
Sparse Shift-Invariant Representation of Local 2D Patterns and Sequence

Learning for Human Action Recognition

Moez Baccouche, Franck Mamalet

Orange Labs R&D

4 rue du Clos Courtel, F-35510, France

firstname.surname@orange.com

Christian Wolf, Christophe Garcia, Atilla Baskurt

Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR 5205, F-69621, France

firstname.surname@liris.cnrs.fr

Abstract

Most existing methods for action recognition mainly

rely on manually engineered features which, despite

their good performances, are highly problem depen-

dent. We propose in this paper a fully automated model,

which learns to classify human actions without using

any prior knowledge. A convolutional sparse auto-

encoder learns to extract sparse shift-invariant repre-

sentations of the 2D local patterns present in each video

frame. The evolution of these mid-level features is

learned by a Recurrent Neural Network trained to clas-

sify each sequence. Experimental results on the KTH

dataset show that the proposed approach outperforms

existing models which rely on learned-features, and

gives comparable results with the best related works.

1. Introduction and related work

In the last years, human action recognition has be-

come an increasingly active research area due to its

large number of applications. Among the most popu-

lar state-of-the-art methods, we can mention those pro-

posed by Laptev et al. [7], Niebles et al. [9] and others

[6, 8, 2], whose common point is the use of so-called

engineered features, which are manually designed to be

optimal for a specific task, and thereby are highly prob-

lem dependent. By opposition to this dominant method-

ology, there has been a growing interest in approaches

that can automatically learn salient patterns for human

action recognition, directly from the raw image pixels

[4, 5, 12]. In our previous work [1], we have presented a

neural model which can achieve excellent performance

for human action recognition, when trained to extract

features in a supervised manner. In this paper, we pro-

pose to investigate the other paradigm of pattern recog-

nition, in which an unsupervised feature extraction step

preceds the supervised classification.

Most unsupervised learning techniques for feature

extraction rely on auto-encoders to produce a compact

representation of the input content, which generally

decreases the classification performances [10]. How-

ever, several recent works advocated the use of sparse-

overcomplete representations, i.e whose dimension is

larger than the input one, but where only a small num-

ber of components are non-zero. The overcompleteness

ensures a high separability between classes, while the

sparsity provides a simple part-based interpretation of

the input content. Several sparsifying procedures have

been presented in the literature, including the one in-

troduced by Ranzato et al. in [10], in which a non-

linear sparsifying logistic is placed between the encoder

and the decoder. Ranzato et al. proposed a learning

algorithm to train the model, and a specific procedure

to handle shift-invariance. The approach obtained out-

standing results in object recognition [10]. In this arti-

cle, we propose a solution based on a similar principle.

A convolutional sparse auto-encoder is trained to auto-

matically build a sparse representation of local 2D pat-

terns of each video frame. We propose a novel approach

for handling shift-invariance, by including an additional

hidden variable to the objective function. The entire

video sequence is then labelized considering the tempo-

ral evolution of these learned features, using a recurrent

neural network.

The rest of the paper is organized as follows. Sec-

tion 2 presents the proposed model for feature learning,

and the corresponding training algorithm. We present

in section 3 the architectures of the encoder and decoder

used in our experiments. The recurrent neural scheme

for the entire sequence labelling is then described in

section 4. Experimental results on the KTH dataset are

given in section 5. Finally, we conclude and give some

perspectives of this work.



Figure 1. Overview of the proposed model for learning sparse shift-invariant features.

2. Learning sparse shift-invariant represen-

tation of local 2D patterns

The proposed model can be schematized by two

main modules: an encoder (with trainable parame-

ters WE), which builds a code vector representing the

salient information contained in the input, and a decoder

(with trainable parameters WD), which learns to recon-

struct the input from a sparse version of the obtained

code. Instead of operating on the complete image, the

auto-encoder takes as input small patches {Xi}i∈[1..P ]

of size M ×M each (where P is the number of training

samples).

As in [10], the system learns a compact code which

can reconstruct the input. A sparsifying logistic be-

tween the encoder and the decoder restrains the size

of the code. It is a non linear function which can be

seen as a SoftMax applied on consecutive training sam-

ples. Given the ith training sample, and its correspond-

ing non-sparse code Zi =
{

z
(k)
i

}

k∈[1..N ]
, where N is

the code size, the sparse code Zi =
{

z
(k)
i

}

k∈[1..N ]

will be expressed by: z
(k)
i = ηeβz

(k)
i

ξ
(k)
i

with ξ
(k)
i =

ηeβz
(k)
i + (1− η) ξ

(k)
i−1 where η and β are positive pa-

rameters controling the code sparsity and softness. Due

to the resulting strong non-linearities, the encoder and

the decoder are learned separately: when learning one

of the two parts, the weights of the other part are kept

constant. A third (and also separate) step produces op-

timal code (i.e Zi is considered as an additional param-

eter). All three steps minimize a single global objec-

tive function with respect to different parameters at each

step - details are given below.

