
Re
se
ar
ch
Re
po
rt

Access Control Configuration for J2EE Web
Applications: A Formal Perspective

Research Report

Matteo Maria Casalino1,2, Romuald Thion2, Mohand-Said Hacid2

1 SAP Research Sophia-Antipolis, 805 Avenue Dr M. Donat, 06250 Mougins, France
matteo.maria.casalino@sap.com

2 Université Claude Bernard Lyon 1, LIRIS CNRS UMR 5205, France
{romuald.thion, mohand-said.hacid}@liris.cnrs.fr

Abstract. Business services are increasingly dependent upon Web ap-
plications. Whereas URL-based access control is one of the most promi-
nent and pervasive security mechanism in use, failure to restrict URL
accesses is still a major security risk. We argue that this risk can be
mitigated by providing formal analysis tools to evaluate access control
policies as well as the impact of changes on configurations.
In order to tackle this issue, this paper gives a formal semantics for access
control constraints standardized in the J2EE Java Servlet Specification,
arguably one of the most common framework for web applications. Two
different analysis tools are developed on top of this formal building block:
a decision engine and a comparison algorithm for change impact of access
control configurations. The formal semantics is compared against two
major web application containers. The experiments reveal non-compliant
access control decisions of these containers and validate our approach.

1 Introduction

The security of web applications has become increasingly important, since or-
ganizations have employed them more and more extensively as a lightweight
front-end for business services. The J2EE Java Servlet Specification (JSS) [1]
standardizes the interface between the J2EE web front-end components and the
containers providing their execution environment.

The access control mechanisms described within the JSS belong to two cat-
egories: programmatic security and declarative security. Programmatic security
describes functionalities which developers can use to implement security within
their applications’ code. Declarative security refers to HTTP-based access con-
trol specified not in the applications’ code but in the container’s deployment
descriptor. In this case, the container is responsible for enforcement of access
control at runtime. More details on declarative security are given in Sec. 2.

Failure to restrict URL accesses and security misconfigurations are considered
as top ten Web application security risks by OWASP3. Unfortunately, declarative

3 https://www.owasp.org/index.php/Top_10_2010

Re
se
ar
ch
Re
po
rt

J2EE Web Container

Configuration
Analysis Tool

Interpretation
Structure

Compliance
Testing Engine

HTTP

Servlets / JSPs

Access
Control

Deployment
Descriptor

Web Application Archive

Web Applications

deployed in

interpreted to

Fig. 1: J2EE Web framework and analysis tool

security semantics of the JSS is described in English prose throughout the docu-
ment, which can lead to errors due to misinterpretation. Such errors can possibly
lead to non-compliant containers’ implementations or to security vulnerabilities
in access control configurations. In fact, documented misconfiguration vulner-
abilities such as [2, 3] prove that even small counter-intuitive fragments of the
Servlet specification are among the causes of serious security breaches.

Significance of access control issues in web applications motivate the need
for formal verification tools with which security developers can ensure correct
behaviours of the policies they define. Interesting analysis tasks include deter-
mining whether a given access request is permitted or evaluating the impact of
a change within a configuration without running the container. We contribute
to solve these problems by defining a formal semantics for JSS declarative secu-
rity (Sec. 3), from which we provide a query engine to evaluate access control
requests and a comparison algorithm for configurations w.r.t. their permissive-
ness (Sec. 4). Figure 1 depicts the J2EE framework on the right and the related
analysis tool, our contribution, on the left.

Together with a prototype implementation, Section 5 compares our semantics
with existing web container implementations. Motivation for this experiment is
twofold: on one hand we empirically verify that the formal semantics complies
with the informal one in the JSS, on the other hand we are able to find cases
where containers do not behave as expected. Experiments run on Tomcat and
Glassfish application servers have led to the discovery of implementation errors.

Section 6 compares our contributions to related work on XACML, access
control frameworks for web-services and other security analysis tools for J2EE
compliant applications. We conclude with a summary of the results of our work,
a discussion of related work and some future work.

2 Security Constraints

The security-related fragment of the deployment descriptor is composed by the
security constraints XML tags. For the sake of brevity we provide in Fig. 2

Re
se
ar
ch
Re
po
rt

〈ac〉 ::= ‘*’ | ‘<’ 〈rl〉 ‘>’

〈rl〉 ::= 〈empty〉 | role ‘,’ 〈rl〉

〈up〉 ::= 〈empty〉 | part | ‘*’ | part ‘/’ 〈up〉

〈upl〉 ::= 〈up〉 | 〈up〉 ‘,’ 〈upl〉

〈ml〉 ::= method | method ‘,’ 〈ml〉

〈wrc〉 ::= ‘{’ 〈upl〉 ‘}’ ‘[’ 〈empty〉 ‘]’ | ‘{’ 〈upl〉 ‘}’ ‘[’ 〈ml〉 ‘]’

