
Learning Weighted Sparse Representation of Encoded Facial Normal 

Information for Expression-Robust 3D Face Recognition 

Huibin Li1,2, Di Huang1,2, lean-Marie Morvan1,3,4, Liming Chen1,2 
lUniversite de Lyon, CNRS, 2Ecole Centrale de Lyon, URIS UMR5205, F-69134, Lyon, France 

3Universite Lyon 1, Institut Camille Jordan, 43 blvd. du 11 Nov. 1918, F-69622 Villeurbanne - Cedex, France 

4King Abdullah University of Science and Technology, GMSV Research Center, Bldg 1, Thuwal 23955-6900, Saudi Arabia 

{huibin.li,di.huang,liming.chen}@ec-lyon.fr 
morvan@math.univ-lyonl.fr 

Abstract 

This paper proposes a novel approach for 3D face recog

nition by learning weighted sparse representation of encod

ed facial normal information. To comprehensively describe 

3D facial surface, three components, in X, Y, and Z-plane 

respectively, of normal vector are encoded locally to their 

corresponding normal pattern histograms. They are finally 

fed to a sparse representation classifier enhanced by learn

ing based spatial weights. Experimental results achieved on 

the FRGC v2.0 database prove that the proposed encoded 

normal information is much more discriminative than origi

nal normal information. Moreover, the patch based weights 

learned using the FRGC vl.O and Bosphorus datasets also 

demonstrate the importance of each facial physical compo

nent for 3D face recognition. 

1. Introduction 
In recent years, 3D face recognition technologies have 

achieved considerable progress mainly in: i) automatic 
and accurate facial landmark localization under expression, 
pose and occlusion variation [25] ;  ii) efficient face registra
tion algorithm for pose normalization [34];  iii) discrimina
tive 3D facial shape descriptors [15] [14];  iv) robust models 
or learning strategies to reduce the influences caused by fa
cial expression variations [9] [19] [32] ; v) high performance 
and low computational cost [29].  However, all these issues 
need to be improved to meet the requirements in the real 
world. 

Focusing on issues iii and iv, this paper explores a 
discriminative facial shape descriptor and investigates an 
expression-robust algorithm by learning strategy. To ad
dress issue iii, we propose a novel facial shape descrip
tor, named multi-scale local normal patterns (MS-LNPs), 
to represent local shape variations by encoding their normal 
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Figure 1. A simple example illustrating that the encoded normal 

information is more discriminative than the original normal infor

mation. The three scans (rang images), from left to right: a gallery 

face of subject A, a probe face of subject A, a gallery face of sub

ject B. 

information. As we known, curvatures and shape index [15] 
are widely used for facial surface characterization. Howev
er, surface normal, which determines (at each point) the ori
entation of the facial surface, has not been well discussed. 
To the best of our knowledge, Abate et al. [2] [3] [4] [I] 
introduced normal map to describe facial surface but this 
direct use of normal information in the holistic way did not 
achieve a satisfying result compared with the state of the 
art. Kakadiaris et al. extracted wavelet coefficients from 
normal and geometry maps, and reported a rank one recog
nition rate of 97% on the FRGC v2.0 database, however, the 
wavelet transform is computationally expensive [16].  In
spired by the competitive performance and computational 
efficiency of local descriptors, such as LBP [22] [5], SIFT 
[18], and more recently DAISY [31], we propose to encode 
original normal information, X, Y and Z components, in a 
local manner to generate histograms of Local Normal Pat
terns (LNPs), similar to the way LBP does for texture de
scription. The idea behind it is that different shapes can 



(a) (b) (c) (d) 
Figure 2. (a) and (b), a 2D facial image divided into patches, and 

the patch weights for recognition [5] ,  (c) and (d), a 3D facial sur

face divided into patches, and the patch weights for recognition 

are unknown. 

be described by different LNPs. As illustrated by a simple 
example in Fig. 1, the discriminative power is defined as: 
DP = similarity(intra-c1ass )/similarity(inter-c1ass); a bigger 
value of DP indicates a stronger discriminative power. The 
proposed feature (marked in blue cross) increases DP and 
thereby improves the discriminative power of original nor
mal information (marked in red circle). 