In contrast to [10], in order to handle the shift-

invariance of the learned representations, we propose to

introduce an additional hidden variable ti (a translation

vector), on which the optimization is done. The idea is

to represent the neighbourhood of a given patch Xi by a

single translated patch φ (Xi, ti), i.e the model assigns

the same code to the shifted versions of a given input.

Figure 1 summarizes the different modules of our

model, and the steps involved during training.

The objective function E is a sum of two terms, rep-

resenting respectively the encoder prediction and the

decoder reconstruction mean square errors (MSE), as

expressed by the following equation:

E (Xi, ti, Zi,WE ,WD)

= EE (Xi, ti, Zi,WE) + ED (Xi, ti, Zi,WD)

= ‖Zi − Enc (WE , φ (Xi, ti))‖
2

(1)

+
∥

∥Dec
(

WD, Zi

)

− φ (Xi, ti)
∥

∥

2

Optimal parameters (W ∗

E ,W
∗

D, Z∗

i , t
∗

i ) are those mini-

mizing E. Each one is optimized separately as follows:

t∗i = argmin
ti

E (ti|Xi, Zi,WE ,WD) (2)

Z∗

i = argmin
Zi

E (Zi|Xi, t
∗

i ,WE ,WD) (3)

(W ∗

E ,W
∗

D) = argmin
WE ,WD

E (WE ,WD|Xi, t
∗

i , Z
∗

i ) (4)

Learning is performed for each input patch Xi in three

steps: best translation search is performed to find t∗i
that minimizes (2) ; a steepest descent is done on the

Zi parameter to find an optimal code Z∗

i that minimizes

(3) ; then WE and WD are updated using standard back-

propagation given t∗i and Z∗

i as expressed in (4).

The next section details the architectures of the dif-

ferent modules.

3. Encoder/Decoder architectures

Figure 2-(a) represents the architecture of the pro-

posed convolutional sparse auto-encoder.

The encoder is a 2D convolutional neural network

with 64 trainable 2D convolution kernels of size 8 × 8
each. It takes as input a small 8 × 8 image patch and



Figure 2. (a)- Architecture of the convolutional sparse auto-encoder. (b)- A subset of 12 learned

basis elements. (c)- Feature vector generation from the patches responses.

learns to compute a non-sparse code of size 64 corre-

sponding to the response of each convolution. Note that

the representation is overcomplete since the code size

is the same as the input dimension. The total num-

ber of trainable parameters of the encoder is 4160. ti
optimization is performed among values in [−2, 2] for

each component, i.e the selected patch is located in a

12× 12 neighbourhood around the initial position. Af-

ter the training, the output of the encoder is considered

as optimal and no steepest descent is performed.

The decoder consists of a set of 64 output neurons

fully connected to the sparse code Z. The total num-

ber of parameters of the decoder is 4097. The output

is a weighted sum of elementary patches (which will

be called “basis” in the following). Since the code is

sparse, only few elements of the basis are used to re-

construct the output (typically, less than 8 over the 64).

We depict in Figure 2-(b) a subset of the learned basis

on the KTH dataset. Note that no element of the basis

is a shifted version of another one. The auto-encoder

can reconstruct each input patch by combining a few

elements of this basis (see the example in the last row

of Figure 2-(b)). For each reconstructed input, the co-

efficients of the basis elements correspond to the input

coordinates in the projection space. These coordinates

are used hereafter as features to represent the patch con-

tent. The feature vector corresponding to the entire im-

age is obtained by concatenating the patches responses,

as illustrated in Figure 2-(c).

In the next section, we describe how these learned

features are used to feed a recurrent neural network

classifier, which is trained to recognize the actions

based on the temporal evolution of these features.

4. Sequence classification

Among state-of-the-art learning machines, Recur-

rent Neural Networks (RNNs) are widely used for tem-

poral analysis of data, because of their ability to take

into account the context using recurrent connections.

The Long Short-Term Memory model (LSTM-RNN) is

a particluar recurrent architecture which was introduced

by Schmidhuber et al. [3] to address some shortcom-

ings of RNNs (especially their inability to deal with

long sequences, e.g. video sequences). The LSTM-

RNN learns to assign a label at each timestep of the

input sequence, and the final label is obtained by aver-

aging all individual decisions (one per timestep). The

LSTM-RNN has been tested in many applications, like

phoneme classification [3] and action recognition [1],

and generally outperformed existing methods.

