Local
space–time Fourier transform and the method of scene modeling
are presented in Sections 3. We present object detection by using
the background model in Section 4. We apply our background
model on different videos from DynTex database (Péteri et al.,
2010). Also, we compare our results with the GMM background
model (Stauffer and Grimson, 2000) both qualitatively and quanti-
tatively in Section 5. In Section 6, we conclude and present future
ways of research linked with the proposed method.
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2. Related work

In fixed camera situations, the object detection can be done by
learning background process and forming a statistical representa-
tion of underlying physical phenomena. Background subtraction
is performed pixel-wise, comparing each new frame with the back-
ground model.

A recent comparative survey of background subtraction tech-
niques is presented by Brutzer et al. (2011). They evaluate the re-
sults obtained with various background models. Among these
techniques, the Gaussian mixture model (GMM) (Stauffer and
Grimson, 2000) is an example of parametric background model
which is commonly used for object detection. In this background
modeling technique, color distribution of a pixel is assumed to
be represented by a mixture of K normal density distributions.

Conversely, in non-parametric background models like
(Elgammal et al., 2002) density functions are estimated directly
from the data without any assumption being made about underly-
ing distributions. They use intensity histogram of fixed Gaussian
kernels for modeling the probability density at a given pixel.

We can also find a codebook-based background model by Kim
et al. (2005), that uses the appearance of a pixel value in the image
sequence. It is a quantization technique that uses long scene obser-
vations for each pixel. One or several codewords are stored in the
codebook for each pixel. The number of codewords for a pixel de-
pends on the background intensity variations.

A last well-known method is the VuMeter method by Goyat et
al. (2006). It is a non parametric model, based on a discrete estima-
tion of the probability distribution, using color histograms for each
pixel. They estimate the likelihood of the current pixel value to be-
long to background.

However, the previous pixel-based background models are not
suited to moving background scenarios. As a matter of fact, pixel
based background models consider each pixel independently.
These methods neither take into account spatial neighborhoods
of pixels for background modeling nor frequency of colors.

Spatial neighborhoods of pixels are often considered in texture
analysis methods. In this context, a texture based background
model is proposed by Heikkilä and Pietikäinen (2006). The method
works in the spatial domain and for each pixel, 8 neighborhood
pixels are considered for background modeling. They propose to
use local binary pattern (LBP) as texture operator that relates to
the earlier work by Ojala et al. (1996, 2002). This approach gives
better background representation compared to pixel based ap-
proaches. But, it does not work very robustly on flat image areas
where the gray values of the neighboring pixels are very close to
the value of the center pixel. Similarly, LBP is strictly in spatial do-
main and does not take into account temporal evolution of back-
ground region which may change local texture temporally,
therefore, gives poor results in case of time repetitive moving
background.

However, spatiotemporal approaches have been proposed to
address the problem of dynamic textures. An earlier work by
Szummer and Picard (1996) focuses on temporal texture modeling.
They proposed spatiotemporal auto regressive model (STAR) for
temporal textures recognition. STAR is a three dimensional exten-
sion of autoregressive models. It works on entire image and models
the image sequence as time series. It imposes a neighborhood cau-
sality constraint even for the spatial domain. The method has been
modified by incorporating spatial correlation without imposing
causal restrictions by Doretto et al. (2003, 2006). A probabilistic
generative model using a mixture of dynamic textures for cluster-
ing and segmentation is presented in (Chan and Vasconcelos, 2008,
2010). In this method, an EM algorithm is derived for maximum-
likelihood estimation of the parameters of a dynamic texture
mixture and video segmentation is availed through the clustering
of spatiotemporal patches. In (Ravichandran et al., 2009), the
authors use bags of features relying on linear dynamic systems
to handle texture motion. To model spatiotemporal variation in dy-
namic textures, a Fourier phase based method is proposed by Gha-
nem and Ahuja (2007), which captures the phase changes in
dynamic texture over time. To detect foreground objects in a dy-
namic textured background, an approach has been presented by
Zhong and Sclaroff (2003), that uses auto regressive moving aver-
age (ARMA) model. They proposed a robust Kalman filter to itera-
tively update the state of the dynamic texture ARMA model. If the
estimated value for a pixel is different from the predicted value
then the pixel is labeled as foreground.