To pursue expression-robust 3D face recognition, some 
works dedicated to choose rigid facial regions, such as nose 
region [10], since they are expected to change less when 
facial expression appears. However, there has been no s
tudy to show a large subset of the face that is perfectly 
shape invariant across all facial expressions, meanwhile, the 
useful information conveyed in non-rigid facial areas is ig
nored. Some methods tried to model a virtual face to im
prove the discrimination of non-rigid regions by distorting 
the shape of entire face region, but it also changed the rigid 
parts, leading to the loss in discriminative power [9] .  All 
the above facts demonstrate that it is not so straightforward 
to segment rigid facial parts from non-rigid ones, and non
rigid areas still contain the information which is important 
for identification. In our view, a better alternative to solve 
this problem is finding the average quantification weights 
for all facial regions or facial physical component such as 
eyes, nose, mouth, etc. according to their importance in 3D 
face recognition. As shown in Fig.2 a) and b), the quan
tification weights of local patches for 2D face recognition 
has been investigated [5], and in this paper, we present their 
corresponding weights in the viewpoint of machine learn
ing and demonstrate their effects for expression-robust 3D 
face recognition. 

Our contributions are: i) propose a novel compact facial 
surface descriptor named MS-LNPs (multi-scale local nor
mal patterns); ii) Find out the average quantification weight
s of local patches for expression-robust 3D face recognition. 

The rest of the paper is organized as follows. In sec
tion 2, we present the construction of the proposed LNPs 
(local normal patterns) descriptor, including normal estima
tion and encoding. Section 3 introduces the weighted sparse 
representation classifier. Section 4 shows the experimental 
settings and experimental results. Finally, we conclude the 
paper in section 5. 

2. Local normal patterns facial descriptor 
2.1. Normal estimation 

Existing normal estimation methods can be roughly clas
sified into optimization-based methods and averaging meth
ods [17]. Base on the format of face data used in this 
paper, we employ optimization-based local plane fitting 
method. A 3D facial surface can be represented by a set 
of n points written as a n x 3 matrix: P = [PI, P2, ... , Pn]T, 
where Pi = [Pix, Piy, Piz]T, i = 1,2, ... , n; denotes the 
3D coordinates of measured points. For each point Pi, 
its normal vector ni = [nix, niy, niz]T can be estimat
ed from its neighborhood consisting of m points Qi = 

{qil, qi2, ... , qim}, qij E P, qij i=- Pi· We refer to the m x 3 
matrix Qi = [qil, qi2, ... , qim]T and the (m + 1) x 3 ma
trix Qi = [Pi, qil, qi2, ... , qim]T represent the neighbor
hood points Qi and its extended neighborhood points Qi 
containing Pi. Estimate normal vector ni can be modeled 
by solving the optimization problem: 

(1) 

Here we choose the cost function J(Pi' Qi, ni) as the dis
tance of neighborhood points Qi to a local plane Si = 

nix X + niyY + nizz + d, i.e. solve 

(2) 

where 1m+! represents an (m + 1) x 1 vector of ones. This 
optimization problem can be solved by linear least square 
method. Since current face models are usually saved as 
range images, it is easy to choose the neighborhood points 
and in this paper, we utilize the neighborhood points in a 
5 x 5 window as did in [13], i.e. Qi = {qil, qi2, ···, qi24}. 
The estimated normal vectors are then normalized to unit 
vectors. 

2.2. Normal encoding with local normal patterns 
Inspired by the discriminative power and computational 

simplicity of Local Binary Patterns (LBP) to describe 2D 
texture, we encode each normal component, X, Y and Z 
respectively as LNPs (local normal patterns). Given a scan 
face model represented by an m x n x 3 matrix as follows, 

where Pij(X, Y , z) = [Pijx, Pijy, Pijz]T represents the 3D 
coordinates of the point Pij. Its unit normal vector matrix 
(m x n x 3) is 

N(P) = {n(Pij(x, y, z))}mxn = {nijk}mxnx{x,y,z}, 
(4) 

where n(Pij(x, y, z)) = [nijx, nijy, nijzV denotes the unit 
normal vector of Pij. Further, each normal component can 



Figure 3. Left three, images of normal components X, Y and Z; 

right three, their corresponding encoded normal information rep

resented as images (using the neighborhood Ql,S). 
be represented by an m x n matrix: 

{N(X) = {nijx}mxn, 
N(P) = N(Y) = {nijy}mxn, 

N(Z) = {nijz}mxn. 

where -1 :s; nijk :s; I, k E {x,y,z}. 

