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Abstract. Dualization problems have been intensively studied in
combinatorics, AI and pattern mining for years. Roughly speaking,
for a partial order (P,�) and some monotonic predicate Q over P ,
the dualization consists in identifying all maximal elements of P ver-
ifying Q from all minimal elements of P not verifying Q, and vice
versa. The dualization is equivalent to the enumeration of minimal
transversal of hypergraphs whenever (P,�) is a boolean lattice. In
the setting of interesting pattern mining in databases, P represents a
set of patterns and whenever P is isomorphic to a boolean lattice, the
pattern mining problem is said to be representable as sets. The class
of such problems is denoted by RAS.
In this paper, we introduce a weak representation as sets for pattern
mining problems which extends the RAS class to a wider and sig-
nificantly larger class of problems, called WRAS. We also identify
EWRAS, an efficient subclass of WRAS for which the dualization
problem is still quasi-polynomial. Finally, we point out that one rep-
resentative pattern mining problem known not to be in RAS, namely
frequent rigid sequences with wildcard, belongs to EWRAS. These
new classes might prove to have large impact in unifying existing
pattern mining approaches.

1 Introduction

Dualization problems have been intensively studied in combina-
torics, IA and pattern mining for years [4, 8, 13, 9, 10, 14, 18]. Many
applications exist in Logic, Artificial Intelligence [8], databases
and data mining [19] such as satisfiability checking, dualization of
boolean functions, inclusion dependencies and maximal frequent
itemsets. Roughly speaking, for a partial order (P,�) and some
monotonic predicate Q over P , the dualization consists in identifying
all maximal elements of P verifying Q from all minimal elements of
P not verifying Q, and vice versa.

In the setting of pattern mining in databases, many problems
have been studied over the last decade, from (maximal, closed, non-
redundant) frequent itemsets in transactional databases to frequent
sub-graphs in a collection of graphs or satisfied inclusion dependen-
cies in databases to mention a few. From a theoretical point of view,
we argue that the domain has not been deeply investigated and much
work remains to be done to better understand the domain of interest-
ing pattern mining itself [19, 6, 16, 2, 5]. For instance, many prob-
lems appear to be quite different in appearance but turn out to be
equivalent from an algorithmic point of view.

The seminal work of [19] proposes a general framework for in-
teresting pattern mining problems in databases. One of their results
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was to identify the class RAS of pattern mining problems repre-
sentable as sets, i.e. those pattern mining problems isomorphic to
some boolean lattices. As a consequence, the dualization problem
for this class of problems is well understood: it turns out to be equiv-
alent to the minimal transversal problem of a hypergraph [13]. Many
complex pattern mining problems belong to RAS which means that
they essentially reduce to itemset mining.

Paper contribution In this paper, we introduce a weak represen-
tation as sets for pattern mining problems which extends the RAS
class to a wider and significantly larger class of problems, called
WRAS. The key features of such a weak representation are: (1)
the encoding f of patterns into sets and the decoding g of sets into
patterns are two different functions such that g(f(θ)) = θ for all pat-
tern θ ; (2) the encoding preserves the incomparability of patterns, i.e.
θ �� ϕ ⇒ f(θ) �⊆ f(ϕ).
We also identify an efficient subclass EWRAS of WRAS for
which the dualization problem is still quasi-polynomial.
Finally, we point out that one representative pattern mining problem
– known not to be in RAS– namely frequent rigid sequences with
wildcard, belongs to EWRAS. Interestingly and to the best of our
knowledge, it is the first time that an incremental quasi-polynomial
algorithm for the dualization of rigid sequences with wildcard is pro-
posed. These new classes might prove to have large impact in unify-
ing existing pattern mining approaches.

Related work Some theoretical frameworks for pattern mining
have been proposed in the past, e.g. [19, 6, 16, 2, 5, 15]. The
theoretical framework of [19, 16] proposes both complexity results
and algorithms for pattern mining problems. They defined the class
of representable as sets problems reused (and extended) in this
paper. An extension of the tuple relational calculus for pattern
mining problems has been proposed in [6]. Their objective was to
characterize data mining queries that reduce to a levelwise search
strategy. They obtain negative results pointing out that their class
of queries was too expressive. Efficient closed pattern mining has
been studied in [2] in a general framework based on accessible
set systems. The relationship between accessible set systems and
pattern mining problems has been pointed out in [5]. The dualization
problem has been studied by many researchers, among which we
quote [8, 13, 10]. Moreover, a large bunch of techniques developed
for dualization in combinatorics and pattern mining could be re-used
– almost for free – for the classes of pattern mining problems
introduced in this paper [7, 12] .
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Paper organization: Section 2 introduces the necessary material
for the rest of the paper. Weak representation as sets of pattern min-
ing problems is given in Section 3 to extend the dualization problem
to pattern sets not isomorphic to a boolean lattice. Efficient weak
representations of sets are discussed in Section 4. In Section 5, we
show that the frequent rigid sequences with wildcard problem be-
longs to EWRAS. Discussion and concluding remarks are made in
Section 6.