〈wrcl〉 ::= 〈wrc〉 | 〈wrc〉 ‘,’ 〈wrcl〉

〈sc〉 ::= 〈wrcl〉 | 〈wrcl〉 〈ac〉

〈scl〉 ::= 〈sc〉 | 〈sc〉 ‘\n’ 〈scl〉

Fig. 2: Shorthand syntax for security constraints [1, Sec. 12]

a BNF grammar modeled from the XML grammar given in the JSS. Access
control is configured by associating web resource collections (〈wrcl〉) to at most
one authorization constraint (〈ac〉), that is the set of roles allowed to access the
mentioned resources. A web resource collection consists in a list of URL patterns
(〈upl〉) followed by a (possibly empty) list of HTTP methods (〈ml〉). The special
role name ‘*’ is a shorthand for all the roles defined inside the deployment
descriptor. Entire URL hierarchies can be specified with URL patterns ending
with the ‘/*’ wildcard. The initial non-terminal symbol 〈scl〉 represents a list of
security constraints.

Example 1 (Sample security constraints). The following code snippet represents
the example of security constraints specification included in [1, Sect. 12.8.2].

SC1 = {/*, /acme/wholesale/*, /acme/retail/*} [DELETE, PUT] <>

SC2 = {/acme/wholesale/*} [GET, PUT] <SALESCLERK>

SC3 = {/acme/wholesale/*} [GET, POST] <CONTRACTOR>

SC4 = {/acme/retail/*} [GET, POST] <CONTRACTOR, HOMEOWNER>

Constraint SC1 denies any access to the URL patterns /*, /acme/wholesale/*
and /acme/retail/* via the DELETE and PUT methods. SC2 and SC3 allow se-
lected roles SALESCLERK and CONTRACTOR to access /acme/wholesale/*. Both
roles can use the GET method and CONTRACTOR may access via POST. Though,
SALESCLERK cannot access via PUT due to SC1. Last constraint SC4 allows both
CONTRACTOR and HOMEOWNER users to access to /acme/retail/*. This example
will be used throughout this paper, with identifiers abbreviated by their first
character (e.g., a for acme, c for CONTRACTOR, etc.).

According to the informal semantics from [1], in order to have access granted,
a user must be member of at least one of the roles named in the security con-
straint (or implied by ‘*’) that matches to her/his HTTP request. An empty
authorization constraint means that nobody can access the resources, whereas

Re
se
ar
ch
Re
po
rt

access is granted to any (possibly unauthenticated) user in case the authoriza-
tion constraint is omitted. Unauthenticated access is also allowed by default to
any unconstrained resources.

In case the same URL pattern and HTTP method occur in different security
constraints, their authorization constraints have to be composed. If two non-
empty authorization constraints are composed, the result is the union of the
two sets of allowed roles. If one of the two allows unauthenticated access, the
composition also does, conceptually resulting again in a union. In contrast, if one
of the sets of roles is empty, their composition is empty; that is the intersection
of the two sets is performed in this case. Constraints on more specific URL
patterns (e.g. /a/b) always override more general ones (e.g. /a/*).

If some HTTP methods are explicitly mentioned in a web resource collec-
tion, all the other methods are unconstrained, whereas, if none is named, every
method is implicitly constrained. Verb tampering attacks [2, 3] exploit this be-
haviour to bypass the access control check. Vulnerable web applications exhibit
a deployment descriptor badly configured w.r.t. their implementation. Requests
on unconstrained methods (such as HEAD) are in fact handled as ordinary ones
(e.g., GET), instead of correctly returning an appropriate HTTP error to the
client. The peculiar handling of unconstrained methods, combined with the fact
that most specific constraints take precedence, leads to particularly counterin-
tuitive behaviours, as illustrated by the following example.

Example 2 (Combination of security constraints). Let us consider that a web
developer adds the new constraint SC5 = {/a} [GET] <H> to the set of con-
straints given in Example 1. With this new rule, (/a, PUT) and (/a, DELETE)

accesses are granted to anyone, even unauthenticated users! This is the case be-
cause /a is more specific than /*, hence SC1 is overridden by SC5. However the
latter does not define behaviour for PUT and DELETE methods, so default allow
policy is applied.

3 Formal Semantics

In this section, we provide a formal semantics for the language given in Fig. 2. In
order to do so, a function JφKLIT is defined for each non-terminal symbol 〈lit〉 in
the grammar. These functions derive from case analysis on the structure of the
language. Terminal symbols are interpreted within an associated domain. For
instance, role literals in ‘role’ are interpreted by the function J·KR : ‘role’→ R
in elements of the roles domain R. Likewise J·KM maps ‘method’ literals in the
domain of HTTP methods M, and J·KS interprets URL ‘part’s in an infinite
domain of strings S. The final interpretation function is JφKSCL, that is, the
interpretation of initial symbol of the grammar.