(5) 

This kind of matrix form, which is convenient for us to 
locate the neighborhood of each normal component of any 
point Pij for the following encoding step, and the neighbor
hood of 3D point Q(Pij) can be in the same way as pixels 
in 2D images. Specifically, the value of every point in each 
normal component i.e. X, Y, and Z, is compared with its 
neighbors in a pre-defined neighborhood. A local neighbor
hood is defined as a set of sampling points evenly spaced on 
a circle which is centered at the pixel to be labeled, and the 
sampling points that do not fall within the pixels are inter
polated using bilinear interpolation, thus allowing for any 
radius and any number of sampling points in the neighbor
hood. FigA shows two examples of the neighborhood of 
LNPs, where the notation Qn,m denotes a neighborhood of 
m sampling points on a circle of radius of n. After sub
tracting the center pixel value, the resulting strictly negative 
values are encoded with 0 and the others with 1; a binary 
number is thus obtained by concatenating all these binary 
codes in a clockwise direction starting from the top-left one 
and its corresponding decimal value is used for labeling. 
The derived binary numbers are referred to as Local Normal 
Patterns. Formally, given a point Pij, its normal component 
noted as nijk(O), the derived LNPs decimal value is: 

m -l 
LNPs(Qn,m(Pij)) = L t(nijk(q) - nijk(0))2Q, (6) 

Q=l 

where t(x) = I, if x?: 0 and t(x) = 0, if x < O. 

- e--., 
1--I� 01, I + 0 " 

Figure 4. Examples of the neighborhood of LNPs: Ql,S and Q2,16. 
LNPs(Qn,m) encodes local normal variations of 

each normal component as decimal value, noted by 
e({ nijdmxn), k E {x, y, z}. See Fig.3 for an example of 
LN Ps( Ql,S) on three facial normal components of same 

subject. It extracts the differential structure at point level. 
In order to describe a local shape region, histogram statistic 
is introduced as facial feature vector. For a given normal 
component k E {x, y, z}, the histogram of encoded normal 
component e ( {nijdmxn) can be defined as: 

H = L I{e({nijk}mxn) = I}, 1 = 0, ... , R -I, (7) 
i,j 

where R is the encoded decimal number, for Ql,S , R 
2s = 256. I{A} = 1,ifAis ture,elseI{A} = O. This 
histogram contains the local micro-patterns of normal com
ponent over the whole face model. 

2.3. LNPs Based Facial Representation 
To utilize spatial information of facial shape, each fa

cial normal component, X, Y and Z, can be further divided 
into several patches, from which local normal patterns his
tograms H are extracted; then concatenated by facial con
figuration to form a global histogram G to represent the fa
cial normal (see Fig.5). Finally, the original facial surface is 
described by three global feature histograms G x, Gy, and 
Gz· 

(Feature Histogram) 

LNP 

Figure 5. LNPs based facial representation. 

3. Weighted sparse representation classifier 
Based on the model of face subspace claiming that a 

well-aligned frontal face image under different lighting con
ditions and various facial expressions lies close to a spe
cial low-dimensional linear subspace spanned by sufficien
t training samples from the same subject, J.Wright et.al 
[33] modeled the face recognition problem by solving the 
h minimization sparse representation and proposed sparse 
representation-base classification (SRC) classifier. 

Analogously, we assume that a well-aligned frontal test 
3D face model represented by a feature vector under dif
ferent facial expressions approximately lies in a linear sub
space spanned by the 3D faces in the training set (represent
ed by the same type of facial features) associated with the 
same subject. 

That is, given ni training samples of i-th subject, Ai = 

[Vi,l, Vi,2, ... ,Vi,nJ E IRmxni, any test sample y E IRm 

from the same subject can be represented by: 

where ai,j E IR, j = 1,2, . . .  , ni. 



However, unlike 2D face images with different illumi
nation conditions, the only difference between two well
aligned 3D face models from the same subject is the local 
shape distortion caused by expression variations. To fairly 
compare the result with the state of the art, SRC is modeled 
with one training model (ni = 1) from each subject by in
troducing an additional error term E E lRm. Model (8) can 
be modified as: 

(9) 

where y E lRm, Vi E lRm and ai E lR represent a probe 
face, a gallery face from the same subject and their linear 
scalar factor respectively. 

