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Abstract. Illumination and facial pose conditions have an explicit ef-
fect on the performance of face recognition systems, caused by the com-
plicated non-linear variation between feature points and views. In this
paper, we present a Kernel similarity based Active Appearance Models
(KSAAMs) in which we use a Kernel Method to replace Principal Com-
ponent Analysis (PCA) which is used for feature extraction in Active
Appearance Models. The major advantage of the proposed approach lies
in a more efficient search of non-linear varied parameter under complex
face illumination and pose variation conditions. As a consequence, images
illuminated from different directions, and images with variable poses can
easily be synthesized by changing the parameters found by KSAAMs.
From the experimental results, the proposed method provides higher ac-
curacy than classical Active Appearance Model for face alignment in a
point-to-point error sense.
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1 Introduction

Face recognition has been a well investigated topic the in image processing and
computer vision communities. In the last decade, large efforts have been done
in searching for a face recognition system that is capable of working with "real-
world” faces. Among these efforts, Active Appearance Model, first proposed in
[1], is a non-linear, generative, and parametric model of a certain visual phe-
nomenon [2]. AAMs is quite well-known and widely used in the face recognition
field. The aim of the algorithm is to "explain” novel images by generating syn-
thetic images that are as similar as possible, using a parameterized model of
appearance. There are several major unsolved problems existing in AAMs like
position variations of the faces and directions of the sources of illumination.
Within the last years, the problems of illumination independence and com-
plex pose fitting have been addressed by different approaches. A common method
to deal with variations of illumination is to supplement additional parameters



during the construction of the model. As demonstrated explicitly in [3] and [4],
this approach directly increase computational complexity and is more time con-
suming. According to W. Zhao and R. Chellappa [5], a method to normalize the
variations in appearance, either by image transformation or by synthesizing a
new image from the given image in the training set ([6,7]), is also popular for face
recognition. However, such algorithms can hardly generate the faces with varia-
tions of illumination during the fitting procedure. Meanwhile, the pose problems
are equally complex because of the non-linear variation caused by the rotation
of the head and different positions of the camera. In particular, a single AAMs
is able to cope with shape variations from a narrow range of face poses (turning
and nodding of 20). It utilizes PCA to model shape and appearance variation
across pose, expression, illumination and identity. But the linear assumption
does not hold true when large rotations of the face exist. Several works [8,9,10]
applied the non-linear statistic tool, Kernel-PCA instead of PCA to build shape
models of wide range of face rotations. But these methods all suffered from the
rough approximation reconstruction problem of kernel PCA.

In this paper, a non-linear statistic approach is supposed to build the shape,
texture and appearance model of AAMs. It benefits from kernel similarity ma-
trix, but avoids the reconstruction problem of kernel PCA. Our method effi-
ciently functions with the face reconstruction in complex illumination environ-
ments, and works much more efficiently with the wide range face rotation case
comparing with AAMs.

The organization of this paper is as follows. Section 2 presents the classical
Active Appearance Models algorithm. Section 3 introduces how the proposed
KSAAMSs algorithm works. Section 4 presents results of the performance of the
proposed algorithm and a statistical comparison with AAMs. Section 5 concludes
the paper.

2 Active Appearance Model

Active Appearance Model is an algorithm which allows generating a synthetic
image as close as possible to a particular target image by making use of con-
straints of the appearance models. An appearance model is combined by two
linear subspaces, one for the object shape and one for the object texture which
are both learnt from a labeled set of training images [11].

Interpreting a novel image is an optimization problem in which the method
minimizes the difference between a new image and one synthesized by the ap-
pearance model. The difference vector 61 can be defined as:

5[ =1 — I, (1)

where I; is the vector of grey-level values in the image, I, is the vector of
grey-level values for the current model parameters.
This method proceeds in three steps:



I) A Principal Component Analysis (PCA) is applied respectively on the
shape training base and a shape-free texture training base. PCA created the
statistical shape and texture model as the follows.

s§=S5+ sts (2)
t =1+ Qb (3)

where 5 is the mean shape; £ the mean texture in a mean shape patch; Qs and
Q: are the matrices of eigenvectors of the shape and texture covariance matrices;
bs and by are vectors of coefficients in the Qs and (s spaces which control the
synthesis of shape and texture.

Another PCA is then applied on the samples of vector b, which is combined
by bs so as to construct the appearance parameter c:

b=Qc (4)

with @ the matrix of PCA eigenvectors ¢ is a vector controlling both b and
b; at the same time.