The main idea of our approach, inspired by these last articles, is
to model the spatiotemporal color patterns for object detection. In
moving backgrounds, these color patterns appear repeatedly with
time. A background model can be built on the frequency analysis
in such dynamic textured background. The use of image frequency
analysis for texture segmentation is common in computer vision.
For example, Gabor transform is used for texture segmentation
(Bovik et al., 1990). It is essentially a Fourier transform windowed
by a Gaussian envelope. To select appropriate Gabor filters, the
power spectrum analysis of Fourier transform of the textured im-
age is performed (Manjunath and Ma, 1996; Puzicha et al., 1997;
Wang et al., 2006). Local Fourier transform in spatial domain is ap-
plied by Zhou et al. (2001) for texture classification and content
based image retrieval. In (Abraham et al., 2005) dynamic texture
synthesis is carried out by using Fourier descriptors. They apply
2D Fourier transform on the whole image and the most significant
frequencies that are contributed by all pixels are retained. In their
approach, they assume temporal stationarity of spatial 2D textures.
Therefore, they do not consider temporal evolution of spatial
texture.

Variations in the background are both spatial and temporal in
case of moving background. Therefore, the background model
should be constructed by using spatiotemporal data in the region
around a pixel by applying frequency analysis. The following
section describes our proposed background model.

3. Scene modeling based on space–time local Fourier transform

First, we describe some abbreviations which are used for a pixel
representation in space–time and frequency domain. Let a pixel in
space be represented by x ¼ ðx; yÞ and in space–time by p ¼ ðx; tÞ.
Let u ¼ ðu;v ;wÞ be a space–time frequency vector. A spatiotempo-
ral cuboid centered at a pixel is denoted as:

XðpÞ ¼ x� Nx
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It is important to note that Nx; Ny and Nt should be chosen accord-
ing to the maximal period (spatial and temporal, respectively) with
no objects. Let us consider a gray scale image sequence as a real-val-
ued function f ðpÞ defined for each pixel p. Let us introduce a com-
plex-valued function bFðu;pÞ, corresponding to space–time local
Fourier transform for a pixel p given frequency u. It is expressed as:
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Fig. 1. An example of sequence containing s images for learning background. Three spectrum feature vectors n ¼ 3 are learned at time instants t1; t2 and t3 during the
training period (i.e. t ¼ 1; . . . ; s). The location of pixel is represented by red dots in spatiotemporal window X ¼ Nx � Ny � Nt .
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is the gaussian window function which is truncated beyond 3 times
the standard deviation in each dimension. We chose rx ¼ Nx

6 , such
that x is negligible when x ¼ � Nx

2 and similarly for ry and rt . In
our method, we take the magnitude of Fourier coefficients which
have information of the quantity of each frequency component
present inside spatiotemporal cuboid X around the pixel p. We de-
note it as a spectrum Sðu;pÞ. This can be expressed as:

Sðu;pÞ ¼ jbFðu;pÞj ð2Þ

The space–time local Fourier transform produces Nx � Ny � Nt fre-
quency components. A spectrum feature vector is constructed for
the pixel p, by concatenating the Fourier coefficient values in an
1D vector as:

vðpÞ ¼ ½Sðu1;pÞ;Sðu2;pÞ; . . . ;SðuM;pÞ� ð3Þ

where

M ¼ Nx � Ny � Nt

For color images, we compute the local Fourier transform indepen-
dently on each channel values. For a given pixel, three spectra are
concatenated in vðpÞ (in this case, M ¼ 3Nx � Ny � Nt). The back-
ground learning process is as follows. We take the spatiotemporal
input data from s learning images to compute local Fourier trans-
form. We learn n spectra per pixel during this training period. The
ith learned spectrum vector is:

v i
backgroundðxÞ ¼ vðx; tiÞ 8i ¼ 1; . . . ; n

Frequency background model in space can be expressed as the set
of learned spectrum vectors:

MðxÞ ¼ v i
backgroundðxÞ

n o
i¼1;...;n

Fig. 1 shows the space–time neighborhoods over which training
spectra are computed (in this example, n ¼ 3).