2 Preliminaries

We first recall the framework of Mannila and Toivonen [19] for pat-
tern mining problems. Then we point out that the dualization plays a
crucial role for pattern mining and give some known results on arbi-
trary structures. We finally give the class of problems representable
as sets for which the dualization can be reduced to itemset mining
and therefore to hypergraph transversal.

2.1 A framework for pattern mining problems

Given a database D, a finite language L of patterns, and a predicate
Q for evaluating whether a pattern ϕ ∈ L is true or “interesting” in
D, the discovery task is to find the theory of D with respect to L and
Q, i.e. the set Th(L,D,Q) = {ϕ ∈ L|Q(D, ϕ) is true}.
We suppose that the set of patterns L is structured with a partial or-
der �, known as a specialization/generalization relation between pat-
terns of L. We note θ ≺ ϕ if θ � ϕ and θ �= ϕ.
The predicate Q is monotonic wrt � if for all θ, ϕ ∈ L, ϕ � θ, we
have Q(D, θ) ⇒ Q(D, ϕ).

In the sequel and when clear from context, we will use L instead
of (L,�), Q will be supposed to be a monotonic predicate and a
pattern mining problem will be denoted by a triple (L,D,Q). Given
(L,D,Q), the set Th(L,D,Q) can now be represented by its maxi-
mal elements only.

A set S ⊆ L of patterns is downward (resp. upward) closed under
the relation � if for all φ � θ, θ ∈ S ⇒ φ ∈ S (resp. φ � θ, φ ∈
S ⇒ θ ∈ S)3. For any set of patterns S, we shall denote by ↓ S
(resp. ↑ S) the downward (resp. upward) closed set of S under the
relation �.

A downward closed set S can be represented by two borders: the
positive border of S, denoted by Bd+(S), and the negative border
of S, denoted by Bd−(S). They are defined as follows:

Bd+(S) = {σ ∈ S | �ϕ ∈ S, σ ≺ ϕ}

Bd−(S) = {σ ∈ L \ S | �ϕ ∈ L \ S, ϕ ≺ σ}
Bd+(S) and Bd−(S) are antichains4. Since Q is monotonic,

Th(L,D,Q) =↓ Bd+(Th(L,D,Q)).

2.2 Dualization problems

The dualization problem has been studied in theoretical computer
sciences for years. In our setting, dualization concerns the relation-
ship between the positive border and the negative border. We recall
the associated enumeration and decision problems.

Let us consider a pattern mining problem (L,D,Q) and its
associated theory Th(L,D,Q).

3 S is an ideal (resp. a filter) of the poset (L,�)
4 T ⊆ L in an antichain if for all X,Y ∈ T,X �� Y and Y �� X

Dualization (DualEnum)

Input: D, Bd+(Th(L,D,Q))
Question: Enumerate Bd−(Th(L,D,Q)).

Dualization (DualDecision)

Input: D, Bd+(Th(L,D,Q)) and F ⊆ Bd−(Th(L,D,Q))
Question: Is Bd−(Th(L,D,Q))= F ? Otherwise find θ ∈
Bd−(Th(L,D,Q)) \F .

The complexity depends on the structural properties of the poset
(L,�). Some known results about dualization exist and are given
below:

• (L,�) is isomorphic to a boolean lattice: DualDecision is quasi-
polynomial [13].

• (L,�) is isomorphic to a product of chains: DualDecision is
quasi-polynomial [11]

• (L,�) is isomorphic to a lattice: DualDecision is coNP -
complete [3].

Note that if the decision problem has a quasi-polynomial time
complexity, then there exists an incremental quasi-polynomial time
algorithm to enumerate each element in Bd−(Th(L,D,Q)). Indeed,
we start with an empty set F and at each step either we add an ele-
ment to F and apply the decision problem or the algorithm stops.
In a data mining setting, we suppose that the predicate Q is a function
from patterns and the database to {true, false} which is computable
in polynomial time. Moreover, we suppose that checking compara-
bility in L can be done in polynomial time.

