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Abstract—Users hesitate to submit negative feedback in repu-
tation systems due to the fear of retaliation from the recipient
user. A privacy preserving reputation protocol protects users by
hiding their individual feedback and revealing only the reputation
score. We present a privacy preserving reputation protocol for the
malicious adversarial model. The malicious users in this model
actively attempt to learn the private feedback values of honest
users as well as to disrupt the protocol. Our protocol does not
require centralized entities, trusted third parties, or specialized
platforms, such as anonymous networks and trusted hardware.
Moreover, our protocol is efficient in terms of the number of
messages exchanged: O(n) +O(log N), where n and N are the
number of users in the protocol and the environment respectively.

Index Terms—Reputation, privacy, trust, decentralization, ma-
licious adversarial model.

I. INTRODUCTION

Reputation systems are a powerful security tool for modern
distributed applications in which there are a massive number
of users who consume as well as provide resources however
their trustworthiness is unknown. The reputation of a user is
computed as the function of feedback about them gathered
from fellow users. A reputation system mitigates the disruptive
effect of malicious users by assigning them low reputation
scores and consequently by limiting their capabilities and
influence in the application.

Examples of reputation systems include: (1) Reputation
systems for online auction and e-commerce sites such as
ebay.com and amazon.com, which identify fraudulent vendors.
(2) iovation.com protects businesses from online fraud by
using a reputation system to expose devices such as com-
puters, tablets and smart phones that are associated with
chargeback, identity theft, and account takeover attacks. (3)
Reputation systems for online programming communities such
as advogato.org and stackoverflow.com filter users who post
spam.

The issue with most existing reputation systems is that the
feedback provided by users is public. This makes users hesitant
to submit negative feedback due to the fear of retaliation
from the recipient user [1]. A privacy preserving reputation
protocol protects users by hiding their individual feedback and
revealing only the reputation score.

In a previous paper [2], we presented the non-cryptographic
k-shares decentralized privacy preserving reputation protocol
for the semi-honest adversarial model. The agents (who repre-
sent users) in that model are supposed to follow the protocol
according to the specification. In this paper, we present the
Malicious-k-shares protocol, which provides security under
the stronger malicious adversarial model. The agents in this
model are unrestricted in their behavior to learn private infor-
mation and to disrupt the protocol.

A. Contributions

In the Malicious-k-shares protocol, an agent can preserve
its privacy by partially trusting on only k fellow feedback
providers, where k is much smaller than n−1, the size of the
set of all fellow feedback providers. This idea is central in our
protocol and allows us to build a protocol that requires only
O(n) +O(log N) messages, where n and N are the number
of agents in the protocol and the environment respectively.
This approach improves on the classic approach (as employed
by Gudes et al. [3] and Pavlov et al. [4]) where an agent is
required to partially trust on all n−1 fellow feedback providers
to preserve its privacy which results in high communication
complexity. In this paper, we use three real and large trust
graphs to demonstrate that a high majority of agents can find k
sufficiently trustworthy agents in a set of n−1 fellow feedback
providers such that k is very small compared to n−1 (Section
V-B).

Agents in our protocol can quantify the risk to their privacy
before submitting their feedback. This allows us to extend the
protocol such that agents can abstain if the risk to their privacy
is above the desired threshold. We show using the three real
trust graphs that even if agents abstain, accurate reputation
values can be computed from the feedback submitted by only
those agents whose privacy is preserved (Section V-D).

The Malicious-k-shares protocol prevents malicious agents
from taking two actions that are particularly challenging to
address in a decentralized privacy preserving reputation system
without relying on trusted third parties: (1) A malicious agent
can take advantage of private feedback and submit a value
that is outside the valid interval for feedback. For example,
a malicious agent can submit a value such as −99 when the
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feedback interval is [0, 1]. (2) A malicious agent can make
erroneous computations, for example, it can report a random
number instead of reporting a correct sum.

The protocol addresses the above challenges through in-
novative constructions (described in Section IV-A) based on
set-membership and plain-text equality non-interactive zero-
knowledge proofs and an additive homomorphic cryptosystem.
To the best of our knowledge, our protocol is the most
efficient decentralized additive privacy preserving reputation
protocol in terms of number of messages exchanged under
the malicious adversarial model. It requires exchange of only
O(n) +O(log N) messages. Compare this to the protocol by
Pavlov et al. [4] that requires O(n3) +O(N) messages using
similar building blocks.

B. Outline

In Section II, we give a general framework for decentralized
privacy preserving reputation systems in the malicious adver-
sarial model. In Section III, we describe some building blocks
that we utilize in the construction of our protocol. In Section
IV, we present our proposal for a new decentralized privacy
preserving reputation protocol. We also analyze the security
and the complexity of the protocol in this section. In Section
V, we use three real trust graphs to experimentally evaluate
two hypotheses that the protocol is based on. In Section VI,
we give a comparison of our protocol with other reputation
systems in the literature. We conclude and present directions
for future work in Section VII.

II. FRAMEWORK

In this section, we establish a framework that allows us to
describe and analyze the protocol in Section IV. However,
the reader may skip directly to Section IV-A for a quick
overview of the protocol without delving into the specifics
of the framework.

A. Agents, Trust, and Reputation

We model our environment as a multi-agent environment.
An agent represents a user. Let A denote the set of all agents
in the environment. |A| = N .

We subscribe to the definition of trust by sociologist Diego
Gambetta [5], which characterizes trust as binary-relational,
directional, contextual, and quantifiable as subjective proba-
bility. Our formal definition of trust attempts to capture each
of these characteristics.

Let D denote an asymmetric binary relation on the set A.
Let T ⊆ D be the set of all existing trust relationships between
agents. (a, b) ∈ T, where a, b ∈ A, implies that an agent a has
a trust relationship towards an agent b.

Let Ψ denote the set of all actions. Examples of actions
include: “prescribe correct medicine”, “deliver product sold
online”, “preserve privacy”, etc.

Let perform denote a function, such that perform : T ×
Ψ → {true, false}. The function perform(a, b, ψ) outputs
true if agent b performs the action ψ anticipated by agent a, or
it outputs false if b does not perform the anticipated action. Let

the subjective probability P (perform(a, b, ψ) = true) denote
agent a’s belief that agent b will perform the action ψ.

Definition 1: Trust. The trust of an agent a in an agent b
is given as the triple 〈aTb, ψ, P (perform(a, b, ψ) = true)〉,
where a, b ∈ A, (a, b) ∈ T, ψ ∈ Ψ, and P (perform(a, b, ψ) =
true) ∈ [0, 1].

When the context of trust (action ψ) is clear, we adopt the
simplified notation lab for P (perform(a, b, ψ) = true). We
can also refer to lab as agent a’s feedback about agent b.

An agent a is said to be a source agent of an agent b in the
context of an action ψ if a has trust in b in the context ψ. The
set of all source agents of an agent b in context ψ is given as
Sb,ψ . The simplified notation Sb is used instead of Sb,ψ when
the context is clear.

Definition 2: Reputation. Let St = {a1 . . . an} be the set
of source agents of an agent t in context ψ. The reputation of
agent t in context ψ is given as:

rep⊕(la1t . . . lant) =

∑n
i=1 lait
n

(1)

The function rep⊕ implements the reputation of an agent
t as the mean of the feedback values of its source agents,
which is an intuitive statistic. The eBay reputation system
(ebay.com), which is one of the most successful reputation
systems, represents reputation as the simple sum of all feed-
back. We derive the mean from the sum in order to normalize
the reputation values. The reputation of an agent t is denoted
by rt,ψ, or rt when the context is clear.