Authorization Constraints. The interpretation function of authorization con-
straints is given by the function J·KAC defined in (1). This function maps every
non terminal 〈ac〉 to an element of the powerset of the role domain. The func-
tion J·KRL defined in (2) folds roles into a set. Fold, also known as reduce or

Re
se
ar
ch
Re
po
rt

accumulate, is a standard high-order functional operation on containers. It has
an intuitive meaning: for instance, according to (2), the syntactic role list of
SC4 is turned into a subset of R = {s, c, h}, J<C, H>KRL = {c, h}. Similar fold
functions are used throughout this section, namely J·KUPL, JφKML and J·KWRCL

for URLs, methods and web resource collections respectively. Their definitions
rest on the same principle and hence are not reported here.

JφKAC =

{
R if φ = ‘*’
J〈rl〉KRL if φ = ‘<’〈rl〉‘>’

(1)

JφKRL =

{
∅ if φ = 〈empty〉
{JroleKR} ∪ J〈rl〉KRL if φ = role‘,’〈rl〉 (2)

In order to capture the semantics of authorization constraints, a partial order
≤R between sets of roles is defined. To take the case of unauthenticated users into
account, the symbol > is added. The role lattice R∗ is the complete lattice given
by the powerset of the role domain, ordered by set inclusion, and containing the
additional element > /∈ ℘(R).

Definition 1 (Role Lattice). The complete role lattice is R∗ = 〈℘(R) ∪
{>},≤R〉, where RA ≤R RB iff RB = > or RA ⊆ RB.

The top element > semantically corresponds to the default allow all autho-
rization constraint implicitly associated with any non-constrained web resource.
In contrast, the bottom element ∅ represents a deny all authorization constraint.
Definition (3) formally captures the composition rules of different authorization
constraints mentioned in page 4. The operator ⊗ : R∗×R∗ → R∗ performs com-
position by relying on the least upper bound lattice operator (

⊔
). For instance,

{c, h} ⊗ > = >, {c, h} ⊗ {s, h} = {s, c, h}, {c, h} ⊗ ∅ = ∅ and >⊗ ∅ = ∅.

RA ⊗RB =

{
∅ if RA = ∅ or RB = ∅
RA
⊔
RB otherwise.

(3)

Web Resource Collections. The resources being subject to access control in a
J2EE web application are URLs. The URL hierarchy must be taken into account
while evaluating access control requests, since a URL pattern ending with a
wildcard matches every URL sharing its prefix. We therefore interpret URL
patterns as a tree, where each node is a prefix-ordered sequence of symbols.

Definition 2 (URL). A URL u ∈ U is a (possibly empty) sequence of symbols
each one belonging to S, and ending with at most one symbol belonging to the
set E = {ε, ∗}4, where S ∩ E = ∅ :

(i) u = 〈〉 is an (empty) URL;
(ii) u = 〈s0, . . . , sn〉, n > 0, s0, . . . , sn ∈ S is a URL;

(iii) u = 〈s0, . . . , sn, se〉, n > 0, s0, . . . , sn ∈ S, se ∈ E = {ε, ∗} is a URL.

4 Symbol ε is used to differentiate files from folders, e.g., between /a/ and /a.

Re
se
ar
ch
Re
po
rt

〈〉

〈a〉〈∗〉

〈a, w〉 〈a, r〉

〈a, w, ∗〉 〈a, r, ∗〉

Fig. 3: URL tree of Example 1

For a given URL u = 〈s0, . . . , sn〉 its length, written |u|, equals n + 1, the
length of the empty URL being 0. The l-long prefix of u, written u≤l is the
sequence 〈s0, . . . , sl−1〉, with u≤0 = 〈〉. The ith symbol si of u is written ui.
Equality of URLs is defined in the traditional way. The URL concatenation
operator ⊕ : U × U → U is defined as follows:

u⊕ v =

{
〈u0, . . . , u|u|, v0, . . . , v|v|〉 if u|u| ∈ S
undefined if u|u| ∈ E (4)

For instance, let S = {a, b, c} and u = 〈a, b〉. The following equalities hold:
|u| = 2, u≤1 = 〈a〉, v = u⊕〈c〉 = 〈a, b, c〉, v2 = c, w = u⊕〈ε〉 = 〈a, b, ε〉. Finally
w ⊕ 〈c〉 is not defined.

Definition 3 (URL Tree). A URL tree t ∈ U∗ is a non empty, finite, partially
ordered set t = 〈U,≺〉 with:

(i) U ⊆ U ;
(ii) the empty URL always belongs to U : 〈〉 ∈ U ;

(iii) U is prefix-closed: u ∈ U and |u| > 0⇒ u≤|u|−1 ∈ U ;
(iv) u ≺ v iff |u| ≤ |v| and u = v≤|u|.

Proposition 1. Relation ≺ is indeed a partial order for U . Moreover, for any
URL tree 〈U,≺〉 the set of predecessors of any of its elements u ↓= {p : p ≺ u}
is well-ordered.