2.3 Set-oriented dualization

In this section, we describe the RAS class, i.e. pattern mining prob-
lems which are representable as sets [19].

Definition 1 Let (L,D,Q) be a pattern mining problem. A finite set
R and a total function f with f : L → P(R)5, denoted by the pair
(R, f), is said to be a representation as sets of (L,D,Q) if:

• f and f−1 are polynomially computable,
• f is bijective and
• for all θ, ϕ, θ � ϕ iff f(θ) ⊆ f(ϕ).

By extension, for any set S ⊆ L, we denote by f(S) the set
∪θ∈S{f(θ)}. The class of pattern mining problems for which a rep-
resentation as sets exists will be referred to as RAS in the sequel.

In this setting, we have a relationship between the positive and
negative borders through the notion of minimal transversal of hyper-
graphs.

Let H ⊆ P(R) be a hypergraph on a set R. We denote by
Max (H) (resp. Min(H)) the set of maximal (resp. minimal) hy-
peredges of H with respect to set inclusion. H is said to be simple
if H = Min(H) = Max (H). A minimal transversal of H is a set
of elements X ⊆ R such that (1) X has a non empty intersection
with every hyperedge of H and (2) X is minimal w.r.t. this property.
We denote by TrMin(H) the set of minimal transversals of H and
H = {R \ E | E ∈ H} the complement of H.

The relationship between the positive and negative border is given
as follows [19]:

5 P(R) denotes the powerset of R.
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Theorem 1 Let (L,D,Q) ∈ RAS, S ⊆ L and (R, f) a represen-
tation as sets of (L, D, Q).
Then Bd−(↓ S) = f−1(TrMin(f(Bd+(↓ S))))

Equivalently, by noticing that whenever H is a simple hyper-
graph, we have H = TrMin(TrMin(H)) [4], and therefore:
Bd+(↓ S) = f−1(TrMin(f(Bd−(↓ S))).

It is worth noting that for any pattern mining problems belonging
to the class RAS, there exists incremental quasi-polynomial time
algorithms [16] to enumerate the positive borders.

We give now a classical example of RAS, i.e. frequent itemsets
over a transactional database (see [1] for notations).

Figure 1. Example of set-oriented dualization

Example 1 Let td0 = {A,ABC,BD,BC,BCD,A} be a
transactional database over I = {A,B,C,D} and a minimum
threshold value of 3. Let us denote the frequency constraint by
Freqc. We have: Bd+(Th(P(I), td0,Freqc)) = {A,BC} and
Bd−(Th(P(I), td0,Freqc)) = {D,AB,AC}.
It is easy to verify that the dualization of {A,BC} gives
{D,AB,AC} (cf Figure 1). �

3 Weak representation as sets

Like [16], we note that the class RAS is quite restrictive. The en-
coding f has to be surjective, and in particular the number of pat-
terns must be a power of two. This is indeed a very strong constraint,
i.e. a large number of pattern mining problems do not have such a
property, even for simple patterns as the following example shows.

Example 2 Let us consider a very simple case of sequence: suppose
an alphabet with 2 letters (e.g. a and b) and an input sequence S of
size 2. The set of all sub-sequences is made up of 7 elements (i.e.
{ε, a, b, aa, ab, ba, bb}). �

The previous example tells us that the number of possible sub-
sequences of a given sequence is not a power of two in general, giv-
ing no hope to identify a representation as sets for sequences (as
notified in [16] for episodes).

The following definition proposes weaker conditions, which we
call weak representation as sets of pattern mining problems. As for
RAS, all patterns should have a set representation but the intuition
is to dissociate the encoding and the decoding while preserving es-
sential properties, mainly (1) the composition of the decoding of the
encoding of a pattern is the identity, (2) the encoding preserves in-
comparability of patterns.

Definition 2 Let (L,D,Q) be a pattern mining problem and ⊥ a
special pattern, ⊥ �∈ L. A finite set R and a pair of total functions
(f, g) with f : L →P(R) and g : P(R) → L ∪ ⊥, denoted by
the triple (R, f, g), is said to be a weak representation as sets of
(L,D,Q) if

1. f and g are polynomially computable
2. for all θ ∈ L, g(f(θ)) = θ
3. for all θ, ϕ ∈ L, f(θ) ⊆ f(ϕ) ⇒ θ � ϕ

The class of such problems will be referred to as WRAS in the
sequel. Several observations can be made:

• From these conditions, f is injective and g is surjective.
• The condition 3 guarantees that the encoding preserves the incom-

parability of patterns, and then is ”borders-preserving”.