Definition 3: Reputation Protocol. Let Π be a multi-party
protocol. Then Π is defined as a Reputation Protocol, if (1)
the participants of the protocol include: a querying agent q, a
target agent t, and all n source agents of t in the context ψ,
(2) the inputs include: the feedback of the source agents in
context ψ, and (3) the output of the protocol is: agent q learns
the reputation rt,ψ of agent t.

B. Adversary

We refer to the coalition of dishonest agents as the adver-
sary. In this paper, we propose a solution for the malicious
adversarial model. Malicious agents actively attempt to learn
private information of honest agents as well as to disrupt
the protocol. Specifically, malicious agents may (1) refuse to
participate in the protocol, (2) prematurely abort the protocol,
(3) selectively drop messages that they are supposed to send,
(4) tamper with the communication channels, (5) wiretap the
communication channels, and (6) provide incorrect informa-
tion (for example, provide out of range values as their inputs,
make incorrect computations).

C. Privacy

Definition 4: Preservation of Privacy (by an Agent). Let
x be an agent a’s private data that agent a reveals to an agent
b. Then agent b is said to preserve the privacy of agent a w.r.t.
x, if (1) b does not use x to infer more information, and (2)
b does not reveal x to any third party.

Let action ρ = “preserve privacy”.
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Definition 5: Trusted Third Party (TTP). Let S ⊆ A be
a set of n agents, and TTPS ∈ A be an agent. Then TTPS
is a Trusted Third Party (TTP) for the set of agents S if for
each a ∈ S, P (perform(a, TTPS , ρ) = true) = 1.

We define security threshold as a parameter that can be
assigned a value in [0, 1] according to the security needs of
an application. A value of the security threshold closer to 1
indicates a stricter security requirement. We consider as high
any probability greater than or equal to the security threshold,
and as low any probability less than 1− security threshold.

We adopt the Ideal-Real approach [6] to define privacy
preserving reputation protocols.

Definition 6: Ideal Privacy Preserving Reputation Proto-
col. Let Π be a reputation protocol (Definition 3). Then Π is
an ideal privacy preserving reputation protocol under a given
adversarial model, if: (1) the inputs of all n source agents of
t are private, (2) TTPSt is a participant, where St = St,ψ
is the set of all source agents, (3) m < n of the source
agents (given as set M) and agents q and t are considered
to be dishonest, however, q wishes to learn the correct output,
(4) agents St −M and TTPSt are honest, (5) as part of the
protocol, TTPSt receives the private inputs from the source
agents and outputs the reputation rt,ψ to agent q, and (6) over
the course of the protocol, the private input of each agent
a ∈ St −M may be revealed only to the TTPSt .

In an ideal privacy preserving reputation protocol, it is
assumed that for each agent a ∈ St −M, the adversary does
not gain any more information about the private input of agent
a from the protocol other than what he can deduce from what
he knows before the execution of the protocol and the output,
with probability P (perform(a, TTPSt , ρ) = true) = 1.

Definition 7: Real Privacy Preserving Reputation Proto-
col. Let I be an ideal privacy preserving reputation protocol
(Definition 6). Then R is a real privacy preserving reputation
protocol w.r.t. I, if: (1) R has the same parameters (partici-
pants, private inputs, output, adversary, etc.) as I, except that
there is no TTPSt as a participant (2) with high probability,
the adversary learns no more info. about the private input of
any agent a than it can learn in protocol I.

D. Problem Definition

Let St,ψ = {a1 . . . an} be the set of all source agents of
agent t in the context of action ψ. Find a reputation protocol Π,
which takes private input lat ≡ P (perform(a, t, ψ) = true)
from each agent a ∈ St, and outputs the reputation rt,ψ of the
target agent t to a querying agent q. Reputation is computed as
rep⊕. Agents q, t, and m of the source agents are considered
to be dishonest, where m < n. However, q wishes to learn
the correct output and therefore does not take any actions
that alter the output. The reputation protocol Π is required
to be decentralized and secure under the malicious adversarial
model. If computing rt,ψ is not possible due to the disruptive
actions of certain agents, then the protocol outputs the identity
of those agents to the querying agent q.

III. BUILDING BLOCKS

A. Additive Homomorphic Cryptosystem

Let Ea(.) denote the encryption function with the public
key PKa of agent a in an asymmetric cryptosystem C. The
cryptosystem C is said to be additive homomorphic if we can
compute Ea(x+y), given only Ea(x), Ea(y), and PKa. As an
example, let’s consider two integers, 3 and 4. A cryptosystem
C is additive homomorphic if given only Ea(3), Ea(4), and
PKa, we are able to obtain Ea(3 + 4) = Ea(7). We use the
Paillier additive homomorphic cryptosystem.

B. Zero-Knowledge Proof of Set Membership

Let S = {m1, . . . ,mp} be a public set of p mes-
sages, and E(mi) an encryption of mi with a prover’s
public key, where i is secret. A zero-knowledge proof of
set membership allows the prover to convince a verifier
that E(mi) encrypts a message in S. In a non-interactive
version of the zero-knowledge proof of set membership, we
abstract the part of the proof generated by the prover as
the function setMembershipZKP (E(mi), S), abbreviated
as smzkp(E(mi), S). Our implementation of a non-interactive
zero-knowledge proof of set membership inspired by Baudron
et al. [7] is given in Figure 7.

C. Zero-Knowledge Proof of Plaintext Equality

Let E1(m) and E2(m) be encryptions of a message
m with the public key of agents 1 and 2 respectively.
A zero-knowledge proof of plaintext equality allows a
prover to convince a verifier that E1(m) and E2(m) en-
crypt the same message. In a non-interactive version of
the zero-knowledge proof of plaintext equality, we abstract
the part of the proof generated by the prover as the func-
tion plaintextEqualityZKP (Eu(m), Ev(m)), abbreviated
as pezkp(Eu(m), Ev(m)). Our implementation of a non-
interactive zero-knowledge proof of plaintext equality inspired
by Baudron et al. [7] is given in Figure 8.

D. Source Managers

We define a source manager of an agent t as a fellow agent
who maintains the set St. The idea of source managers is
inspired by score managers in EigenTrust [8]. When a source
agent assigns feedback to a target agent t, it reports that event
to each of its source managers. The source managers add
the source agent to the set St that they each maintain. A
Distributed Hash Table (DHT), such as Chord [9], is used
to locate the source managers. To learn a set Ŝt ⊃ St, a
querying agent can retrieve the set maintained by each of the
source managers and take a union of the sets. The querying
agent will learn Ŝt ⊃ St as long as at least one of the source
managers is honest.

IV. THE MALICIOUS-k-SHARES PROTOCOL

A. Protocol Overview

In the Malicious-k-shares protocol, each source agent a
relies on at most k agents to preserve his privacy. Agent a
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selects these k agents based on his own knowledge of their
trustworthiness in the context of preserving privacy and sends
each of them an additive share of his private feedback value.
The advantages of this approach are twofold. Firstly, an agent
is able to quantify and maximize the probability that its privacy
will be preserved. This also allows us to extend the protocol
such that an agent can abstain from providing feedback if
the risk to its privacy is high. Secondly, limiting the number
of shares to k � n, results in a protocol that requires only
O(n) messages for the computation of a reputation score. An
additional O(log N) messages are required for communication
with the source managers.

In the Malicious-k-shares protocol, each source agent a
must prove that it has generated correct shares, that is, the
sum of all shares is a value that lies in the correct interval
for feedback. An agent a sends each of the k trusted agents
a share encrypted with the recipient agent’s public key. The
shares are relayed through the querying agent q. We would like
q to add these shares using the additive homomorphic property,
however, this is not possible because the shares are encrypted
with different keys. As a solution, agent a also encrypts each
of the shares with his own public key and submits them to
q. Additionally, it submits a set-membership zero-knowledge
proof that the sum of these shares belongs to the correct
interval. The querying agent can verify the veracity of this
claim by using the additive homomorphic property to add
the set of shares encrypted with agent a’s key and then by
verifying the proof. It still remains to show that the original
shares sent to the trusted agents are correct. To show this, agent
a gives a plaintext-equality zero-knowledge proof for each
share that shows that a share encrypted with the recipient’s
public key and a share encrypted with the sender’s public key
contain the same plaintext. Verification of the equality of all
pairs of shares verifies that agent a indeed sent correct shares.