Recall that in this paper face models are divided in
to K different regions, the feature vector Vi hence can 
be rewritten as Vi = [Vl1 ; V 12; ... ; VIK] ,  where Vik E 
lR(m/K)xl, k 1,2, ... ,K, according to the MATLAB 
convention: 

[Xl;X2] � [��] 
To reduce the model error E in (9), we learned different 
weights Wi, (i = 1,2, . . .  , K) for different regions based 
on their rank-one recognition rates. Then, we have: 

and 
W(y) = [WlYl; W2Y2;···; WKYK]. 

(9) can be rewrite as 

(10) 

(11) 

Considering the whole gallery set with n 3D faces, 
each of which belongs to one subject, W(A) ...:.. 
[W(Vl), W(V2), ... , W(vn)] E lRmxn and any probe 
W(y) E lRm, (12) can be rewritten as 

W(y) = W(A)x + E, (13) 

where x = [0, . . .  ,0, ai, 0, ... , O]T E lRn is the coefficient 
vector whose entries are zero except the one associated with 
the i-subject. we named (13) as weighted sparse representa
tion which is equivalent to solve the following 11 minimiza
tion problem: 

Xl = argminxll xlllS·t.IIW(A)x - W(Y)1 12 :s; IIEI12' 
(14) 

We employ the OMP [23] algorithm to solve (14) and com
pute the residuals: 

ri(W(y)) = IIW(y) - W(A)Oi(xdI12' i = 1,2, ... , n. 
(15) 

where Oi is a characteristic function which selects coeffi
cient associated with i-th gallery. Finally, the index of min
imal ri(W(y)) corresponding to identity of y. we call this 
sparse representation classifier enhanced by introducing s
patial weights as W-SRC in the subsequent. 

4. Experimental results 

4.1. Databases and preprocessing 

In our experiments, three datasets are used: FRGC 
v 1.0 [26] and Bosphorus [28] for learning weights and 
FRGC v2.0 [26] for evaluation. The FRGC v 1.0 dataset 
(Spring2003) consists of 943 textured 3D face models of 
275 subjects with neutral expression. The FRGC v2.0 
dataset (Fa1l2003 and Spring2004) is made up of 4007 tex
tured 3D face models of 466 subjects with different facial 
expressions. The Bosphorus dataset contains 4666 textured 
3D face models of 105 subjects in various facial expres
sions, pose and occlusion conditions. The 3D face mod
els in all these three datasets are displayed in the form of 
range images, with a resolution of 640 x 480 for FRGC 
v1.0 and FRGC v2.0, and 1600 x 1200 for Bosphorus. The 
x, y, and z-coordinates of each 3D face model are contain
ing in three matrices respectively. All the face models were 
preprocessed using the tool developed by P. Szeptycki [30], 
containing removing spikes and noise, filling holes, 3D nose 
tip detection, face cropping (for FRGC datasets). Then an 
ICP [34] based fine registration was employed to correct 
pose variations. 

4.2. Experimental Settings 

To evaluate the proposed approach, five experiments 
were designed for face recognition on FRGC v 2.0 dataset, 
including the effectiveness of facial features, classifier per
formance, the importance of different local patches, the 
comparison with the state of the art, as well as the robust
ness analysis to facial expression variations. The first scan 
from each subject was used to make a gallery of 466. The 
remaining 3D face scans were treated as probes. Before en
coding the normal information, three normal components 
nx, ny and nz matrices are resized as 120 x 96 respectively. 
Each matrix is divided into 10 x 8, 6 x 6 and 3 x 3 win
dows corresponding to sizes of 12 x 12, 20 x 16 and 40 
x 32 local patches for the operators Ql,8, Q2, 16 and Q3,24 
respectively, and their similarity measurements were finally 
combined to achieve a multi-scale based accuracy. Similar 
to LBP, in order to reduce the dimensionality of final facial 
features, the uniform pattern strategy [22] was adopted to 
decrease the number of bins in each local patch. 

To highlight the importance of different patches for iden
tification, 838 face modes of 267 subjects in the FRGC v 1.0 
dataset were selected to learn the weights of patches. At 
the same time, 2909 face models of 105 subjects without 
occlusions and rotations were chosen from the Bosphorus 
dataset for comparison since it contains informative expres
sion variations while FRGC v 1.0 does not. To solve (14), 
OMP algorithm with sparse number L = 30 was used. 