With respect to the class RAS, our assumptions are clearly weaker:

• g is not required to be injective, but g ◦ f is the identity.
• f is no longer required to be neither surjective nor monotonic with

respect to �.

We now give some key technical notions underlying the dualiza-
tion in a set-theoretical framework.

Definition 3 Let R be a finite set and E1, E2 two hypergraphs on R.
E1 and E2 are said to be dual in P(R) if ↓ E1∪ ↑ E2 = P(R) and
↓ E1∩ ↑ E2 = ∅. Note that Max (E1) and Min(E2) are simple and
dual.

Lemma 1 [4] Let E1 and E2 be two simple dual hypergraphs on R.
We have:

E1 = TrMin(E2)

E2 = TrMin(E1)

TrMin(TrMin(E1)) = E1

Lemma 2 Let R be a finite set and E , E1, E2 pairwise disjoints sets
on P(R), such that E1 =↓ E1 and E2 =↑ E2. Then P(R) = E ∪
E1 ∪ E2 implies

(1) E∪ ↓ E1 =↓ (E ∪ E1)
(2) E∪ ↑ E2 =↑ (E ∪ E2)

Proof It suffices to note that E∩ ↓ E1 = ∅ since E2 is upward closed
and disjoint with E . The same result holds for the second equality. �

Clearly, f(Bd+(S)) and f(Bd−(S)) are not always dual since f
is not surjective. So we need to identify those elements in P(R) that
do not belong to ↓ f(Bd+(S))∪ ↑ f(Bd−(S)).

Notation 1 In the rest of the paper, we shall denote by E the set
of extra elements defined by E = P(R) \ (↓ f(Bd+(S))∪ ↑
f(Bd−(S))). In Example 1, E = ∅.

Proposition 1 (L,D,Q) ∈ RAS implies E = ∅
Proof Suppose that (L,D,Q) ∈ RAS. Then there exists an encod-
ing f satisfying the Definition 1. Clearly for any S ⊆ L, Bd+(↓ S)
and Bd−(↓ S) are dual in L. Moreover, the poset L is isomorphic
to P(R) where R is the set of the encoding. So f(Bd+(↓ S)) and
f(Bd−(↓ S)) are dual in P(R), and therefore E = ∅. �

Whenever E �= ∅, the idea is then to “push” those extra elements
either towards the negative border or towards the positive borders in
order to get new dual sets.
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Proposition 2 Let (L,D,Q) be a pattern mining problem, S ⊆ L a
downward closed set and (R, f, g) a weak representation as sets of
(L,D,Q). Then

(1) f(Bd+(S)) = TrMin(Min(E ∪ f(Bd−(S))))
(2) f(Bd−(S)) = TrMin(Max (E ∪ f(Bd+(S))))
Proof Clearly, by definition of E , we have P(R) = E∪ ↑
f(Bd−(S))∪ ↓ f(Bd+(S)). Moreover we have E∩ ↑
f(Bd−(S)) = ∅, E∩ ↓ f(Bd+(S)) = ∅. By the condition 3 of
the Definition 2 we have ↓ f(Bd+(S))∩ ↑ f(Bd−(S)) = ∅.

From Lemma 2 we deduce that f(Bd+(S)) and E ∪ f(Bd−(S))
are dual in P(R) and then the Lemma 1 applies. The same proof
holds for the second equality. �

Remark 1 Note that in Proposition 2, we can omit Min in (1) since
for any hypergraph H, we have TrMin(H) = TrMin(Min(H)).
For the same reason we can omit Max in (2) using the complemen-
tary.

Theorem 2 Let (L,D,Q) be a pattern mining problem, S ⊆ L a
downward closed set and (R, f, g) a weak representation as sets of
(L,D,Q). Then

(1) Bd+(S) = g(TrMin(Min(E ∪ f(Bd−(S)))))
(2) Bd−(S) = g(TrMin(Max (E ∪ f(Bd+(S)))))
Proof We only show case (1). The other case is similar. From Propo-
sition 2, we have f(Bd+(S)) = TrMin(E ∪ f(Bd−(S))). Then
g(f(Bd+(S))) = Bd+(S) since for all θ ∈ L, g(f(θ)) = θ (cf.
condition 2 of Definition 2). �

For any WRAS problem, Theorem 2 allows to dualize and reuse
well known existing techniques. Nevertheless, the overhead can be
on the cost to compute the set E .