IT) An experiment matrix creating procedure in which each control parameter
c is disturbed from a known value and the residuals of each displacement in each
image is measured to build a relationship between the parameter and the image
variations. This relationship can be presented by:

de=Rx61 (5)

Here R is the experiment matrix build in this step, dc and 61 represent the
parameter and the image variations respectively.

III) The fitting procedure in which by varying the model parameter ¢, the
magnitude of the difference vector A = (61)* is minimized in order to find the
best match between model and image.

3 Kernel Simlarity AAMs

A standard Active Appearance Model explains novel images by linear combi-
nation of statistic models which are build by applying Principle Component
Analysis on training data. Therefore, PCA is not designed to extract non-linear
features from the shape and texture of the non-frontal or non-uniformly illumi-
nated faces. In general, both illumination and pose variations remain difficult to
handle in face recognition.

In this paper, a non-linear component analysis method is considered to be
more appropriate for handling the multiple variations which are caused by the
changes of the light source. In this respect, a kernel method component analysis is
employed instead of PCA to search more efficient components for generating new
images in complex illumination and pose conditions. The following subsection
aims at presenting the the proposed Kernel Similarity Active Appearance Model
method.



3.1 PCA Trick in Feature Space

Consider a N x M observation matrix A, where each column is an observation
and each row is the dimension of the observation. For example, in the context
of this paper, each column is an image and each row are the image pixels. One
observation is denoted as xx, k = 1,2,...... ,M, z;, € RN, and 22/[:1 zp = 0,
which means that the data is centered. Normally, PCA diagonalizes the covari-
ance matrix as shown in Eqn.(6).

| M
C= yYi ijij (6)
j=1

In some special case, for example the case in our paper we have much more
dimensions than faces, that N >> M, so finding the eigenvectors of the large
N x N matrix is computationally difficult. We apply a PCA trick: instead of (6),
Eqn (7) is more computationally tractable.

LN
*,75 YA
C = Ni:1 YilY; (7)

where y; is the vector of each element of the observation z;, IV is the dimen-
sion of observation x;.
To diagonalize it, one has to solve the following eigenvalue equation:

A= Cu. (8)

where A = A\ represent to the eigenvalues of the matrix C; the eigenvectors
u= ATy = Zfil Yi ;.

The previous part of this section is devoted to a straightforward translation
to a non-linear scenario. We shall now describe this computation in a Hilbert
space H, which is introduced via a mapping &.

o:RN - Haz— X. (9)

In the feature space H, we assume that @(x) has an arbitrarily large, possibly
infinite dimensionality. Again, in feature space, the data should be centered,
11:1:1 &(xy) = 0. Applying the PCA trick in feature space H,

N
_ 1 T
C=v Z; P(yi)P(ys) (10)
Now one has to extract eigenvalues satisfying
U =CU (11)

The solutions U lies in the span of ®(y1), P(y2), -+, P(yn) . As shown in [13],
this has two useful consequences: first, we can consider the equivalent equation

M2(yr)TU) = (2(y) " CU) (12)



for all k =1,2,---, N and second, there exist coefficients a;; (¢ =1,---, N) such
that

N
U= Za@(yi) (13)

Combining (12) and (13), we get

N N N
_ 1
A i@ (ye) - @) = 57 > 0a(@T (r) - D @) (@7 (y;) - Dwi))  (14)
i=1 i=1 j=1
Defining a N x N matrix K by
Kij = (9" (y:) - D(y;)) (15)
which lead (13) to:
MMKa = K« (16)
where a denotes the column vector with entries aq,---,ay. As K is sym-
metric, -
MM = Ko (17)

Note that K is positive semi-definite, which can be seen by noticing that it

equals
w1

Kij=k(yi,y;) =e 25 (18)

Then, for the extraction of eigenvalues in feature space, we therefore only
need to diagonalize the kernel similarity matrix K; ;. Let M > A > > Ay
denote the eigenvalues, and o', a2, -, the corresponding complete set of
eigenvectors.

3.2 Parameter estimation

As described previously, kernel method component analysis deals with nonlinear
transformation via nonlinear kernel functions. In kernel the functions, there is
a parameter ¢ that must be predetermined, knowing that it has a significant
impact on image representation in feature space. As the kernel function is de-

fined with the Gaussian function k(a,b) = e~ 752, in which d(a,b)? represent
Euclidean distances between elements contained in each vector; k(a,b) can be
considered as a zero mean Gaussian distribution of d(a, b)2. So if d(a, b)? follows
Gaussian distribution, then o represented the variance of d(a,b)?. With respect
to this assumption, we built histograms of the Euclidean distances between ele-
ments contained in each vector to study the distribution of observed variables.
As illustrated in Figure 1, for shape vectors and texture vectors from the illu-
mination database (described in the Experiment result section), the Euclidian
distances between each observed variable follows a Gaussian distribution. The
parameters o is estimated.
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Fig. 1. Histogram of Euclidean distances between elements of vector of illumination
database

3.3 Feature extraction

In classical AAMs, we seek a parameterized model (the parameter ¢) used to
control variations if both shape and texture, which is extracted by Principal
Component Analysis. In our work, the kernel similarity matrix K; ; = k(y;,y;) =

lviwil1?
e~ 22 replaces the covariance matrix (used in PCA).