In the Malicious-k-shares protocol, each source agent a
must prove that is has computed the correct sum of the shares.
The querying agent q can compute the encrypted sum of
the shares from the copies of the encrypted shares that it
received and relayed to agent a. However, q cannot decrypt
the sum because it is encrypted with the recipient agent’s
public key. Agent a computes the sum and sends it to q
encrypted with q’s public key. Agent a also sends a plaintext-
equality zero-knowledge proof that shows that the encrypted
sum independently computed by q and the encrypted sum
sent by agent a hold the same value. Verification of the proof
convinces q that agent a computed the sum correctly.

B. Protocol Outline

The important steps of the protocol are outlined below.
1) Initiation. The protocol is initiated by a querying agent

q to determine the reputation rt,ψ of a target agent t.
Agent q retrieves St ≡ St,ψ , which is the set of source
agents of agent t in the context ψ. Agent q verifies St
from the source managers of t. Agent q then sends St
to each source agent a ∈ St.

2) Select Trustworthy Agents. Each agent a ∈ St selects k
other agents in St. Let’s refer to these agents selected by

a as the set Ua = {ua,1 . . . ua,k}. Agent a selects these
agents such that: P (perform(a, ua,1, ρ) = false)×. . .×
P (perform(a, ua,k, ρ) = false) is low. That is, the
probability that all of the selected agents will collude
to breach agent a’s privacy is low.

3) Prepare Shares. Agent a then prepares k + 1 shares
of its secret feedback value lat. The shares, given as:
xa,1 . . . xa,k+1, are prepared in the following manner:
The first k shares are random numbers uniformly dis-
tributed over a large interval (for example, [0, 232− 1]).
The last share is selected as follows: xa,k+1 = (lat −∑k
i=1 xa,i) mod M , where M is a publicly known

modulus.
The preparation of the shares in this manner implies
that: (

∑k+1
i=1 xa,i) mod M = lat. That is, the sum of

the shares mod M is equal to the feedback value. The
sum of the shares,

∑k+1
i=1 xa,i, lies in the interval [(ha×

M), (ha ×M) + L], where ha = (
∑k+1
i=1 xa,i) div M ,

and lat ∈ [0, L].
Since each of the k + 1 shares is a number uniformly
distributed over a large interval, no information about
the secret can be learned unless all of the shares are
known.

4) Encrypt Shares. Agent a then encrypts each of the
k + 1 shares with its own public key to obtain:
Ea(xa,1) . . . Ea(xa,k+1). It also encrypts each share xa,i
with the public key of agent ua,i, for i ∈ {1 . . . k}, to
obtain: Eua,1(xa,1) . . . Eua,k(xa,k).

5) Generate Zero-Knowledge Proofs. Agent a computes:
βa = (Ea(xa,1)× . . .×Ea(xa,k+1)) mod n2

a, where na
is the RSA modulus in the public key of agent a. The
result of this product is the encrypted sum of agent a’s
shares, that is βa = Ea(

∑k+1
i=1 xa,i) (due to the additive

homomorphic property).
Agent a then generates one non-interactive set member-
ship zero-knowledge proof: smzkp(βa, [(ha×M), (ha×
M) + L]). The proof proves to a verifier that the
ciphertext βa encrypts a value that lies in the interval
[(ha ×M), (ha ×M) + L]. In other words, the proof
shows that the ciphertext contains a valid feedback value
(considering mod M ).
Agent a also generates k non-interactive plain-
text equality zero-knowledge proofs. Each proof
pezkp(Ea(xa,i), Eua,i(xa,i)), where i ∈ {1 . . . k},
proves to a verifier that the two ciphertexts, one en-
crypted with the public key of a and the other encrypted
with the public key of ua,i, contain the same plaintext.
A verifier who verifies these zero-knowledge proofs will
be convinced that agent a has prepared the shares such
that they add up to a correct feedback value. Moreover,
the verifier will be assured that the shares destined
for a’s trustworthy agents correspond to those correct
shares.

6) Send Encrypted Shares and Proofs. Agent a sends
all encrypted shares, that is, Ea(xa,1) . . . Ea(xa,k+1)
and Eua,1(xa,1) . . . Eua,k(xa,k), as well as all zero-
knowledge proofs, that is, smzkp(βa, [(ha×M), (ha×
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M) + L]) and pezkp(Ea(xa,i), Eua,i(xa,i)), i ∈
{1 . . . k}, to agent q.

7) Verify the Proofs. Agent q independently computes βa
and verifies the proofs received from each agent a. Their
verification confirms that agent a has prepared the shares
correctly. Agent q receives and verifies the proofs of all
source agents before proceeding to the next step.

8) Relay the Encrypted Shares. Agent q relays to each
agent a, the encrypted shares received for it from agents
who considered it trustworthy. That is, each encrypted
share Euv,j (xv,j), prepared by an agent v for agent uv,j ,
is relayed to agent uv,j .
The shares are relayed through agent q, therefore, any
agent who drops a message would be easily identified.
However, agent q does not learn any of the shares by
relaying them since the shares are encrypted with the
public keys of the destination agents.

9) Compute Sum of the Shares. Each agent a receives
the encrypted shares of the agents who considered it
trustworthy. Agent a computes γa as the product of
those encrypted shares along with the ciphertext of
its own (k + 1)’th share xa,k+1. Due to the additive
homomorphic property, γa is an encryption of the sum
of the plaintexts of those shares. Agent a decrypts γa to
obtain the plaintext sum σa.
Adding the (k+1)’th share provides security in the case
when a receives only one share. If there is no (k+1)’th
share to add, then agent q would learn the received share.
Secrecy of the (k + 1)’th share itself is not critical to
the security of the protocol.

10) Encrypt the Sum. Agent a then encrypts σa with agent
q’s public key to obtain Eq(σa).

11) Generate Zero-Knowledge Proof. Agent a then gener-
ates a non-interactive plaintext equality zero-knowledge
proof: pezkp(γa, Eq(σa)). The proof proves to a verifier
that the two ciphertexts, one encrypted with the public
key of a and the other encrypted with the public key of
q, contain the same plaintext.
Agent q, who can independently compute γa, can be
convinced by this proof that Eq(σa) contains the correct
sum of the shares.

12) Send Encrypted Sum and Proof. Agent a sends the
encrypted sum Eq(σa) and the zero-knowledge proof
pezkp(γa, Eq(σa)) to agent q.

13) Verify the Proof. Agent q independently computes γa
and verifies the zero-knowledge proof received from
each agent a. Its verification confirms that the agent
has computed the sum of the shares correctly. Agent
q receives and verifies the proofs of all source agents
before proceeding to the next step.

14) Compute Reputation. Agent q decrypts Eq(σa) to
obtain σa for each agent a ∈ St. Agent q then computes
rt,ψ = ((

∑
a∈St σa) mod M)/n.

C. Protocol Specification

The protocol is specified in Figures 1 and 2. Table IV
summarizes the notation used in the protocol specification.

For the purpose of this protocol, we consider feedback
values to be integers in the range [0, L] (for example, [0, 10]).
The reputation computed by the protocol can be normalized
to the interval [0, 1] by dividing the result by L.

Let M be a publicly known modulus, such that M > L, and
∀t ∈ A :

∑
a∈St lat < M . Moreover, M is sufficiently smaller

than 2k, where k is the security parameter — the length in
bits of the RSA modulus n in the cryptographic keys of the
agents (for example, k = 2048, and M = 280).