4 Efficient weak representation as sets

Among weak representations as sets, the notion of efficient weak rep-
resentation as sets characterizes those for which the dualization can
be done in incremental quasi-polynomial time.

Definition 4 Let E+, E− ⊆ E . (E+, E−) is said to be a separating
pair of E if E+ ∩ E− = ∅, E ⊆↓ E+∪ ↑ E−, and f(Bd+(S)) ∪ E+

and f(Bd−(S)) ∪ E− are antichains.

Corollary 1 Let (L,D,Q) be a pattern mining problem, S ⊆ L
a downward closed set, (R, f, g) a weak representation as sets of
(L,D,Q) and (E+, E−) a separating pair of E .
Then

(1) Bd+(S) = Max (g(TrMin(E− ∪ f(Bd−(S)))))
(2) Bd−(S) = Min(g(TrMin(E+ ∪ f(Bd+(S)))))
Proof Using Definition 4, the sets f(Bd+(S)) ∪ E+ and
f(Bd−(S)) ∪ E− are dual.
Now consider the equality (1). Clearly TrMin(E− ∪ f(Bd−(S)))
contains f(Bd+(S)) since f(Bd+(S)) ∪ E+ is an antichain.
Moreover , the elements of E+ which have images by g are
smallest to at least one element of Bd+(S). So Bd+(S) =
Max (g(TrMin(E− ∪ f(Bd−(S))))). The same proof holds for the
second equality. �

The difficulties to have a separating pair come from the following
property: a separating pair may not exist whenever f(L) is not a

convex set, i.e. there exist θ, ϕ ∈ L and X ⊆ R such that f(ϕ) ⊂
X ⊂ f(θ) and X �= f(φ) for any φ ∈ L. This may happen since f
is not surjective.

Theorem 3 Let (L,D,Q) be a pattern mining problem, S ⊆ L
a downward closed set, (R, f, g) a weak representation as sets of
(L,D,Q) such that f(L) is convex. Then there exists a separating
pair of E .

Proof f(L) is convex, i.e. for any θ, ϕ ∈ L and X ⊆ R such that
f(ϕ) ⊂ X ⊂ f(θ) we have X = f(φ) for some φ ∈ L. Consider
the sets defined as follows:

E− = Min({X ∈ E|∃Y ∈ f(Bd+(S)), Y ⊂ X})

E+ = Max (E\ ↑ E−)
Clearly E+ ∩ E− = ∅ and E ⊆↓ E+∪ ↑ E−. Moreover

f(Bd+(S)) ∪ E+ and f(Bd−(S)) ∪ E− are antichains, since E∩ ↑
f(Bd−(S)) = ∅ and E∩ ↓ f(Bd+(S)) = ∅. Then (E−, E+) is a
separating pair of E . �

Definition 5 Let (E+, E−) be a separating pair of E . (E+, E−) is
said to be a efficient if |E+| and |E−| are bounded by a polynom in
the size of the borders of Th(L,D,Q).

The class of efficient WRAS problems, denoted by EWRAS,
consists of WRAS problems for which there exists at least one effi-
cient separating pair.

Theorem 4 The dualization problem of any EWRAS problem can
be polynomially reduced to hypergraph transversal problem.

Proof Suppose (L,D,Q) ∈ EWRAS, (R, f, g) its weak rep-
resentation as sets and S ⊆ L a downward closed set. Let
F = f(Bd+(S)) ∪ E+ where (E+, E−) is a separating pair.
Note that F can be computed in polynomial time in the size of
S, since (L,D,Q) ∈ EWRAS. Moreover f(Bd+(S)) ∪ E+ and
f(Bd−(S)) ∪ E− are dual in P(R). According to Corollary 1,
Bd−(S) = Min(g(TrMin(E+ ∪ f(Bd+(S))))) which is com-
putable in polynomial time, since the decoding g and comparability
checking are in polynomial time. �

5 Applications to rigid sequences with wildcards

We now study a simple but representative pattern mining problems
not representable as sets, namely frequent rigid sequences with wild-
cards. The study of other pattern mining problems such as those in-
volving trees or episodes is out of the scope of this paper.