Proposition 1 ensures that a URL tree is indeed a tree according to the
set-theoretic definition. Figure 3 depicts the URL tree corresponding to the
interpretation of all the URL patterns in Example 1.

Every URL pattern 〈up〉 is interpreted as a URL through the function J·KUP
recursively defined in (5). Intuitively, a URL is simply a sequence of identifiers
(‘part’s) separated by the ‘/’ character. For instance, concrete URL pattern
/a/r/* from constraint SC1 is turned into the sequence J{/a/r/*}KUP = 〈a, r, ∗〉.

JφKUP =

〈ε〉 if φ = 〈empty〉
〈∗〉 if φ = ‘*’
〈JpartKS〉 if φ = part

〈JpartKS〉 ⊕ J〈up〉KUP if φ = part‘/’〈up〉
(5)

Re
se
ar
ch
Re
po
rt

Combination of URL patterns and HTTP methods into web resource collec-
tions is done by performing the cartesian product of the two sets by means of the
function J·KWRC defined in (6). This definition is consistent with the JSS, since it
states that naming no methods means that every method is constrained. For in-
stance, if we consider SC4 from Example 1, then J{/a/r/*}, [GET, POST]KWRC

is the set with two elements {〈〈a, r, ∗〉, GET 〉, 〈〈a, r, ∗〉, POST 〉}.

JφKWRC =

{
J〈upl〉KUPL ×M if φ = 〈upl〉
J〈upl〉KUPL × J〈ml〉KML if φ = 〈upl〉〈ml〉 (6)

Security Constraints. URL trees are to be mapped to the roles allowed to access
each node in the tree. Such a mapping is given by the interpretation of security
constraints within Web application Access Control Trees.

Definition 4 (Web application Access Control Tree). A Web application
Access Control Tree (WACT) is a pair t = 〈U,α〉, where U ∈ U∗ is a URL tree
as defined in Def. 3 and α : U ×M→ R∗ is a partial function giving the set of
roles allowed to access a pair 〈u,m〉. The set of all WACTs is T .

A security constraint 〈sc〉 is interpreted as a WACT through the function
JφKSC which maps a constraint to a WACT 〈U,α〉. Definition (7) computes the
prefix-closure U ∈ U∗ of every URL in the web resource collections, for instance
{〈〉, 〈a〉, 〈a, r〉, 〈a, r, ∗〉} is the prefix closure of 〈a, r, ∗〉. The partial function α
defined by (8) maps every web resource collection to the > element of the role
lattice in case no authorization constraints are specified; otherwise it maps the
web resource collection to the set of authorized roles J〈ac〉KAC .

U = {w | w ≺ u,w ∈ U , 〈u, ·〉 ∈ J〈wrcl〉KWRCL} (7)

α(u,m) =

{
> if φ = 〈wrcl〉
J〈ac〉KAC if φ = 〈wrcl〉〈ac〉 (8)

Trees obtained from JφKSC have to be combined since a web applications’
deployment descriptor may contain more than one security constraint. The union
of two WACTs 〈U1, α1〉 ∪̇ 〈U2, α2〉 is a tree 〈U1 ∪ U2, α〉 where α is defined by (9).
In the case where both trees define a set of roles for a common pair 〈u,m〉,
corresponding role sets are merged by using the operator ⊗ defined by (3).

α(u,m) =

α1(u,m)⊗ α2(u,m) if 〈u,m〉 ∈ dom(α1) ∩ dom(α2)
α1(u,m) if 〈u,m〉 ∈ dom(α1) \ dom(α2)
α2(u,m) if 〈u,m〉 ∈ dom(α2) \ dom(α1)

(9)

For example SC2 and SC3 turn into the WACTs t2 = 〈U2, α2〉 and t3 =
〈U3, α3〉 respectively, with α2(〈a,w, ∗〉, GET) = {s}, α2(〈a,w, ∗〉, PUT) = {s},
α3(〈a,w, ∗〉, GET) = {c} and α3(〈a,w, ∗〉, POST) = {c}. Their union is the
WACT t1∪̇t2 = 〈U,α〉, with α(〈a,w, ∗〉, GET) = {s, r} and α(〈a,w, ∗〉, PUT) =
{s}, α(〈a,w, ∗〉, POST) = {c}. Finally definition (10) folds all the security con-
straints from a deployment descriptor (〈scl〉) and produces a single WACT.

JφKSCL =

{
J〈sc〉KSC if φ = 〈sc〉
J〈sc〉KSC ∪̇ J〈scl〉KSCL if φ = 〈sc〉〈scl〉. (10)

Re
se
ar
ch
Re
po
rt

4 Applications

4.1 Dealing with Access Control Requests

According to the JSS [1, Sec. 12.8.3], an access request is a triple 〈u,m,R〉 ∈
U ×M×R∗ composed by a URL identifying the requested resource, a HTTP
method and an element of the role lattice representing the set of roles assigned to
the user who submitted the request. Access control decisions, i.e., {false, true}
answers to requests, are computed by means of two functions: ρ computes the
set of roles needed to access URL u with method m, and ∆ determines whether
the roles associated with the user issuing the request are sufficient.