As explained in section 2., features are extracted to control variation on
shape, texture and appearance. The parameter ¢, which represents the parame-
ter of appearance is build to control both shape and texture variation simulta-
neously. Figure 2 illustrates the first three modes of variations of ¢ for classical
AAMs and the proposed method. One can observe that the model built by kernel
similarity matrix is able to take into account more efficiently the variations of
illumination.

Fig. 2. Variations in the appearance parameter c; the first row presents the first three
modes learnt by KSAAMs; the second row presents the first three modes learnt by
PCA)



4 Experimental Results

We evaluated the proposed method on the CMU Pose, Illumination, and Expres-
sion (PIE) database of human faces [14]. For the experiments on the variation of
illumination and pose, the training database is built from a subset of the CMU
database as illustrated in Figure 3. The test set is built from the images of the
persons shown in the last row of Figure 3. We manually labeled 1200 images of
size 640 x 486 pixels. To train the models, 58 landmarks were placed on each face
image: 8 points for the mouth, 11 points for the nose, 16 points for both eyes, 10
points for both eyebrows, and 13 points for the chin. The warped images have
approximately 7325 pixels inside the facial mask.

To evaluate the performance of the proposed algorithm, the manually an-
notated landmarks are considered as the ground truth shape information. For
each image the landmarks re-labeled by the methods are compared with the
ground truth landmarks. A distance measure, D(zg4, ), gives a interpretation
of the fit between two shapes, the ground truth, x4 and the actual shape x.
Point-to-point error Ep;_,; is defined as the Euclidean distance between each
corresponding landmark in Eqn.(19). To interpret a novel image, an optimiza-
tion is performed in which the method minimizes the error between the pixels
contained in a new image and the pixels synthesized by the appearance model.
The pixel-to-pixel error Ep;;—piz can be defined as in Eqn. (20).

1
Eptpt = ~ > \/(»Ti = Tgt,i)* + (Yi — Ygr.i)® (19)
Epiac—pix = |JI|2 = |Iz - Im|2 (20)
where (x;,y;) are the coordinates of the re-labeled landmarks, I; is the vector
of grey-level values in the image and I, is the vector of grey-level values for the
current model parameters.

To evaluate the superiority of the proposed method, Eqn.(21) is used to
compute the gain in precision.

Epi—pi(kernel) — Ep_pi(AAM s)

gain% = % (21)

Eptfpt (AAMS)

Fig. 3. Persons in the training and test databases; the first two rows present the persons
in the training database; the last row present the persons in the test database (not
present in the training database).



4.1 Sensitivity to the Illumination

The database for training is built by all the frontal faces which are captured by
camera number 27. Each person involved in the training set (shonw in Figure
3) has 20 frontal face images under 20 different illumination conditions. The
training database contains 16 people and the test database contains 10 people
as shown in Figure 3.

In figure 4(a), images in the left column are synthesized by the proposed
method, and compared with fitting results of Standard AAMs in the central
column. An increased precision has been obtained due to the extraction of non-
linear features. The gain in precision on point-to-point errors is reported in table
1, computed by eqn. (19)-(21).

Figure 5 show the errors obtained in the ”Standard AAMs experiment”
(square dotted curve) and ”Kernel Similarity AAMs experiment” (asterisk curve)
on both training (subfigure (a)) and test (subfigure (b)) databases. Errors are
normalized by the Euclidian distance between the eyes (E,¢—p¢/Deye, where
E,—pt represented point-to-point error, and Deye represented the distance be-
tween the centre of the eyes of each person). This normalization is done to elim-
inate the effect of varying size of faces on the point-to-point error. Each curve
point in Figure 5 is the mean error made by the model in the database under the
same illumination conditions. The number of illumination from 1 to 20 are the
20 different illuminations contained in database. Illuminations from numbers 1
to 4 correspond to a light source from the left side of the face, illuminations from
12 to 17 correspond to a light source from the right side of the face. The other
illuminations (from number 5 to 11 and number 18 to 20) correspond to different
light sources in front of the face. The error curves depict the robustness of the
KSAAMs method since it makes it possible to find non-linear facial features.