5.1 Problem statement

Let Σ be an alphabet and � �∈ Σ be a wildcard. Let us fix a finite
string, called an input sequence, S = S[1] · · ·S[n] ∈ Σ∗ of length
n ≥ 0. A rigid motif (or motif) is a string P = P [1] · · ·P [m] ∈
(Σ∪ {�})∗ of length m ≤ n such that P [1] �= � and P [m] �= �. For
motifs P [1..m] and Q[1..n], we say that P occurs in Q at position
p ∈ [1..n], denoted by P �p Q, if for every i ∈ [1..m] we have
either P [i] = Q[p + i − 1] or P [i] = �. The location list for P in
S is the set LS(P ) = {p ∈ [1..n] | P �p S}. The frequence of
P in S is defined by: freq(P, S) = |LS(P )|. A motif P is said to
be k-frequent in S if freq(P, S) ≥ k. The frequency predicate for
sequences is denoted by Freqs.
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We will say that P occurs in Q, denoted by P � Q, if there exists
at least one position p such that P �p Q (i.e. LQ(P ) �= ∅).

Let LS be the set of all rigid motifs over Σ ∪ �. (LS ,�) is a
partial order.

In the sequel, Th(LS , S,Freqs), the theory of the frequent rigid
sequences with wildcard problem, will be referred to as Th(S) to
simplify the notations.

The dualization of frequent rigid sequences with wildcard over
(LS , S,Freqs) can now be stated as follows.

Problem statement SEQ (DualEnum of sequences)

Input: S, Bd+(Th(S))
Question: Enumerate Bd−(Th(S)).

Example 3 Let us consider a simple sequence S = abab defined
over Σ = {a, b} and a minimum threshold value of 2. We get:
Bd+({ab, a, b}) = {ab},
Bd−({ab, a, b}) = {aa, bb, ba, a � a, a � b, b � a, b � b} �

SEQ does not belong to the class RAS as shown in Example 2.

5.2 Weak representation as sets for SEQ

Let S = S[1] · · ·S[n] be a sequence. First, we define a classical
encoding of sequences into sets: Let R = {(i, x)|i ∈ [1..n], x ∈ Σ}.

Second, we define a set encoding function f from LS to P(R) as
follows: Let P [1..m] ∈ LS . We define f as:

f(P ) = {(i, P [i]) | i ∈ [1..m], P [i] �= �}
Example 4 Continuing Example 3, we have R = {(1, a), (2, a),

(3, a), (4, a), (1, b), (2, b), (3, b), (4, b)} and f(abab) = {(1, a),
(2, b), (3, a), (4, b)}, f(ab � �b) = {(1, a), (2, b), (5, b)}. �

Moreover, as the following example shows, f is neither surjective
nor monotonic.

Example 5 Let X = {(1, a), (2, b)} and X′ = {(2, a), (3, b)}.
The sequence ab corresponds to X by f while X ′ is not an image by
f ; hence f is not surjective.
Let bb and abb be two patterns. We have f(bb) �⊆ f(abb) whereas
bb � abb ; hence f is not monotonic. �

Let us now characterize elements of P(R) which are not images
of f . Given a pattern P ∈ LS , two remarks can be done:

• the image f(P ) must contain a unique symbol in each index; and
• f(P ) also contains (1, x) for some symbol x ∈ Σ.

As a consequence, two sets F+ and F− can be identified as fol-
lows:

F+ = {{(i, x) | x ∈ Σ, i ∈ [2..n]}}
F− = {{(1, x), (1, y) | x, y ∈ Σ, x �= y}} ∪

{{(1, x), (i, y), (i, z)} | x, y, z ∈ Σ, y �= z, i ∈ [2..n]}
The sets ↓ F+ and ↑ F− characterize useless elements of P(R),

i.e. those elements which do not have an image by the encoding f .
Example 6 Continuing Example 3, we have:

F+ = {{(2, a), (3, a), (4, a), (2, b), (3, b), (4, b)}}
F− = {{(1, a), (1, b)}, {(1, a), (2, a), (2, b)}, {(1, b), (2, a), (2, b)},
{(1, a), (3, a), (3, b)}, {(1, b), (3, a), (3, b)}, {(1, a), (4, a), (4, b)},
{(1, b), (4, a), (4, b)}} �

Consequently, the decoding function g is defined as follows:

g(X) =

{
θ if X = f(θ)
⊥ otherwise (i.e. X ∈↑ F−∪ ↓ F+)

Lemma 3 Let A ∈ P(R) such that A �∈ ↑ F− and A �∈ ↓ F+.
Then f(g(A)) = A.