To learn the dynamic temporal texture in the background, the
parameter Nt is crucial. If we have small period of temporal texture
repetition (i.e. fast background motion) in an application then we
can limit ourselves to use a small value for Nt . Otherwise, repetitive
motions with large periods (i.e. slow background motion) need a
high value of Nt to be captured. The remarks are also valid for Nx

and Ny (i.e. slow and fast varying background in space can be mod-
eled with large and small values of these parameters, respectively).
4. Object detection

For object detection, we buffer a set of Nt incoming frames in
the memory. We take spatiotemporal data around each pixel of
this set of incoming frames as explained in Section 3. We compute
a spectrum vector for each pixel, by applying Eq. (2) and (3) on cur-
rent image data of Nt frames.

For each pixel p, the current spectrum feature vector vðx; tÞ is
compared with the set of n background learned spectrum feature
vectors. Let d be the dissimilarity function between vðx; tÞ and
the model associated to pixel x, namelyMðxÞ. We can write math-
ematically as:

dððx; tÞ;MðxÞÞ ¼ min
i¼1;...;n

Dðvðx; tÞ;v i
backgroundðxÞÞ ð4Þ

where D is a distance function between two spectrum feature vec-
tors. We choose to define it by:

Dðv;vbackgroundÞ ¼ v � vbackground

�� ��2

High value of the distance measure d leads to the following inter-
pretation: the current spectrum vector vðx; tÞ is not close to any
of the n learned spectrum vectors of training sequence, and may
corresponds to an object pixel in the scene. In other words, current
spectrum vector is composed of frequencies which do not exist in
the background. We can consider a pixel x as a moving object pixel
if d is greater than a threshold �. Therefore, a foreground image
Fðx; tÞ is produced by using the following equation:

Fðx; tÞ ¼
1 if dððx; tÞ;MðxÞÞP �
0 otherwise

�
ð5Þ

In this way the perturbations in the scene, apart from the spatially
varying and time repetitive textures, are identified and used for ob-
ject detection.

In the next section, we analyze the proposed frequency based
model and show the relevance of the model in the particular case
of rivers.

5. Background spectral analysis and object detection results

The background representation using frequency analysis re-
quires some further explanation and needs to be clarified with
examples. We use a video containing a floating object in a river
to illustrate our method. We show that using frequency analysis,
the discrimination between different background regions and
moving objects can be obtained. Two background pixels x1 and
x2 are marked in an image from the video (see Fig. 2). An object
passes through the pixel x2 in the water region. We take spatio-
temporal region Nx � Ny � Nt ¼ 5� 5� 3 and n ¼ 8 for respective
points in the video.

5.1. Background spectral analysis

We expect the spectra to be distant between different points in
the image and also during an object passage. We can remark that



Fig. 2. Graphical representation of values of local Fourier transform coefficients: (a) Sð:;p1tÞ and Sð:;p2tÞ represent spectra for the B channel at spatiotemporal locations ðx1; tÞ
and ðx2; tÞ at time t ¼ t1; t2; t3 and (b) Two spectra Sð:;pÞ and Sobjð:;pÞ for Blue (B), Green (G) and Red (R) color channels of spatial point x2 for background and object passage,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. A subspace linear discriminant analysis (LDA) for the two background pixels
x1; x2 (Fig. 2) and an object pixel with spatiotemporal region Nx � Ny � Nt ¼
5� 5� 3 at time t, data is projected onto first 3 eigenvectors.
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the spatiotemporal frequencies of background pixels contain simi-
lar Fourier coefficient values. We represent these values for visual
comparison in Fig. 2(a). The magnitude values of local Fourier
transform of the two pixel locations (x1 and x2) are shown in the
frequency domain. For this data, we found that the spectra of the
three RGB components were similar (color saturation is relatively
low, causing colors to be located near the black and white axis as
shown in the histogram of Fig. 6). Therefore, we show only one
spectrum Sðu; xÞ at multiple time instances. For p1t ¼ ðx1; tÞ and
p2t ¼ ðx2; tÞ, we show, the three spectra Sðu; :Þ at time t ¼ t1; t2