Such functions are beneficial to web application developers. For instance, ∆
provides an oracle for the access control behaviour of their applications. This
oracle can be leveraged to perform security assessment at either design or de-
velopment time, prior to the deployment phase. Moreover, it can be used to run
compliance testing on implementations of the JSS, as elaborated in Sec. 5.

For every URL tree U , we denote the set of ∗-predecessors of u ∈ U by u∗ ↓.
The elements of this set are all the immediate successors of the ancestors of u,
ending with the symbol ∗ ∈ E . Formally, u∗ ↓= {w ⊕ 〈∗〉 | w ≺ u ∧ w ⊕ 〈∗〉 ∈ U}.
This behaviour captures the best match algorithm of [1, Sec. 12.8.3], which may
be informally summarized by “most specific URL pattern takes precedence”.

Definition 5 (Effective Roles). Given a WACT t = 〈U,α〉 the set of effective
roles for each couple 〈u,m〉 ∈ U×M is given by the function ρ〈U,α〉 : U×M→ R∗

ρ〈U,α〉(u,m) =

α(u,m) if 〈u,m〉 ∈ dom(α)
α(w,m) else if {w} = max(u∗ ↓) ∧ 〈w,m〉 ∈ dom(α)
> otherwise

(11)

Function max maps a set of URLs to the subset of them having maximum
length. Equation (11) assumes that the set max(u∗ ↓) always contains at most
one element. Proposition 2 ensures this property, thus (11) is well-defined.

Proposition 2. Given a URL Tree U ∈ U∗ and a URL u ∈ U , the set of
∗-predecessors of u has at most one maximum element.

Example 3. Let us consider the WACT t = 〈U,α〉 obtained from Example 1
with U = {〈〉, 〈∗〉, 〈a〉, 〈a,w〉, 〈a, r〉, 〈a, ∗〉, 〈a,w, ∗〉, 〈a, r, ∗〉}. On this example
|dom(α)| = 11, α(〈a,w, ∗〉, GET) = {s, c}, α(〈∗〉, PUT) = {} and 〈〈a,w〉, GET〉 6∈
dom(α). Thus, we obtain the following values for ρt:

(i) ρt(〈a,w, b〉, GET) = {s, c} because SC2 and SC3 apply;
(ii) ρt(〈a,w〉, PUT) = {} because SC1 applies;
(iii) ρt(〈b〉, GET) = > because no security constraint applies.

The decision function ∆ can be defined straightforwardly from the set of
effective roles: access to 〈u,m〉 is granted either if the user is unauthenticated
and the resource accessible to unauthenticated users or if the user endorses at
least one role in the set of effective roles associated with 〈u,m〉.

Re
se
ar
ch
Re
po
rt

Definition 6 (Decision Function). For every t = 〈U,α〉 ∈ T the access con-
trol decision function ∆t : U ×M×R∗ → {false, true} is defined as follows:

∆t(u,m,>) = true iff ρt(u,m) = >
∆t(u,m,R) = true iff ρt(u,m)

l
R 6= ∅ (12)

4.2 Comparison of authorization constraints

Developers might want to know the impact of changes into security constraints.
For instance, one may wish to verify that a new constraint leads to a more re-
strictive policy. In order to tackle this problem, we define a comparison operator
between WACTs according to their permissiveness and show that this order is
compatible with access control decisions. A WACT t1 is less permissive than
t2, written t1 ≤T t2 if for any node in the tree and for any method, the set of
effective roles of t1 is included in that of t2.

Definition 7 (Comparison of WACTs). Let t1 = 〈U1, α1〉 and t2 = 〈U2, α2〉

t1 ≤T t2 iff ∀u ∈ U1 ∪ U2,m ∈M : ρt1(u,m) ≤R ρt2(u,m) (13)

Proposition 3 gives an effective method to check whether a configuration is
semantically more permissive than another: it is sufficient to verify if inclusion
of roles holds for each node in the WACT. If u /∈ U1 ∪ U2, then ρt1(u,m) =
ρt2(u,m) = > by (11), thus only a finite set of URLs have to be checked.

Proposition 3. t1 ≤T t2 iff ∀u,m,R : ∆t1(u,m,R)⇒ ∆t2(u,m,R).

Example 4. Let us consider Example 2 where SC5 = {/a} [GET] <H> is added
to the set of constraints of Example 1. We obtain t = J{SC1, SC2, SC3, SC4}KSCL
and t′ = J{SC1, SC2, SC3, SC4, SC5}KSCL. On one hand ρt(〈a〉, GET) = > because
no constraint applies and ρt(〈a〉, DEL) = ∅ because SC1 applies, and on the other
hand ρt′(〈a〉, GET) = {h} and ρt′(〈a〉, DEL) = > because of the presence of SC5.
Thus, neither t ≤T t′ nor t′ ≤T t holds, whereas intuitively, one expects that by
adding SC5 one will get a more restrictive configuration!