Let [0, X] be a large interval (for example, [0, 232 − 1]).
To generate the zero-knowledge proof

setMembershipZKP (βa, [(ha × M), (ha × M) + L])
in step 10 of the event PREP, an agent a requires the
randomization rβa of the encryption βa, which can be
computed as follows: rβa = ra,1 × . . .× ra,k+1, where ra,i is
the randomization used for the encryption of Ea(xa,i).

To generate the zero-knowledge proof
plaintextEqualityZKP (γa, Eq(σa)) in step 4 of the event
VERIFIED SHARES, an agent a requires the randomization
rγa of the encryption γa, which can be computed as follows:
rγa = (g−σa · γa)1/na mod (p−1)(q−1) mod na, where g and
na are in the public key of a, and p and q are in the secret
key, na = pq.

The protocol uses the following functions: timestamp()
– Returns current time. random(α,β) – Returns a ran-
dom number uniformly distributed over the interval [α, β].
set of trustworthy(a, S) – Returns a set of agents Ua =
{ua,1 . . . ua,k}, where Ua ⊆ S. The set Ua is se-
lected such that: P (perform(a, ua,1, ρ) = false) × . . . ×
P (perform(a, ua,k, ρ) = false) is low.

D. Security Analysis – Correctness

First, we consider the semi-honest model. In the protocol
Malicious-k-shares (PREP: lines 2 – 4), each agent a ∈ St
prepares the shares xa,1 . . . xa,k+1, such that:

k+1∑
i=1

xa,i = (lat + (ha ×M)) mod M (2)

The sum of all shares of all source agents can be given as:

∑
a∈St

k+1∑
i=1

xa,i =
∑
a∈St

((lat + (ha ×M)) mod M) (3)

In the protocol (PREP: line 14, SHARES: line 10), each
agent a ∈ St sends its share xa,i to another agent in St
through q, where i ∈ {1 . . . k}. Each agent a ∈ St computes
σa, which is the sum of the received shares and its own
(k+ 1)’th share (VERIFIED SHARES: lines 1 – 2). We deduce
that

∑
a∈St σa is the sum of all shares received by all agents

(that is,
∑
a∈St

∑k
i=1 xa,i) and all (k + 1)’th shares (that is,∑

a∈St xa,k+1).
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Protocol: Malicious-k-shares
Participants: Agents: q, t, and St ≡ St,ψ = {a1 . . . an}. Agents q, t, and a
subset of St,ψ of size m < n are considered to be dishonest, however, q wishes
to learn the correct output (and therefore does not disrupt the protocol). n ≥ 3.
Input: Each source agent a has a private input lat ≡ P (perform(a, t, ψ) =
true).
Output: Agent q learns rt,ψ , the reputation of agent t in the context ψ, or agent
q learns the identity of the agents who disrupt the protocol.
Setup: Each agent a maintains Sa ≡ Sa,ψ , the set of its source agents in
the context ψ. All communication takes place over authenticated point-to-point
channels that are resistant to wire-tapping and tampering.
Events and Associated Actions (for an Agent a):

need arises to determine rt
� initiate query

1 send tuple (REQUEST FOR SOURCES, ψ) to t
2 receive tuple (SOURCES, ψ, St) from t
3 verify St from the source managers of t
4 retrieve public key PKw of each agent w ∈ St from a certificate authority
5 S′t ← St � initialize the set of agents who are expected to send their shares
6 θ ← 0� a cumulative sum for computing reputation
7 Vw ← φ, for each agent w ∈ St � initialize the sets of encrypted shares
8 s← timestamp()
9 send tuple (PREP, q, t, s, St) to each agent w ∈ St

tuple (REQUEST FOR SOURCES, ψ) received from agent q
1 send tuple (SOURCES, ψ, Sa) to q

tuple (PREP, q, t, s, St) received from agent q
� select trustworthy agents

1 Ua ← set of trustworthy(a, St − {a})
� prepare shares

2 for i← 1 to k
3 do xa,i ← random(0, X)

4 xa,k+1 ← (lat −
∑k
i=1 xa,i)mod M

5 ha ← (
∑k+1
i=1 xa,i) div M

� retrieve public keys
6 retrieve the public key of each u ∈ Ua and the public key of q

from a certificate authority
� encrypt shares

7 encrypt xa,1 . . . xa,k+1 with the public key of a
to obtain Ea(xa,1) . . . Ea(xa,k+1)

8 encrypt xa,1 . . . xa,k with the public key of ua,1 . . . ua,k
respectively to obtain Eua,1 (xa,1) . . . Eua,k (xa,k)
� generate zero-knowledge proofs

9 βa ← (Ea(xa,1)× . . .× Ea(xa,k+1)) mod n2
a

10 generate setMembershipZKP(βa, [(ha ×M), (ha ×M) + L])
11 for i← 1 to k
12 do generate plaintextEqualityZKP(Ea(xa,i), Eua,i (xa,i))

� send the encrypted shares and the proofs to q
13 −→Ia ← 〈Ua, Ea(xa,1), . . . , Ea(xa,k+1), Eua,1 (xa,1), . . . , Eua,k (xa,k),

ha, setMembershipZKP(βa, [(ha ×M), (ha ×M) + L]),
plaintextEqualityZKP(Ea(xa,1), Eua,1 (xa,1)), . . . ,

plaintextEqualityZKP(Ea(xa,k), Eua,k (xa,k))〉
14 send tuple (SHARES, q, t, s,

−→Ia) to agent q

Fig. 1: Protocol: Malicious-k-shares

∑
a∈St

σa =
∑
a∈St

k∑
i=1

xa,i +
∑
a∈St

xa,k+1 (4)

=
∑
a∈St

k+1∑
i=1

xa,i (5)

In the protocol, θ is computed as follows (need arises to
determine rt: line 6, AGGREGATE: line 4):

θ =
∑
a∈St

σa (6)

From equations 3, 4, and 6:

Protocol: Malicious-k-shares (contd.)

tuple (SHARES, q, t, s,
−→Iv) received from an agent v ∈ St

� verify the set membership proof
1 βv ← (Ev(xv,1)× . . .× Ev(xv,k+1)) mod n2

v
2 verify setMembershipZKP(βv, [(hv ×M), (hv ×M) + L])

� verify the plaintext equality proofs
3 for i← 1 to k
4 do verify plaintextEqualityZKP(Ev(xv,i), Euv,i (xv,i))

� manage the sets of encrypted shares to be relayed
5 for i← 1 to k
6 do Vuv,i ← Vuv,i ∪ {Euv,i (xv,i)}

� subtract v from the set of agents who are yet to send their shares
7 S′t ← S′t − {v}

� if shares have been received from all source agents then relay the shares
8 if S′t = φ
9 then S′t ← St � initialize the set of agents who are yet to send their sum

10 send tuple (VERIFIED SHARES, q, t, s, Vw) to each agent w ∈ St

tuple (VERIFIED SHARES, q, t, s, Va) received from agent q
� compute sum of the shares

1 γa ← ((
∏
c∈Va c)× Ea(xa,k+1)) mod n2

a

2 σa ← Da(γa)
� encrypt the sum

3 encrypt σa with the public key of q to obtain Eq(σa)
� generate zero-knowledge proof

4 generate plaintextEqualityZKP(γa, Eq(σa))
� send the encrypted sum and the proof to agent q

5 send tuple (AGGREGATE, q, t, s, Eq(σa), pezkp(γa, Eq(σa)) to q

tuple (AGGREGATE, q, t, s, Eq(σv), pezkp(γv, Eq(σv)) received from an
agent v ∈ St

� verify the proof
1 γv ← ((

∏
c∈Vv c)× Ev(xv,k+1)) mod n2

v

2 verify plaintextEqualityZKP(γv, Eq(σv))
� decrypt the sum

3 σv ← Dq(Eq(σv))
� compute intermediate sum for reputation

4 θ ← θ + σv
� subtract v from the set of agents who are yet to send their sum

5 S′t ← S′t − {v}
� if sum has been received from all source agents, compute reputation

6 if S′t = φ
7 then rt,ψ ← (θ mod M)/n

Fig. 2: Protocol: Malicious-k-shares (contd.)