and t3. First three columns represent spectra Sðu;p1tÞ and last
three columns represent spectra Sðu;p2tÞ in Fig. 2(a). It must be
noted that the time instances (i.e. t1; t2 and t3) are not consecutive
in time. Furthermore, the Fourier coefficient values are normalized
by using logarithmic transformation such that the values remain in
the range from 0 to 255. Two prominent properties are highlighted
here. The first one is that local Fourier coefficient values of the cor-
responding frequencies within a spatiotemporal region are similar
at different time instances with few variations. Therefore, it im-
plies that the values of local Fourier transform can be used as a fea-
ture for background modeling. The second property is that the
values of local Fourier transform are dissimilar for two different
regions.

We also present the analysis of spatiotemporal frequency com-
ponents in case of object motion. In the river video, a floating ob-
ject passes through the pixel x2. To illustrate the effects of object
passage on the spatiotemporal frequencies, we show 3 spectra
Sðu;pÞ for RGB color channels at x2. First three columns in
Fig. 2(b) represent the spectrum Sðu;pÞ at x2 with only back-
ground. Last three columns in Fig. 2(b) show the spectra
Sobjðu;pÞ at the same spatial position during the object passage
through the point. For these spatiotemporal positions, the coeffi-
cient values of the two respective spectra are different. We can ob-
serve an increase of the corresponding spatiotemporal frequencies
values. This difference is used for object detection.

5.2. Projection into discriminative subspace

Since the magnitudes of neighboring frequencies are highly re-
lated, we expect to have high correlation between several compo-
nents of the feature vectors. This leads us to study the relevance of
our feature space using dimensionality reduction technique. We
use Fisher linear discriminant analysis (LDA), in order to project
the feature points onto a subspace that maximizes interclass
variance while minimizing intraclass variance. We present the re-
sults of discriminant analysis applied to the video with a moving
object and two background pixels x1 and x2 in Fig. 3. The projected
data is clustered into distinct areas when projected onto the first
three eigenvectors (v1;v2 and v3). This Figure shows that it will
be possible, using these features, to distinguish the different color
patterns of the respective pixels.

5.3. Object detection results

We present our experiments on both synthetic and real natural
videos. We use three videos from the DynTex database (Péteri
et al., 2010), which contains multiple videos with dynamic tex-
tures. Apart from the database, we also test our algorithm on a vi-
deo of floating objects in a river, which we have made.

But first, let us explain the effects of changing various model
parameters on the escalator video (extracted from Dyntex data-
base) in detail. In this video, an escalator moves from top to bottom
in the image plane. The motion is an example of dynamic texture
with large temporal extent. Our method is composed of two steps,
background learning and object detection. We use s images from
the video for background learning. In this experiment, we change
both spatial and temporal neighborhoods per pixel in order to
show the effects of these parameters. Number of spectra per pixel
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n is a user-defined parameter and we fix n ¼ 8 in our experiments.
The original video does not contain any object to detect. Therefore,
we move synthetically a 30� 30 square portion of escalator as an
object. Motion of this square block is from left to right in the image
plane. The block is simultaneously translated and rotated with an
angle of 5 degrees clockwise per image in 100 consecutive images.
It is important to note that we use different sets of images for
training and detection.

We show the final foreground image, that is obtained by using
Eq. (5), with the corresponding parameters in Fig. 4. We show one
Fig. 4. Foreground image results with different model parameters of spatiotemporal reg
background.