5 Experimental Evaluation

Written in Java language, our implementation of the WACT defined in Sec. 3 is
based on a trie data structure, that is a prefix-ordered tree where the descendants
of every node share a common prefix, which constitutes a natural representation
of URLs. Our prototype contains an implementation of J·KSCL which compiles
security constraints as well as the decision function ∆ described in Sec. 4.

On top of this we have developed a generate and test methodology to compare
the behaviour of existing J2EE application servers according to the formalized
version of the JSS. First we generate an exhaustive set of different configurations
of security constraints allowed by the grammar (cf. Fig. 2). Since such a set is

Re
se
ar
ch
Re
po
rt

infinite we constrain the URL, method and role domains to a finite number of
elements. We heuristically determine the value of such elements for some in-
teresting corner cases of the language (e.g., overlapping URL patterns with or
without wildcards). In the second phase – as shown in Fig. 1 – for every config-
uration scl, we instrument the application server under scrutiny by deploying a
web application having scl within its deployment descriptor. At the same time,
scl is interpreted according to the formal semantics. HTTP requests are then
issued to the server and answers are compared to the results computed by ∆ for
every triple 〈u,m,R〉.

We conducted our experiments on Apache Tomcat version 6.0.35 and Oracle
Glassfish version 3.1.2, two popular Java web application servers supporting
the JSS v2.5, which we considered in this paper. The results provide evidence
that the implementations did not comply with the specification for a number of
tested configurations. In particular we noticed that the configurations producing
a misbehaviour in Glassfish all share a common pattern, where one or more
constraints apply to the context root (/) while different constraints are defined
over /*. An example of one such a configuration is given by the two security
constraints SC6 = {/*} [] and SC7 = {/} [] <>. In fact, access to the URL
/ should always be denied, as SC7 is more specific, in contrast Glassfish grants
access to any client in this case.

Note that this faulty behaviour is not verified in Tomcat. However Tomcat
is not fully compliant with the JSS. Further investigations revealed that its
misbehaviours are not deterministic, but may disappear upon restarting the
application server.

6 Related Work

Many proposals dealing with the formalization of industry standards can be
found in literature. A prominent example, concerning access control, is given by
XACML, a standard for specifying and enforcing access control policies. Its level
of generality and expressivity is able to capture a broad class of access control re-
quirements. However, XACML is quite a complex policy language with informal
evaluation semantics, so the development of tools complementing testing with
formal verification of XACML is difficult. To tackle this issue, different formal
semantics have been given to core concepts of XACML using for instance process
algebra [4], description logics [5], answer set programming [6], specific algebraic
variety [7] or ad hoc compositional semantics [8].

It is tempting to translate J2EE security constraints into XACML and then
rely on cited works to benefit from a formal semantics. Unfortunately, some of
the selected subsets of the XACML language are incomparable and it seems
there is no consensual agreement on its formal semantics, see related work of [8]
for discussion and examples. Moreover, we argue that a direct semantics for
J2EE security constraints from its specification without intermediate rewriting
provides valuable insights to the policy developers.

Re
se
ar
ch
Re
po
rt

Instead of working on a concrete language like XACML suffering from a lack
of formal foundations, researchers have proposed access control languages with
formal semantics. Several models have been proposed for specific domain of web
services. For instance, the authors of [9] provide a model with identity attributes
and service negotiation capabilities as key features. Attribute-based models re-
move the subject identification constraint in access control by allowing to specify
who can access a resource by means of attributes the subject must have [10, 11].
Such an approach is particularly well suited to open environments where the
set of all subjects cannot be known in advance. Those works are valuable as
both sources of inspiration for new features and theoretical foundations for next
versions of the J2EE standard.

In this paper we considered another challenge: in order to provide formal
verification tools for concrete problems of querying and comparison, we do not
design a language from scratch and give its formal semantics a priori, instead we
analyse an existing language and give its semantics a posteriori. As the semantics
of J2EE security constraints is quite specific, it is not clear whether the language
can be translated into another one or not. For instance, the Malgrave System [12]
is a powerful change impact assessment tool based on a restricted sub-language
of XACML. However, hierarchical resources, which are the core of J2EE security
constraints and very common in web oriented models, are not supported.

Related work on J2EE access control configurations analysis [13, 14] stems
from premises analogous to ours. However these approaches rather focus on
checking the consistency of programmatic access control configurations w.r.t. the
implementation of J2EE components of the business tier [13] or both business
and web tiers [14], in order, e.g., to detect accesses to EJB fields or methods
inconsistent with the access control policy. Our work focusing on declarative
security is complementary: our formalization supports other reasoning tasks,
such as the comparison of different configurations.