Proof Clearly, if (i, x) ∈ A and (j, y) ∈ A implies i �= j. Moreover
there is at most one pair (1, x) ∈ A with x ∈ Σ. We conclude that
there is θ ∈ LS such that g(A) = θ and therefore f(g(A)) = A. �

In other words, there is a bijection between LS and P(R) \ (↑
F−∪ ↓ F+).

Theorem 5 SEQ belongs to WRAS.

Proof Let us show that (R, f, g) satisfies the conditions of the Defi-
nition 2. Let θ ∈ LS . We have (1, θ[1]) ∈ f(θ) and for all i ∈ [2..n],
{(1, z), (i, x), (i, y)} �⊆ f(θ) and {(1, x), (1, y)} �⊆ f(θ) . Then
from Lemma 3, we conclude that f(g(f(θ))) = f(θ). Or f is injec-
tive, then g(f(θ)) = θ
Let θ, ϕ ∈ LS such that f(ϕ) ⊆ f(θ). Then we have g(f(θ)) = θ
and g(f(ϕ)) = ϕ and θ[1] = ϕ[1] since there is (1, x) ∈ f(ϕ) and
it must be in f(θ). This concludes that ϕ � θ since � � x for x ∈ Σ.
�

5.3 Efficient weak representation as sets for SEQ

In this section we show that the set E can be partitioned into sets
E+ and E− and have polynomial size in the size of borders of
(LS , S,Freqs). First we give some properties for the encoding f and
the decoding g.

Proposition 3 f(LS) is convex.

Proof We need to show that ϕ, θ ∈ LS , X ⊆ R such that
f(ϕ) ⊆ X ⊆ f(θ). Then there exists α ∈ LS with f(α) = X and
ϕ � α � θ. Suppose f(ϕ) ⊆ X ⊆ f(θ). Then exists (1, x), x ∈ Σ
such that (1, x) ∈ X since f(ϕ) ⊆ X . On the other side, for
any i ∈ [2..n], x, y, z ∈ Σ we have {(1, x), (1, y)} �⊆ X and
{(1, x), (i, y), (i, z)} �⊆ X , since X ⊆ f(θ). Thus there exists α
such that f(α) = X . �

From Theorem 3, we deduce that the set E = P(R) \ (↑
f(Bd−(LS , , S,Freqs))∪ ↓ f(Bd+(Th(L,D,Q)S))) has a sepa-
rating pair. Now the question is how to obtain an efficient partition.
The difficulties come from the facts that (1) the set E may contain
images of the encoding f , and (2) the computation of the sets E+

and E−.
Therefore, we characterize elements of E that are images of the en-

coding f ; such elements are images of patterns that are either greater
than an element of the negative border or smaller than an element of
the positive border.
Second, we define the successor and predecessor as follows:
Let θ ∈ E . The set Succ(θ) = {x�i θ | i ∈ [0..n−|θ|−1], x ∈ Σ}.
Dually we define Pred(θ) = {θ[i..|θ|] | i ∈ [2..|θ|]}.

Example 7 Let Σ = {a, b}, θ = bb, θ′ = babba and n = 5. Then
Succ(θ) = {abb, bbb, a�bb, b�bb, a��bb, b��bb} and Pred(θ′) =
{abba, bba, ba, a}. Clearly for all ϕ ∈ Succ(θ), θ � ϕ and for all
ϕ ∈ Pred(θ′), ϕ � θ′ �

Lemma 4 Let ϕ, θ ∈ LS such that ϕ � θ. Then
(1) there exist α ∈ {ϕ} ∪ Succ(ϕ) such that f(α) ⊆ f(θ), and
(2) there exist φ ∈ {θ} ∪ Pred(θ) such that f(ϕ) ⊆ f(φ),

Proof Let θ, ϕ ∈ LS and ϕ � θ. Then there exists an index i ∈
[1..|θ|] such that for all j ∈ [1..|ϕ|], ϕ[j] = θ[i+ j−1] or ϕ[j] = �.
(1) Clearly if i = 1 then α = ϕ. Now suppose i > 1. Let α[1] =
θ[1], α[j] = �, j ∈ [2..i− 1] and α[i+ k − 1] = ϕ[k], k ∈ [1..|ϕ|].
Then α ∈ Succ(ϕ) and f(α) ⊆ f(θ) by construction.
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(2) Let φ = θ[i..|θ|]. Then φ ∈ {θ} ∪ Pred(θ), and f(ϕ) ⊆ f(φ).
�

We show how to extend the borders f(Bd+(Th(S))) and
f(Bd−(Th(S))) to E+∪f(Bd+(Th(S))) and E−∪f(Bd−(Th(S)))
such that all images of f are either in ↓ (E+ ∪ f(Bd+(Th(S))) or
↑ (E−∪f(Bd−(Th(S))). Consider the sets F ′+ and F ′− defined as
follows:

F ′+ =
⋃

θ∈Bd+(Th(S))

f(Pred(θ))

F ′− =
⋃

θ∈Bd−(Th(S))

f(Succ(θ))

Now we are able to give the sets E+ and E−:

E+ = Max (F+ ∪ F ′+ ∪ f(Bd+(Th(S)))) \ f(Bd+(Th(S)))

E− = Min(F− ∪ F ′− ∪ f(Bd−(Th(S)))) \ f(Bd−(Th(S)))

Example 8 Consider the sequence S = aba and a fre-
quency threshold of 2. Then we get Bd+(Th(S)) = {a} and
Bd−(Th(S)) = {b, aa, a � a}. LS is encoded in P(R) with
R = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}. We have:
f(Bd+(Th(S))) = {(1, a)},
f(Bd−(Th(S))) = {{(1, b)}, {(1, a), (2, a)}, {(1, a), (3, a)}},
F+ = {{(2, a), (2, b), (3, a), (3, b)}},
F− = {{(1, a), (1, b)}, {(1, a), (2, a), (2, b)}, {(1, b), (2, a), (2, b)},
{(1, a), (3, a), (3, b)}, {(1, b), (3, a), (3, b)}},
F ′+ = Pred(a) = ∅ and
F ′− = f(Succ(b)) ∪ f(Succ(aa)) ∪ f(Succ(a � a)) =
f({ab, bb, a � b, b � b}) ∪ f({aaa, baa}) ∪ f(∅) =
{{(1, a), (2, b)}, {(1, b), (2, b)}, {(1, a), (3, b)},
{(1, b), (3, b)}, {(1, a), (2, a), (3, a)}, {(1, b), (2, a), (3, a)}}.

Finally, we obtain:
E+ = {{(2, a), (2, b), (3, a), (3, b)}} and
E− = {{(1, a), (1, b)}, {(1, a), (2, a), (2, b)}, {(1, b), (2, a), (2, b)},
{(1, a), (3, a), (3, b)}, {(1, b), (3, a), (3, b)}, {(1, a), (2, b)},
{(1, a), (3, b)}}} �

Proposition 4 E+ ∪ f(Bd+(Th(S))) and E− ∪ f(Bd−(Th(S))))
form a separating pair of E .

Proof First note that ↓ F+∩ ↑ F ′− = ∅. Moreover, by construction
of the sets F ′+ and F ′− we have f(Bd+(Th(S))) ∩ E+ = ∅ and
f(Bd−(Th(S)))∩ E− = ∅. From Lemma 3 and 4, we conclude that
they are dual. �

Theorem 6 SEQ belongs to EWRAS.

Proof From Proposition 4, we conclude that Corrollary 1
can be applied. Moreover the size of E+ is bounded by n ×
|Σ| × |Bd+(LS , S,Q))| and the size of E− by n × (|Σ|3 +
|Bd−(LS , S,Q)|) �

6 Conclusion and Discussion

The main contribution of this paper is to extend the class of problems
representable as sets of [19], i.e. the class of problems for which du-
alization based on minimal transversal applies, to a wider class of
problems. We have proposed the notion of weak representation as
sets of pattern mining problems from which we have defined an effi-
cient subclass: Its main merit is to ensure the existence of an incre-
mental quasi-polynomial algorithm for the dualization problem and

hence, for the pattern mining mining problem itself. We have consid-
ered in this paper only one reduction to EWRAS for rigid sequences
with wildcards. Many other pattern mining problems have to be re-
visited in this setting, such as those involving episodes, graphs or
queries in database [17].

The new classes of pattern mining problems introduced in this pa-
per should be much more wider and might prove to have large impact
in unifying existing pattern mining approaches.
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