We propose to use a bidirectional LSTM-RNN

model with one hidden layer to classify sequences. At

each timestep, the LSTM-RNN takes as input a feature

vector generated by concatenating the sparse codes of

the patches, placed at different locations in the original

image (see Figure 2-(c)). The LSTM-RNN is fed with

sequences of feature vectors (one per timestep). Note

that each feature vector has approximately the same size

as the image, but only a few input connections are ac-

tivated at each timestep due to the code sparsity. The

LSTM cells are fully connected to these inputs and have

also auto-recurrent connections. For the output layer,

we used K output neurons and the SoftMax activation

function, which is standard for 1 out of K classifica-

tion tasks. The hidden layer contains 10 LSTM neu-

rons for each direction. This architecture corresponds

to about 6.104 parameters learned with standard online

backpropagation through time.



Dataset Features Method Acc.

Learned Ours 93.70

Jhuang et al. [4] 91.70

KTH1 Gao et al. [2] 96.33

Engineered Liu et al. [8] 94.20

Niebles et al. [9] 81.50

Ours 90.76

Learned Ji et al. [5] 90.20

KTH2 Taylor et al. [12] 90.00

Kim et al. [6] 95.33

Engineered Gao et al. [2] 92.45

Laptev et al. [7] 91.80

Table 1. Obtained results on KTH dataset.

5. Experimental results

The KTH dataset [11] is the most commonly used

human actions dataset. It contains 6 types of actions

(walking, jogging, running, boxing, hand-waving and

hand-clapping) performed by 25 subjects in 4 different

scenarios. As in [2], we rename the KTH dataset in two

ways: the first one (the original one) where each person

performs the same action 3 or 4 times in the same video,

is named KTH1 and contains 599 long sequences with

several “empty” frames between action iterations. The

second, named KTH2, is obtained by splitting videos in

smaller ones where no empty frames are present, and

contains 2391 sequences. Original videos underwent

the following steps: spatial down-sampling by a factor

of 2 horizontally and vertically, extracting the person-

centred bounding box as in [4], and applying spatio-

temporal local contrast normalization as in [12]. The

model was trained as described above. For the sparsi-

fying logistic, η and β were fixed respectively to 0.02
and 1.5. The LSTM-RNN input size is 1536 per time

step, which corresponds to the 4 × 6 possible locations

of the 8×8 patches in the original image of size 34×54.

We performed leave-one-out cross validation as recom-

mended by Gao et al. in [2] and reported the average

accuracies in Table 1.

For each dataset, Table 1 is divided into two groups:

the first group consists of the methods using automati-

cally learned features, and the second those using man-

ually engineered ones (i.e. specialized for the KTH

dataset). Among the methods of the first group, to our

knowledge, our method obtained the best results, both

on KTH1 (93.70%) and KTH2 (90.76%). Our method

also obtained comparable results with the approaches

relying on engineered features.

To end with, after training phase, feature extraction

process from a single frame takes in average 146ms (on

a 3 GHz processor). Besides, LSTM-RNN classifica-

tion of a video sequence containing 25 frames requires

about 250ms.

6. Conclusion

In this paper, we have presented a neural model for

human action recognition using a fully automated fea-

ture construction process. A convolutional sparse auto-

encoder is trained to build a sparse shift-invariant rep-

resentation of 2D patterns present in each image of the

video, and the temporal evolution of these features is

used to classify the actions. Experimental results on the

KTH dataset show that the proposed approach gives the

best results among methods using learned features, and

competitive results compared to those using engineered

ones. Our ongoing work aims at extending this method

to the 3D case, by the use of 3D convolutions in the

auto-encoder to capture spatio-temporal saliency.

References

[1] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and

A. Baskurt. Sequential Deep Learning for Human Ac-

tion Recognition. In HBU, 2011.
[2] Z. Gao, M.-y. Chen, A. Hauptmann, and A. Cai. Com-

paring evaluation protocols on the kth dataset. In HBU.

2010.
[3] A. Graves and J. Schmidhuber. Framewise phoneme

classification with bidirectional lstm and other neural

network architectures. Neural Networks, 2005.
[4] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biolog-

ically inspired system for action recognition. In ICCV,

2007.
[5] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional

neural networks for human action recognition. In ICML,

2010.
[6] T.-K. Kim, S.-F. Wong, and R. Cipolla. Tensor canon-

ical correlation analysis for action classification. In

CVPR, 2007.
[7] I. Laptev, M. Marszalek, C. Schmid, and B. Rozen-

feld. Learning realistic human actions from movies. In

CVPR, 2008.
[8] J. Liu and M. Shah. Learning human actions via infor-

mation maximization. In CVPR, 2008.
[9] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised

learning of human action categories using spatial tem-

poral words. IJCV, 2008.
[10] M. Ranzato, F. Huang, Y. Boureau, and Y. Lecun. Un-

supervised learning of invariant feature hierarchies with

applications to object recognition. In CVPR, 2007.
[11] C. Schuldt, I. Laptev, and B. Caputo. Recognizing hu-

man actions: a local svm approach. In ICPR, 2004.
[12] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler.

Convolutional learning of spatio-temporal features. In

ECCV, 2010.