7 Conclusion

In this paper we have proposed a formal role-based access control framework for
hierarchical resources, able to effectively capture the semantics of the declarative
security fragment of the J2EE Java Servlet Specification. This section discusses
some of our choices and suggests further research directions.

Precisely, version 2.5 of the JSS specification has been considered. An inter-
esting extension, left to future work, would be to cover version 3.0 of the spec-
ification. In this latest revision, configuration authors are allowed to explicitly
omit selected HTTP methods. Intuitively, assuming the set of HTTP methods
to be finite, there exists a sound rewriting for such more expressive configura-
tions towards the ones considered in this paper. More generally, this extension
suggests the possibility to deal with more explicit and expressive prohibitions in
security constraints.

We highlighted several capabilities of the framework, namely answering to
access control requests and comparing the permissiveness of security constraints.

Re
se
ar
ch
Re
po
rt

Such tools can help web developers understand the security of their applications
to prevent misconfiguration vulnerabilities. To this regard we plan to investigate
on more intuitive visualisation techniques for policy design. We envision to pro-
vide an environment based on WACT from which configurations will be canoni-
cally generated. Such an environment can be complemented with algorithms to
detect configurations errors which may possibly reflect authoring mistakes, for
instance (non-)monotonicity of permissiveness along URLs paths.

Finally we conducted an evaluation of existing J2EE application server im-
plementations and compared the results to our semantics. An interesting future
research direction includes improving the test methodology and coverage, e.g.,
proving that all the interesting syntactic combinations of configurations are eval-
uated, and conducting larger experiments.

References

1. Coward, D., Yoshida, Y.: Java servlet specification, version 2.4. Technical report,
Sun Microsystems, Inc (November 2003)

2. NIST: CVE-2010-0738. http://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2010-0738 (April 2010)
3. Polyakov, A.: A crushing blow at the heart of SAP J2EE en-

gine. http://dsecrg.com/files/pub/pdf/A%20crushing%20blow%20at%20the%

20heart%20SAP%20J2EE%20engine_whitepaper.pdf (March 2011) 27–29.
4. Bryans, J.: Reasoning about xacml policies using csp. In: SWS ’05, New York,

NY, USA, ACM (2005) 28–35
5. Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control policies. In:

WWW ’07, New York, NY, USA, ACM (2007) 677–686
6. Ahn, G.J., Hu, H., Lee, J., Meng, Y.: Representing and reasoning about web access

control policies. In: COMPSAC ’10, Washington, DC, USA, IEEE (2010) 137–146
7. Ni, Q., Bertino, E., Lobo, J.: D-algebra for composing access control policy deci-

sions. In: ASIACCS ’09, New York, NY, USA, ACM (2009) 298–309
8. Ramli, C.D.P.K., Nielson, H.R., Nielson, F.: The logic of xacml - extended. CoRR

abs/1110.3706 (2011)
9. Bertino, E., Squicciarini, A.C., Paloscia, I., Martino, L.: Ws-ac: A fine grained

access control system for web services. World Wide Web 9 (June 2006) 143–171
10. Yuan, E., Tong, J.: Attributed based access control (abac) for web services. In:

ICWS ’05, Washington, DC, USA, IEEE Computer Society (2005) 561–569
11. Crampton, J., Morisset, C.: Ptacl: A language for attribute-based access control

in open systems. In: POST. Volume 7215 of LNCS, Springer (2012) 390–409
12. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and

change-impact analysis of access-control policies. In: ICSE, ACM (2005) 196–205
13. Naumovich, G., Centonze, P.: Static analysis of role-based access control in j2ee

applications. SIGSOFT Softw. Eng. Notes 29 (September 2004) 1–10
14. Sun, L., Huang, G., Mei, H.: Validating access control configurations in j2ee ap-

plications. In: CBSE’08, Berlin, Heidelberg, Springer-Verlag (2008) 64–79

Re
se
ar
ch
Re
po
rt

A Proofs of Propositions5

Proof (Proposition 1). We first show that ≺ is indeed a partial order for U , as
it is a reflexive, antisymmetric and transitive relation.

Reflexivity requires proving that |u| ≤ |u|, which is trivial, and u = u≤|u|

which follows directly from the definition of URL prefix.
Antisymmetry holds since, assuming u ≺ v and v ≺ u, it follows that |u| = |v|

and hence u = v≤|u| = v≤|v| = v.
For proving transitivity we first state a general property which follows from

the definition of URL prefix:

∀i, j : i < j ⇒ (u≤j)
≤i

= u≤i. (14)

In particular, given URLs u and v, s.t. u = v≤|u|, we can take the l-prefix of

both sides of the equality u≤l = (v≤|u|)
≤l

and conclude, by (14):

l ≤ |u| ⇒ u≤l = (v≤|u|)
≤l

= v≤l. (15)

Therefore, assuming u ≺ w and w ≺ v, we directly have |u| ≤ |w| ≤ |v| and
w = v≤|w| ⇒ w≤|u| = v≤|u| = u, hence u ≺ v.