θ =
∑
a∈St

((lat + (ha ×M)) mod M) (7)

(θ mod M)/n = ((
∑
a∈St

((lat+(ha×M))modM))modM)/n

(8)
Since lat ≤ L < M for each a ∈ St, and

∑
a∈St lat < M ,

we get:

(θ mod M)/n = (
∑
a∈St

lat)/n (9)

In the protocol (AGGREGATE: line 7), agent q learns the
reputation of agent t in the context ψ as:

rt,ψ = (θ mod M)/n (10)

From equations 9, 10, and equation 1, we conclude that
agent q learns the correct reputation of agent t in the context
ψ under the semi-honest model.

Now, we consider the malicious model. Malicious agents
may (1) refuse to participate in the protocol, (2) prematurely
abort the protocol, (3) selectively drop messages that they
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are supposed to send, (4) tamper with the communication
channels, (5) wiretap the communication channels, and (6)
provide incorrect information (for example, provide out of
range values as their inputs, make incorrect computations).
Agent q.

Agent q wishes to learn the correct output therefore it would
not take any of the actions 1 to 4, and 6. Wiretapping the
communication channels has no effect on the correctness of
the protocol.
Each Agent a ∈ St.

Each agent a ∈ St communicates exclusively with agent
q. If an agent a takes any of the actions 1 to 3, it would
be exposed as malicious to agent q. Note: Agent q can then
remove the malicious agent from the set of source agents and
restart the protocol. Eventually, only those agents who do not
take actions 1 to 3 will remain in the set of source agents.

An agent a ∈ St is unable to tamper with the commu-
nication channels since we assume that all communication
takes place over authenticated point-to-point channels that are
resistant to tampering. Since each agent a ∈ St communicates
exclusively with agent q, it will be exposed as malicious if it
does not conform to these requirements.

Wiretapping the communication channels has no effect on
the correctness of the protocol.

The first tuple of information that an agent
a ∈ St provides to agent q is: (SHARES, q, t, s,

−→Ia),
where −→Ia = 〈 Ua, Ea(xa,1), . . ., Ea(xa,k+1),
Eua,1(xa,1), . . ., Eua,k(xa,k), setMembershipZKP(βa, L),
plaintextEqualityZKP(Ea(xa,1), Eua,1(xa,1)), . . .,
plaintextEqualityZKP(Ea(xa,k), Eua,k(xa,k)) 〉.

The correctness of the first four elements of the tuple and the
set Ua can be trivially verified by agent q. The remaining infor-
mation pertains to the shares prepared by agent a. The shares
have been prepared correctly if the following conditions hold
true: (1) the shares add up to a value in [(h×M), (h×M)+L];
(2) Eua,1(xa,1), . . ., Eua,k(xa,k) encrypt the same shares as
Ea(xa,1), . . ., Ea(xa,k) respectively; (3) Eua,1(xa,1), . . .,
Eua,k(xa,k) are encrypted with the public keys of agents
ua,1 . . . ua,k respectively.

The first condition holds true for an agent a if the verifica-
tion of setMembershipZKP(βa, [(ha×M), (ha×M)+L]) by
agent q is successful. Agent q can verify the proof since it can
independently compute βa (due to the additive homomorphic
property of the cryptosystem), L and M are publicly known,
and ha is provided by agent a. An incorrect value of ha will
result in failure of the verification of the zero-knowledge proof.
A zero-knowledge proof that shows membership in an interval
with an incorrect ha has no effect on the final output of the
protocol since it is computed as mod M .

The second and third conditions hold true for an agent a
if the verification of each plaintextEqualityZKP(Ea(xa,i),
Eua,i(xa,i)) by agent q is successful, where i ∈ {1 . . . k}.
Agent q can verify these proofs since it can independently
retrieve the public keys of agents a and ua,1 . . . ua,k from a
certificate authority.

If the verification of the one set-membership zero-
knowledge proof and the k plaintext-equality zero-knowledge
proofs provided by an agent a succeeds, it implies that agent a

has provided correct information pertaining to the shares that
it prepared. Otherwise, agent a can be considered as malicious.

The second tuple of information that an agent a ∈
St provides agent q is: (AGGREGATE, q, t, s, Eq(σa),
pezkp(γa, Eq(σa)).

The correctness of the first four elements of the tuple can
be trivially verified by agent q. The remaining information
pertains to the sum σa. The sum has been computed correctly
if the following condition holds true: γa and Eq(σa) encrypt
the same plaintext.

The condition holds true for an agent a if the verification
of pezkp(γa, Eq(σa)) by agent q is successful. Agent q can
verify the proof since it can independently compute γa (due to
the additive homomorphic property of the cryptosystem) and
it can independently retrieve the public key of agent a from a
certificate authority.

If the verification of the plaintext-equality zero-knowledge
proof provided by an agent a succeeds, it implies that agent
a has provided correct information pertaining to the sum σa.
Otherwise, agent a can be considered as malicious.
Agent t.

We assume that agent q is able to retrieve the correct St
from the source managers of agent t.

It follows that in the protocol Malicious-k-shares (Figure 1),
agent q either learns the correct reputation of agent t in the
context ψ, or learns the identity of a malicious agent who has
disrupted the protocol, under the malicious adversarial model.

E. Security Analysis – Privacy

First, we consider the semi-honest model. Let’s consider an
agent a ∈ St. Agent a prepares the shares xa,1 . . . xa,k+1 of its
secret feedback value lat. The first k shares xa,1 . . . xa,k are
random numbers uniformly distributed over a large interval.
The final share, xa,k+1 = (lat−

∑k
i=1 xa,i) mod M , is also a

number uniformly distributed over a large interval since it is
a function of the first k shares which are random numbers.
Thus, individually each of the shares does not reveal any
information about the secret feedback value lat. Moreover,
no information is learned about lat even if up to k shares
are known, since their sum would be some random number
uniformly distributed over a large interval. The only case in
which information can be gained about lat is if all k+1 shares
are known. Then, lat = (

∑k+1
i=1 xa,i) mod M .

We now analyze if the k + 1 shares of an agent a can be
learned by the adversary from the protocol.

Agent a sends each share xa,i only to agent ua,i, where
i ∈ {1 . . . k}. Although, agent q relays each share xa,i from
agent a to agent ua,i, agent q or any third agent is unable to
learn the share xa,i since it is sent encrypted with agent ua,i’s
public key as Eua,i(xa,i). Only agent ua,i is able to decrypt
Eua,i(xa,i) and obtain xa,i.

Each agent ua,i computes σua,i , which is the sum of all
shares that it receives and its own final share xua,i,k+1. Even
if agent a is the only agent to send agent ua,i a share, σua,i =
xa,i+xua,i,k+1. That is, the sum of agent a’s share and agent
ua,i’s final share. Consequently, σua,i is a number uniformly
distributed over a large interval. Thus, when agent ua,i sends
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this number to agent q, it is impossible for q to distinguish
the individual shares from the number. Therefore, each share
xa,i that agent a sends to agent ua,i will only be known to
agent ua,i. Unless, agent ua,i is dishonest. The probability that
agent ua,i is dishonest, that is, it will attempt to breach agent
a’s privacy is given as: P (perform(a, ua,i, ρ) = false).