Fig. 5. (a) A synthetic square of 30� 30 pixels moving from left to right with (left) movi
differencing, (c) approximate median filtering (McFarlane and Schofield, 1995), (d) the G
(Heikkilä and Pietikäinen, 2006) and (g) our method. Computation time during training p
5� 5� 5, detection time per frame are 15.4 s and 9.47 s, respectively.
foreground image of the image sequence. The effects of changing
size of the spatiotemporal neighborhood can be observed. We
use odd values from 1� 1 to 7� 7 for Nx � Ny. When
Nx � Ny ¼ 1� 1, implies that no spatial neighborhood per pixel is
considered, which boils down to extracting purely temporal pat-
terns. The results of these values of the parameters are shown in
the first row of Fig. 4. Similarly, we vary the value of Nt per pixel
from 1 to 11. We show the results of our method when only spatial
neighborhoods are used (i.e. Nt ¼ 1) in the first column of Fig. 4.
The escalator motion in the background is slow and increasing
ion Nx � Ny � Nt per pixel for a moving square block with moving escalator in the

ng escalator and (right) moving wheat field in the background. Results of (b) frame
MM (Stauffer and Grimson, 2000), (e) the Vumeter (Goyat et al., 2006), (f) the LBP

eriod for escalator video is 193.70 s with 7� 7� 11 and for wheat video 89.76 s with
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the value of Nt enables the background model to capture the peri-
odicity of moving escalator. The optimal value of spatiotemporal
region Nx � Ny � Nt per pixel is 7� 7� 11 for this video.

We also test the method on another video of moving wheat field
from DynTex (Péteri et al., 2010). In this video, there are continu-
ous motions in the background. As in the escalator experiment,
we move a square block of the same size synthetically over the ori-
ginal images. For both videos, we test frame differencing (FD),
approximated median filtering (AMD) (McFarlane and Schofield,
1995) as well as three existing background modeling (the GMM)
(Stauffer and Grimson, 2000), the VuMeter (VM) (Goyat et al.,
2006) and LBP-based method (Heikkilä and Pietikäinen, 2006).
The results for the corresponding images with these methods are
shown in Fig. 5. Existing methods produce lower detection rates
than our model. We show that the frequency-based background
model can be used to detect an object even if it has similar colors
as background. The poor results of LBP-based in these dynamic tex-
ture applications is due to the fact that the method remains local in
space. Therefore, LBP-based method may not capture temporal ex-
tent of textures.

In another application, we consider a river background, in
which water ripples have region-wise temporal texture (see
Fig. 6). The color histograms show 100 consecutive color values
of two regions of 4� 4 pixels that are highlighted by squares in
the top row of Fig. 6. The green leaves in the surroundings of river
contain repetitive textures from green to light green. The pixels in
the water region contain almost all intermediate values between
Fig. 6. (Top) An image from river videos where two regions of 4� 4 pixels outside water
(a) Original images from a floating bottle and moving duck videos with corresponding
Schofield, 1995), (d) the GMM (Stauffer and Grimson, 2000), (e) the Vumeter (Goyat et al.,
time during training period for bottle is 89.76 s with 5� 5� 5 and for duck is 124.04 s
black and white as shown in Figure. We can see that pixels values
have a wide distribution especially in the aquatic region. The color
histograms reveal the fact that pixel-based background models
such as GMM (Stauffer and Grimson, 2000) will not be able to
model correctly in such conditions. The distributions tell us about
the color diversity, however, the temporal variations of pixel val-
ues in successive frames are not evident from the histograms.

We apply our background model to a video of floating objects in
a river. The quasi-periodic changes which occur in background re-
gions are learned during the first s frames with no objects. In this
application, the optimal results are obtained with a spatiotemporal
neighborhood size of Nx � Ny � Nt ¼ 5� 5� 5. Results of our
method and concurrent algorithms are shown in the left part of
Fig. 6. We can notice that frame differencing, AMD and the GMM
results contain many false detected background pixels. The results
of the Vumeter and LBP method are slightly better than the GMM.
The results show that our frequency based background model is
able to capture the dynamic changes in the aquatic region, waving
grass and leaves in the background.