To prove that u↓ is well-ordered according to ≺, we shall prove that (i) ≺ is
a total order for u↓ and (ii) all its subsets have a least element.

For (i) we need to show that ∀v, w ∈ u↓: v ≺ w ∨w ≺ v. Let |w| ≤ |v|. Since
v ∈ u↓, then v ≺ u, hence v = u≤|v|. As |w| ≤ |v|, we can write v≤|w| = u≤|w| =
w (15), hence w ≺ v. Assuming |v| ≤ |w| we would analogously obtain v ≺ w.

For (ii) we want to prove that ∀S ∈ ℘(u ↓) and ∀v ∈ S, ∃w ∈ S : w ≺ v.
It is easy to see that such element is the URL w having minimum length in S,
because ∀v ∈ S we have w ≺ u, v ≺ u and |w| ≤ |v|, hence w ≺ v.

Proof (Proposition 2). We rewrite u∗ ↓ in terms of the set of u predecessors u↓,
as u∗ ↓= {w′ ⊕ 〈∗〉 | w′ ∈ u↓ ∧w′ ⊕ 〈∗〉 ∈ U}. We know from Proposition 1 that
u ↓ is totally ordered w.r.t. ≺, therefore ∀v, v′ ∈ u ↓ ⇒ v ≺ v′ ∨ v′ ≺ v. If we
assume v 6= v′, it follows from Definition 3 that either |v| < |v′| or |v′| < |v|
hold, hence:

v, v′ ∈ u↓ ∧ v 6= v′ ⇒ |v| 6= |v′|. (16)

We now observe that all the URLs v ∈ u ↓ with v 6= u can’t end with the ∗
symbol by definition. In fact, if such a URL w could exist, then we would have
w = u≤|w| = 〈. . . , ∗〉, and therefore u = 〈. . . , ∗, . . .〉 which is not a URL according
to Definition 2. We can then write v ∈ u↓ ⇒ v|v| 6= ∗ leading, according to (4),
to the following conclusion:

v ∈ u↓ ⇒ |v ⊕ 〈∗〉| = |v|+ 1. (17)

5 Note for the reviewer. This appendix is only provided for the sake of completeness,
but it is not meant to appear in the proceedings. This extended version of the paper
will be made available on-line for interested readers.

Re
se
ar
ch
Re
po
rt

From both (16) and (17) it follows that the URL length function, restricted
to the domain of ∗-predecessors |·| : u∗ ↓→ N, is injective. Indeed ∀w = (v ⊕
〈∗〉),∀w′ = (v′ ⊕ 〈∗〉) with v, v′ ∈ u↓ (resp. w,w′ ∈ u∗ ↓), if v 6= v′ (equivalently
w 6= w′) then |w| 6= |w′|; formally:

w,w′ ∈ u∗ ↓ ∧ w 6= w′ ⇒ |w| 6= |w′|. (18)

Finally, recalling that max(u∗ ↓) = {v ∈ u∗ ↓ | ∀w ∈ u∗ ↓, |w| ≤ |v|}, we
conclude:

(i) if u∗ ↓= ∅ then max(u∗ ↓) = ∅, since @v ∈ u∗ ↓;
(ii) otherwise ∃! w ∈ max(u∗ ↓) and w is the longest URL in u∗ ↓. This follows

since every distinct element of u∗ ↓ is mapped through the injective function
|·| (18) to a distinct element in a finite non-empty subset of N, which is a
totally-ordered set according to the natural ordering of integers, and hence
it has exactly one maximum element.

Proof (Proposition 3). For the only if direction, we assume t1 ≤T t2 and ∆t1 =
true. According to definition of ∆ we have two cases. First case, r = > and
ρt1(u,m) = >, but as t1 ≤T t2, ρt2(u,m) is > too and ∆t2(u,m,>) = true.
Second case, r 6= >, so ρt1(u,m)

d
r 6= ∅, however, as R∗ is a lattice,

d
is

monotonic with respect to ≤R and ≤R ρt2(u,m)
d
r is not empty to. In both

cases we conclude that ∆t2(u,m, r) = true.
For the if direction, we use proof by contrapositive. Assume we have some

u and m such that r1 = ρt1(u,m) and r2 = ρt2(u,m) with r2 ≤R r1 and
r2 6= r1. We consider to cases. If r1 = >, then it suffices to look at the value
for r = >: ∆t1(u,m,>) = true and r2 is different from > so ∆t2(u,m, r) =
false by definition of ∆. Otherwise r1 6= > thus r1 is some subset of R and
r2 ⊆ r1, so we consider an x ∈ r1\r2 which exists as the difference is not empty.
∆t1(u,m, {x}) = true and ∆t2(u,m, {x}) = false as x is in r1 but not in r2.