To learn the first k shares of agent a, all agents ua,1 . . . ua,k
would have to be dishonest. The probability of this sce-
nario is given as: P (perform(a, ua,1, ρ) = false) × . . . ×
P (perform(a, ua,k, ρ) = false).

Even in the above scenario, the adversary does not gain
information about lat, without the knowledge of agent a’s final
share xa,k+1. However, agent a has to send σa = xa,k+1 +∑
v∈Ja xv , and agent a has no control over the

∑
v∈Ja xv part

of the equation. Therefore, we assume that agent q learns the
final share of agent a.

Thus the probability that the protocol will not preserve
agent a’s privacy can be stated as: P (perform(a, ua,1, ρ) =
false) × . . . × P (perform(a, ua,k, ρ) = false). We assume
that the agents ua,1 . . . ua,k are selected such that this prob-
ability is low. Therefore, with high probability, the adversary
learns no more information about lat than it can learn in the
ideal protocol with what it knows before the execution of the
protocol and the outcome.

Now, we consider the malicious model. Malicious agents
may (1) refuse to participate in the protocol, (2) prematurely
abort the protocol, (3) selectively drop messages that they
are supposed to send, (4) tamper with the communication
channels, (5) wiretap the communication channels, and (6)
provide incorrect information (for example, provide out of
range values as their inputs).
Privacy of Agent q and Agent t.

Agent q and agent t are not required to contribute any
private information during the protocol.
Privacy of Each Agent a ∈ St.
Attack 1. Refuse to Participate in the Protocol. If a source
agent v refuses to participate in the protocol, it has no effect
on the privacy of any agent a since agent v must receive a
share of agent a’s private information before it can attack its
privacy.

Agent t’s refusal to participate also has no effect on the
protocol. Agent q may retrieve St directly from agent t’s
source managers.

Agent q does not refuse to participate in the protocol since
it wishes to learn the correct output of the protocol.
Attack 2. Prematurely Abort the Protocol. If a source agent
v prematurely aborts the protocol before receiving the shares,
it has no effect on the privacy of any agent a since agent v
must receive a share of agent a’s private information before
it can attack its privacy. The other scenario is that the source
agent v prematurely aborts the protocol after receiving a share
of agent a’s private information. In that case, all first k shares
of agent a must still be known to breach a’s privacy. Thus
prematurely aborting the protocol does not give an agent v ∈
St any advantage in learning agent a’s private information.

If agent t aborts the protocol before providing St, agent
q may retrieve St directly from agent t’s source managers.
Therefore agent t’s disruption has no effect on the protocol.

Agent q has no incentive to prematurely abort the protocol
since it wishes to learn the correct output of the protocol,
which is not learned until after the last step.
Attack 3. Selectively Drop Messages. If a source agent v
selectively drops messages or parts of messages, it has no
effect on the condition that all first k shares of agent a must
be known to breach an agent a’s privacy. Thus, this is another
action that does not give an agent v ∈ St any advantage in
learning agent a’s private information.

Agent t may not provide St or may provide only a subset,
however, that has no effect on the protocol since q also
retrieves and verifies St from agent t’s source managers.

Agent q does not selectively drop messages since it wishes
to learn the correct output of the protocol. Note: Please see
the discussion on Attack 6 for the case where agent q may
relay incorrect shares or may not relay them at all.
Attack 4. Tamper with the Communication Channels. We
assume that all communication takes place over authenticated
point-to-point channels that are resistant to tampering.
Attack 5. Wiretap the Communication Channels. We assume
that all communication takes place over authenticated point-
to-point channels that are resistant to wiretapping.
Attack 6. Provide Incorrect Information. If a source agent v
provides incorrect information, it has no effect on the condition
that all first k shares of agent a must be known to breach an
agent a’s privacy. Agent v provides no information to agent
a or agent q that would result in agent a divulging any extra
information.

Agent t may provide an incorrect St, however, that has no
effect on the protocol since q also retrieves and verifies St
from agent t’s source managers.

Agent q sends two types of messages to source agents:
PREP, and VERIFIED SHARES.

PREP: Agent q may create St itself in order to attack
an agent a ∈ St. The set may be created such that it
contains all dishonest agents except agent a who is under
attack. However, we assume that P (perform(a, ua,1, ρ) =
false)× . . .×P (perform(a, ua,k, ρ) = false) is low. That is,
there exist trustworthy agents in the protocol such that agent
a receives a high enough privacy guarantee.

VERIFIED SHARES: Agent q may substitute the shares sent
by other agents to an agent a with shares that it has created
itself. Agent q may also not relay a share at all. In both these
cases, the best outcome for q would be to learn agent a’s
(k + 1)’th share. This has no effect on the privacy of agent
a since agent q is still unable to learn its first k shares. Each
of those shares is encrypted and can only be decrypted by its
destination agent.

The protocol Malicious-k-shares is a real privacy preserving
reputation protocol (Definition 7) under the malicious model,
because: (1) Malicious-k-shares has the same parameters as
the ideal protocol (except the TTP ), and (2) the adversary
does not learn any more information under the malicious
adversarial model about the private input of any agent a in
Malicious-k-shares than it can learn in the ideal protocol, with
high probability: 1− (P (perform(a, ua,1, ρ) = false)× . . .×
P (perform(a, ua,k, ρ) = false)).

The protocol may be extended such that an agent a is
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allowed to abstain if the privacy guarantee is not sufficient.
The extension would be as follows: The agent who wishes to
abstain would generate the shares such that their sum equals
zero. The abstaining agent would inform the querying agent
that it has abstained, and would prove that the sum of the
shares equals zero.

The reader may refer to [2] for discussions on the privacy
of trust relationships and attacks on the ideal protocol.

F. Complexity Analysis

TABLE I: Protocol Malicious-k-shares – Complexity.

Tuple Occurrences IDs Ciphertexts SMZKPs PEZKPs
REQUEST
FOR
SOURCES

1

SOURCES 1 n
PREP n n × n =

n2

SHARES n kn kn n kn
VERIFIED
SHARES

n kn

AGGREGATE n n n

Total 4n+ 2 n+n2+
kn

2kn+ n n kn+ n

Complexity O(n) O(n2),
for
k � n

O(n),
for
k � n

O(n) O(n),
for
k � n

The protocol requires O(n) messages to be exchanged. The
protocol also performs a DHT lookup in the initiation phase,
which requires an additional O(log N) messages (assuming
Chord). Thus the total number of messages exchanged is
O(n) +O(log N), where n is the number of source agents in
the protocol and N is the total number of agents in the system
respectively.

In terms of bandwidth used, the protocol requires transmis-
sion of the following amount of information: O(n2) agent IDs,
O(n) ciphertexts, O(n) non-interactive zero-knowledge proofs
of set membership, and O(n) non-interactive zero-knowledge
proofs of plaintext equality.

V. EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the following two
hypotheses that the Malicious-k-shares protocol is based on:

1) A source agent can preserve its privacy by trusting on
only k fellow source agents, where k is much smaller
than n−1, the size of the set of all fellow source agents.

2) Accurate reputation values can be computed even if
the source agents whose privacy can not be preserved
abstain and thus do not provide their feedback values.

A. Datasets

A trust graph can be defined as a weighted directed graph
G = (A,T,F), in which the set of vertices corresponds to
the set of agents A, the set of edges corresponds to the set
of binary trust relationships T, and the set of weights of the
edges is given as a set of feedback values F.

We use three real trust graphs as the datasets for our
experiments. These three trust graphs have been independently

evolved by the communities of advogato.org, squeak.org, and
robots.net. The members of each of these communities rate
each other in the context of being active and responsible
members of the community. A common element between the
three sites is that they use the same reputation system and thus
offer the same set of feedback values. The choice of feedback
values are master, journeyer, apprentice, and observer, with
master being the highest level in that order. The trust graphs
were obtained from the site trustlet.org on May 30, 2012.