(a) Fitting results on different for (b)Fitting results for different poses
the different illuminations

Fig. 4. Fitting result on the PIE facial images with the proposed method in left column,
classical AAMs in middle column, and Input images in the right column.



Table 1. Gain in percentage for the KSAAMs method for the illumination problem

(Eqn.(21))

Epi—ptgain% Epiz—pizgain%

Training database

Test database

87.85%
76.76%

61.23%
27.02%

Average point-to-point error per illumination on the training set

Average point-to-point error
o
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Fig. 5. Average point-to-point error versus illumination variations
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(b)Average Pixel-to-pixel Error
on the test dataset

Fig. 6. Average pixel-to-pixel error versus illumination conditions
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Table 2. Gain in percentage for the KSAAMs method for the variation of pose problem
(Eqn.(21))

Ept‘_pt,Avd% Epiz__pq;z_A”Ud%
Training database  16.63%  14.05%
Test database 22.44%  18.67%

We can see that with the proposed method, some errors are still made, but
not as strong as with the standard method with an increased robustness to side
illuminations. Figure 6 present the average pixel-to-pixel error for each illumi-
nation condition.

4.2 Sensitivity to the poses

The training set is built with the same 16 persons, each person having 11 differ-
ent pose captured by different cameras, the test set containing images from 10
persons.

As presented in Figure 4(b), images in the left column are synthesized by
the proposed method, compared with fitting results of classical AAMs in the
central column. An increased precision has been obtained due to the extraction
of non-linear features. The gain in precision on point-to-point errors is reported
in table 2, computed by eqn. (19)-(21).

Poses numbers 1, 6, 7, 10 are profile faces which are hard to synthesize,
while the other poses are less complicated. The curves in Figure 7 and Figure
8 which present the point-to-point errors and the pixel-to-pixel errors for each
pose respectively give a consistent result. As illustrated by the curves, for the
test on the training database, the proposed method is more efficient except for
poses number 1, 7 and 10. On the test set, the results of poses number 1, 7
and 10 are missing, because the fitting procedures have problem to converge for
both KSAAMs and AAMs. As a consequence, the proposed kernel method gives
better fitting results in the conditions that the out-of-plane rotations of face are
in a the range of £60°. The problem of the complete profile faces is still waiting
to be solved.

5 Conclusion

In this study, we have proposed a Kernel method combined with the AAMs fit-
ting algorithm that is robust to illumination and pose changes of face images.
Instead of the covariance matrix used in Principal Component Analysis of classi-
cal Active Appearance Model, we use eigenvectors of the kernel similarity matrix
to build the deformable model.



11

Average poiNtto-pairt error per pose onthe training set Average point-to-poirt error per pose onthe test set

—+— Kernel Similarity AAM —+— Kernel Similarity AAM
— 8~ Standard AAM — 8~ Standard AAM

=}
w©
=}
w©

e 2 9
o N @
e 2 9
o N @

= A
]

Average point-to-peint error
o

L=
w

i
Average point-to-peint error
o

=
[N}

w ;/@
01 0 1 TS e e T R i s R sy =
0 0 i i i i H
0 0 2 4 6 8 10
Nurnber of illurination Nurnber of illurination
(a) Average Point-to-point Error (b)Average Point-to-point Error
on faces known on faces unknown
Fig. 7. Average point-to-point error per pose
Average pixel-to-pixel error per pose on the training set Average pixelto-pixel error per pase on the test set
10 T T T T T 10 T T T T T
—+— Kemel Similarity AAM —+— Kemel Similarity AAM
0 - 8- Standard AAM 0 - 8- Standard AAM
8l ) - 8l ) -
7 % 7 1

Average pixel-to-pixel error
o

Average pixel-to-pixel error
o
i

4 4 1
8
W s ST = S )
3 B g T /
2 2 “\‘“\,/\e i
1 1} 1
0 ‘ i i ; i 0 j i i ; i
0 2 4 8 8 10 0 2 4 8 8 10
Number of illumination Number of illumination
(a) Average Pixel-to-pixel Error (b)Average Pixel-to-pixel Error
on faces known on faces unknown

Fig. 8. Average Pixel-to-pixel error per pose

It is shown that the model build by the proposed kernel method is less sensi-
tive to the illumination variations. With this novel method, the fitting procedure
can accurately synthesize faces semi-bright-semi-dark affected by the illumina-
tion. Meanwhile, conditions with a variety of poses also benefit from the pro-
posed algorithm; the ability of synthesizing faces with shape variations from a
wide range of face poses has been improved.
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