Finally, we test our model on another video from the Dyntex
database (Péteri et al., 2010). Here, the aquatic background
contains water ripples and dark cast shadows of the surroundings.
A duck enters the scene from the top right corner and moves across
the scene to the middle of the image plane. When the duck moves
under the cast shadows, it shares the same color with the back-
ground. Results are shown in the right part of Fig. 6. We can notice
that existing methods generate many false detections and miss
and in water are highlighted with histograms of such regions, respectively. (Bottom)
results of (b) frame differencing, (c) approximate median filtering (McFarlane and
2006), (f) the LBP (Heikkilä and Pietikäinen, 2006) and (g) our method. Computation

with 5� 5� 11 and detection time per frame are 15.4 s and 9.47 s, respectively.



Table 1
Quantitative comparison of Dice similarity measure of proposed background model
and the GMM for four videos.

Escalator Wheat Duck Bottle

FD 0.04 0.05 0.02 0.06
AMF 0.06 0.03 0.01 0.07
GMM 0.03 0.01 0.11 0.14
VM 0.10 0.07 0.05 0.30
LBP 0.23 0.58 0.01 0.45
Our method 0.87 0.96 0.81 0.75
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many foreground pixels. Moreover, many parts of the foreground
object are mis-classified as the background. The results of our fre-
quency based background model show that not only we have min-
imum false detections but also the foreground object has very few
mis-detected pixels. It is important to mention that we do not use
any morphological operations. In this application, we use spatio-
temporal neighborhood of Nx � Ny � Nt ¼ 5� 5� 11 per pixel.

Image segmentation results of our approach and existing meth-
ods are evaluated with the Dice similarity measure, which is a
commonly used measure of segmentation quality (Cárdenes
et al., 2008). It is expressed as

S ¼ 2jX \ Yj
jXj þ jY j ð6Þ

where X and Y are the sets of object pixels in the generated segmen-
tation and in th ground truth image, respectively. S is equal to 1
when the segmented region and the ground truth region perfectly
overlap, and 0 when they are disjoint. Ground truth images are
available for synthetic motions in the escalator and the wheat vid-
eos. For other videos, we manually obtained ground truth images.
For this purpose, we randomly select (15%) images per video for
the two videos. The average Dice coefficient values obtained with
each method are shown in Table 1. Image segmentation results ob-
tained with frame difference, approximate median filtering, the
GMM, the VuMeter and LBP method have very low dice values for
all videos. High Dice values are obtained with our background mod-
el. We can remark that in the bottle video, the average Dice value is
smaller than in other cases due to the reflection in water that create
some false detections. Image segmentation results indicate strong
superiority of the frequency-based background model for object
detection over existing methods in dynamic textured and moving
background. Indeed, GMM and VuMeter are only color based and
do not take into account frequency of colors. The LBP-based back-
ground model is texture-based but relies on a purely 2D
representation.

Finally, we give the computation time taken by our method dur-
ing the training period and object detection. The image size is
256� 256 and n ¼ 8 for all videos. The method is tested on an Intel
Core2 Duo 2.66 GHz with 4 GB RAM, running a C code. We mention
the computation time taken during training period and detection
time per frame in the legends with corresponding results in Figs.
5 and 6. One may note that the detection time taken by the other
tested methods is in the order of 200 ms.

6. Conclusion

In this paper, we present a novel frequency based background
model. Such model is dedicated to moving backgrounds containing
repetitive structures. We consider spatiotemporal neighborhoods
of the pixels in the scene, on which we apply local Fourier trans-
form. The generated spectral feature vectors are used to build a
background model. Spatially varying and time repetitive textures
in the background regions are very efficiently modeled using the
frequency-based method. We apply our method for moving object
detection in moving backgrounds, on both synthetic and real image
sequences. We obtain high accuracy in foreground/background
segmentation and outperform classic and commonly used back-
ground models. In outdoor scenarios, our background model leads
to better detection and segmentation than the existing methods,
which fail to capture the time-repetitive background motions. As
future work, we plan to include an update mechanism in the back-
ground model. Among other image phenomena, this could handle
global brightness change through the image sequence.
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