Table II lists the number of users, the number of ratings,
and the distribution of the ratings in each of the three trust
graphs. Figure 3 shows the distribution of the potential target
agents in each trust graph according to the minimum size of
the set of their source agents. The graphs in Figure 3 also plot
the instances of source agents in the trust graphs.

TABLE II: Trust Graphs.

Advogato Squeak Robots
No. of users 14,020 766 16,620
No. of ratings 56,652 2,928 3,593
Ratings / user 4.04 3.82 0.22
master ratings 31.9% 31.8% 35.4%
journeyer ratings 40.0% 32.0% 26.0%
apprentice ratings 18.7% 33.2% 35.2%
observer ratings 9.4% 3.0% 3.4%

The members of the communities are expected to not
post spam, not attack the reputation system, etc. Thus we
consider that the context “be a responsible member of the
community” comprises of the context “be honest”. Since
we quantify trust as probability, we heuristically substitute
the four feedback values of the trust graphs as follows:
master = 0.99, journeyer = 0.70, apprentice = 0.40, and
observer = 0.10.

For the experiments, we define the lowest acceptable proba-
bility that privacy will be preserved as 0.90. This implies that
a set of two trustworthy agents must include either one master
rated agent or two journeyer rated agents for this threshold to
be satisfied.

B. Experiment 1
1) Objective: Observe the effect of increasing the value of

k on the percentage of the instances of source agents whose
privacy is preserved.

2) Setup: The maximum number of fellow source agents
that an agent can trust on is n − 1. A fraction of the size of
this set can be stated as κ× (n−1), where κ ∈ [0, 1]. For our
experiments, we equate k = dκ× (n− 1)e. This allows us to
use κ (kappa) to vary the value of k as a fraction of n− 1.

We query the reputation of all agents with at least min
source agents. We vary κ from 0.01 to 1 with an increment
of 0.01 and observe the percentage of the instances of source
agents whose privacy is preserved. The set of experiments is
run with min ∈ {10, 25, 50, 75, 100} for the Advogato trust
graph and with min ∈ {10, 15, 20, 25} for the Squeak and
Robots trust graphs. As discussed in Section IV-E, the privacy
of a source agent a is preserved if P (perform(a, ua,1, ρ) =
false)× . . .×P (perform(a, ua,k, ρ) = false) is low, that is
less than or equal to 0.1 in our case. ua,1 . . . ua,k are the set
of agents that agent a trusts on.
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Fig. 3: Distribution of the potential target agents and the instances of source agents

3) Analysis: In the results of the experiment on the Ad-
vogato trust graph (Figure 4a), we observe that for min = 25,
the privacy of 71% of the instances of source agents is
preserved when κ = 0.01. That is, 71% of the source agents
find sufficiently trustworthy agents among only 1% of their
fellow source agents in order to preserve their privacy. The
percentage is 82% at κ = 0.04 at which stage the function
nearly converges and there is no significant improvement in
the percentage by increasing κ any further. Convergence is
reached at κ = 0.03 for the functions of min = 50 and above.
Even for min = 10, convergence is reached at the fairly low
value of κ = 0.12. It is thus evident that in the Advogato trust
graph, a source agent can preserve its privacy by trusting on
only k fellow source agents, where k is much smaller than
n−1, the size of the set of all fellow source agents. Raising k
over a certain threshold offers no advantage. This conclusion
is also supported by the results of the experiments on the
Squeak (Figure 4b) and Robots (Figure 4c) trust graphs. The
Robots trust graph is quite sparse as compared to the other two
graphs. The Robots trust graph has an average user to ratings
ratio of only 0.22 compared to the Advogato and Squeak trust
graphs that have a ratio of 4.04 and 3.82 respectively. Yet the
percentage of the instances of source agents whose privacy
is preserved converge very early in the Robots trust graph as
well.

C. Experiment 2

1) Objective: Observe the effect of increasing the minimum
size (min) of the set of source agents on the percentage of
the instances of source agents whose privacy is preserved.

2) Setup: We vary min and observe the percentage of the
instances of source agents whose privacy is preserved. The set
of experiments is run with values of min from 5 upwards. κ
is defined as in Experiment 1. We query the reputation of all
agents with κ ∈ {0.05, 1}.

3) Analysis: In the results of the experiment on the Ad-
vogato trust graph (Figure 5a), we observe that for min = 25
and above, the privacy of over 82% of the instances of source
agents is preserved. This percentage rises to over 86% for
min = 50 and above. From min = 450 and above, this
percentage is over 95%. Even at min = 5, the privacy of over
64% of the instances of source agents is preserved. It is thus
clear that in the Advogato trust graph, the privacy of a high

percentage of source agents can be preserved. The percentage
rises sharply by increasing min up to 25 and then stabilizes
up to 400. Thus any agent who participates as a source agent
in the query of the reputation of a target agent with at least 25
source agents has over 82% probability of finding sufficiently
trustworthy agents to preserve its privacy. Please note that
the value of κ as 0.05 is quite conservative. The experiment
run with κ = 1 gives fairly similar results, especially with
min = 25 and above. Similar results are obtained from the
experiment on the trust graph of Squeak (Figure 5b) where we
observe that the privacy of over 90% of instances of source
agents is preserved for min = 10 and above. The experiment
on the Robots trust graph (Figure 5b) yields different results
with the privacy of instances of source agents in the range of
46 to 57 percent being preserved. This could be attributed to
the relative sparsity of the ratings in the trust graph.

D. Experiment 3

1) Objective: Observe the accuracy of the reputation values
computed when source agents whose privacy can not be
preserved abstain and thus do not provide their feedback
values.

2) Setup: Let B be the set of source agents that abstain
and thus do not provide their feedback values, where B ⊂ St
and St is the set of all source agents of the target agent t.
Let rt be the reputation computed using feedback from all
source agents in St and let r′t be the reputation computed
using feedback from only the agents who do not abstain, that
is, the agents in the set St − B.

We define the disparity of a reputation value as |rt−r′t|. That
is, the absolute difference between the reputation computed
with all source agents and the reputation computed with only
the source agents in St−B. The disparity ranges from 0 to 1.
The lower the disparity, the more accurate is the reputation.
A disparity of 0 means that a reputation value computed with
less than all source agents is exactly the same as it would be
if computed with all source agents.

We compute the reputation of all target agents with at
least min source agents twice. Firstly, with all source agents
submitting their feedback. Secondly, with only those source
agents submitting feedback whose privacy can be preserved.
We then compute the disparity between the two values of
reputation for each target agent. We count the number of
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Fig. 4: Effect of increasing κ on the percentage of instances of source agents whose privacy is preserved
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Fig. 5: Effect of increasing min on the percentage of instances of source agents whose privacy is preserved
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Fig. 6: Disparity

instances of reputation values where disparity is less than the
values in {0.05, 0.1, 0.15, 0.20, 0.25} respectively.

3) Analysis: In the results of the experiment on the Ad-
vogato trust graph (Figure 6a), we observe that for min = 25,
the disparity of over 76% of reputation values is less than
or equal to the low value of 0.05. Over 96% of reputation
values have a disparity of less than or equal to just 0.1. For
min = 75 and above, the disparity of 100% of the instances
of reputation values is less than or equal to the fairly low
value of 0.15. Thus, it is evident that even if source agents
whose privacy can not be preserved abstain, the reputation
of a high percentage of target agents can still be calculated
with high accuracy as the mean of the feedback values. This
inference is supported by the results of the experiments on the
Squeak (Figure 6b) and Robots (Figure 6c) trust graphs. For
min = 25, 100% of all reputation values have a disparity of

less than or equal to 0.05 in both the Squeak and the Robots
trust graphs.

VI. RELATED WORK

Table III presents a comparison of our protocol with other
reputation systems in the literature. The comparison illustrates
that our protocol is the most efficient in terms of number of
messages exchanged in decentralized environments. Moreover,
our protocol does not require trusted third parties or spe-
cialized platforms, such as anonymous networks and trusted
hardware.

VII. CONCLUSION AND FUTURE WORK

In this article, we have presented a privacy preserving rep-
utation protocol for the malicious adversarial model. The pro-
tocol counters attacks by malicious agents such as submitting
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TABLE III: Protocol Malicious-k-shares – Comparison.

System Archi-
tecture

Building Blocks Complexity
(Messages)

Malicious-k-shares D Zero-knowledge
proofs, Homomorphic
encryption

O(n) +
O(log N)

Pavlov et al. [4]
(WSS-2)

D Verifiable secret sharing,
Discrete log commitment

O(n3) +
O(N)

Gudes et al. [3]
(Scheme 3)

D Random permutation,
Verifiable secret sharing,
Discrete log commitment

O(n3) +
O(N)

Kinateder and Pear-
son [10]

D Trusted hardware plat-
form, Digital signatures

Not Provided

Androulaki et al.
[11]

C E-cash, Blind signatures,
Anonymous networks

O(1)

Steinbrecher [12] C Pseudonym and identity
management

O(1)

Schiffner et al. [13] C E-cash, Anonymous net-
works

O(1)

Kerschbaum [14] C Homomorphic encryp-
tion, Cryptographic
pairings

O(1)

Bethencourt et al.
[15]

C Signatures of reputation,
Proof systems for bilinear
groups, Key private en-
cryption

O(1)

invalid feedback values or making erroneous computations.
The characteristics that differentiate the protocol from other
protocols in the literature include: (1) full decentralization,
(2) no need for trusted third parties and specialized platforms,
(3) low complexity in terms of messages exchanged.

Our experiments on three real and large trust graphs demon-
strate the validity of two hypotheses that the Malicious-k-
shares protocol is based on: (1) A source agent can preserve
its privacy by trusting on only k fellow source agents, where
k is much smaller than n− 1, the size of the set of all fellow
source agents. (2) Accurate reputation values can be computed
even if the source agents whose privacy can not be preserved
abstain and thus do not provide their feedback values.

As future work, we aim to develop a privacy preserving
reputation system that can counter the slandering and self-
promotion attacks. In slandering, a user submits unjustifiable
negative feedback to intentionally malign the reputation of
a rival user. In self-promotion, a user achieves the inverse
by submitting highly positive feedback to artificially increase
his or a friend’s reputation. Privacy prevents accountability of
such users. Our goal is to develop a system that preserves the
privacy of users yet exposes users who mount these attacks.
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A NOTATION USED IN MALICIOUS-k-SHARES

TABLE IV: Notation used in Malicious-k-shares.

Notation Description
A The set of all agents in the environment
a A source agent. a ∈ St.
c A ciphertext
ha The quotient when the sum of the shares of an agent a is divided by

M . ha = (
∑k+1
i=1 xa,i) div M .

−→Ia A vector that contains the encrypted shares and the proofs sent by
an agent a to the agent q

k Constant k is the number of agents that each source agent a selects
to send shares to. k � n.

k The security parameter. The length in bits of the RSA modulus n in
the cryptographic keys of the agents. For example, k = 2048.

L A positive integer constant. lat ∈ [0, L]. For example, L = 10.
lat The feedback of a source agent a about a target agent t
M A publicly known modulus.M > L. ∀t ∈ A :

∑
a∈St

lat < M .
M � 2k. For example, k = 2048, M = 280.

m The number of dishonest source agents in St. m < n.
n The cardinality of the set St. n = |St|.
n The RSA modulus in the public key of an agent
na The RSA modulus in the public key of an agent a
PKa The public key of an agent a
q The querying agent
rt ≡ rt,ψ The reputation of an agent t in the context ψ
St ≡ St,ψ The set of source agents of agent t in the context ψ
S′t An intermediate set that is initialized to St. The set of agents who

are expected to send their shares and sums to agent q.
s A timestamp
t The target agent
Ua The set of fellow source agents that an agent a selects as trustworthy
u A source agent. u ∈ St.
Vw The set of encrypted shares that agent q receives from other agents

and then relays to agent w
v A source agent. v ∈ St.
w A source agent. w ∈ St.
X A large positive integer constant. xa,i ∈ [0, X]. For example, X =

232 − 1.
xa,i The ith share of an agent a
βa The encrypted sum of an agent a’s shares. βa = Ea(

∑k+1
i=1 xa,i).

γa The encrypted sum of the shares received by an agent a and agent
a’s (k + 1)’th share xa,k+1

θ A cumulative sum for computing reputation
σa The sum of the shares received by an agent a and agent a’s (k+1)’th

share xa,k+1

ψ An action. The context for trust.

B NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

Protocol: Non-Interactive-ZKP-Set-Membership
Participants: A prover and a verifier.
Input: Prover: n, g, mi, p, r, c = gmi · rn mod n2. Verifier: n, g, p, c.
Output: The verifier is convinced that c encrypts a message in S.
Setup: Public knowledge: A set S = {m1, . . . ,mp}, and the prover’s public key
(n, g). hash(x) is a cryptographic hash function secure against a computationally
PPT bounded adversary.
Steps:

Prover

1) Prover picks at random ρ in Z∗
n

2) Prover randomly picks p− 1 values ej in Zn, where j 6= i
3) Prover randomly picks p− 1 values vj in Z∗

n
, where j 6= i

4) Prover computes uj = vnj · (g
mj /c)ej mod n2, where j 6= i, and ui =

ρn mod n2

5) Prover computes e = hash(〈u1 . . . up〉)
6) Prover computes ei = e−

∑
j 6=i ej mod n

7) Prover computes vi = ρ · rei · g(e−
∑
j 6=i ej)/n mod n

8) Move 1: Prover sends uj , vj , ej , where j ∈ {1 . . . p}, to the verifier

Verifier

1) Verifier computes e = hash(〈u1 . . . up〉)
2) Verifier checks that e =

∑
j ej mod n

3) Verifier checks that vnj = uj · (c/gmj )ej mod n2 for each j ∈ {1 . . . p}

Fig. 7: Protocol: Non-Interactive Zero-Knowledge Proof of Set
Membership

Protocol: Non-Interactive-ZKP-Plaintext-Equality
Participants: A prover and a verifier.
Input: Prover: n1, g1, n2, g2, m, r1, r2, c1 = gm1 · r

n1
1 mod n2

1, c2 = gm2 ·
r
n2
2 mod n2

2. Verifier: n1, g1, n2, g2, c1, c2.
Output: The verifier is convinced that c1 and c2 encrypt the same message.
Setup: Public knowledge: The public keys (n1, g1) and (n2, g2). hash(x) is
a cryptographic hash function secure against a computationally PPT bounded
adversary.
Steps:

Prover

1) Prover picks at random ρ in [0, 2k[
2) Prover randomly picks s1 ∈ Z∗

n1
and s2 ∈ Z∗

n2

3) Prover computes uj = gρj · s
nj
j mod n2

j , for each j ∈ {1, 2}
4) Prover computes e = hash(〈u1, u2〉)
5) Prover computes z = ρ+m · e
6) Prover computes vj = sj · rej mod nj , for each j ∈ {1, 2}
7) Move 1: Prover sends z, u1, u2, v1, v2 to the verifier

Verifier

1) Verifier computes e = hash(〈u1, u2〉)
2) Verifier checks that z ∈ [0, 2k[

3) Verifier checks that gzj · v
nj
j = uj · cej mod n

2
j for each j ∈ {1, 2}

Fig. 8: Protocol: Non-Interactive Zero-Knowledge Proof of
Plaintext Equality