4.3. Experimental results 
4.3.1 Experiment I: Comparison of facial features 

To test the effectiveness of the proposed LNPs based facial 
feature, we compared it with two kinds of facial features: 
i) the original normal information based facial features NX, 
NY and NZ, which were achieved simply by stacking the 
columns of each normal component matrices nijx, nijy and 
nijz respectively, and their fusion NXYZ. ii) Local shape 
feature achieved by using LBP operator, LBP2,16. For a 
fair comparison, LNPs descriptor used the same parameter 
with LBP to extract feature vector on each normal compo
nent, noted as LNPX, LNPY and LNPZ, and their fusion 
LNPXYZ. All features were finally fed to SRC classifier 
[33].  When considering that the three components X, Y 
and Z have the same weights for face recognition, in this 
paper, score-level fusion using a simple sum rule was em
ployed, other fusion rules such as learning the weights of 
the scores can also been used. The results are shown in 
Table 1, we can see that our descriptor performs much bet
ter (about 20% higher) than the original un-encoded nor
mal feature; This given a statistical illustration for the idea 
shown in Fig.1. On the other side, without normal informa
tion, the result based on the range images directly encoded 
by LBP operator is about 5% lower than that of each en
coded normal component and 10% lower than their fusion 
LNPXYZ(Q2,16). 

Approches Rank-one Scores 
(I) NX + SRC 67.83% 

(2) NY + SRC 65.62% 

(3) NZ+SRC 71.63% 

(4) NXYZ + SRC 73.19% 

(5) LB P2,16 + SRC 82.07% 

(6) LNPX(Q2,16) + SRC 87.01% 

(7) LNPY(Q2,16) + SRC 86.13% 

(8) LNPZ(Q2,16) + SRC 88.43% 

(9) LNPXYZ(Q2,16) + SRC 92.60% 

Table 1. Comparison of rank-one recognition rate using different 

features on the FRGC v2.0 database 

4.3.2 Experiment II: Comparison of classifiers 

Normally, Chi-Square distance based classifier is more pop
ular and efficient than other classifier especially for deal
ing with histogram based feature [24]. Table 2 illustrates 
that using our proposed features, the sparse representation
based classifier (SRC) always surpasses about 8.5% higher 
than the Chi-Square distance based classifier. 

Approches Rank-one Scores 
(1) LNPX(Q2,16) + Chi-Square 77.36% 

(2) LNPX(Q2,16) + SRC 87.01% 

(3) LNPY(Q2,16) + Chi-Square 77.87% 

(4) LNPY(Q2,16) + SRC 86.13% 

(5) LNPZ(Q2,16) + Chi-Square 81.33% 

(6) LNPZ(Q2,16) + SRC 88.43% 

(7) LNPXYZ(Q2,16) + Chi-Square 82.64% 

(8) LNPXYZ(Q2,16) + SRC 92.60% 

I 
Table 2. Comparison of rank-one recognition rates using different 

classifiers on the FRGC v2.0 database 

4.3.3 Experiment III: Comparison of weights of patch
es associating to different learning databases 

Learned from the FRGC v 1.0 and Bosphorus datasets, the 
weights of patches were achieved by following the steps be
low: i) divide each normal component into local patches; 
ii) extract feature vector of each patch by LNPs; iii) com
pute recognition rate for each patch using SRC classifier. 
iv) recognition rates are normalized as patch weights. 

Fig. 6 shows the average quantification weights of local 
patches of each normal component X, Y and Z learned from 
Bosphorus dataset. Each normal component matrix was di
vided into 6 x 6 windows for LNPs with Q2,16. The weights 
are encoded by gray values where darker ones indicate low
er weights while the brighter ones indicate higher weight
s. For example, the rigid regions including nose, eyes and 
forehead (patches circled by red lines) are assigned to high
er weights and they totally possess about 56% importance 
of the whole face area for identification. While the mouth 
region has only about 2.8% importance. It is worth noting 
that facial cheek regions (in two sides), which are usually 
considered as non-rigid regions, own about more than 20% 
importance, showing that there also exists much informa
tion which is critical to recognition conveyed in non-rigid 
facial regions. In addition, the weights of 3D facial regions 
are quite different from those of 2D based ones, especially 
in the nose region as compared with Fig.2(b). This kind of 
differences may be caused by the different data properties 
between 2D and 3D. 

(1) (2) (3) (4) (5) (6) 

Figure 6. Images (1, 3, 5) of normal components X, Y and Z divid

ed by 6 x 6 patches, images (2, 4, 6) of their corresponding weights 

of patches learned from Bosphorus database (LNPs Q2,16). Dark

er patches indicate lower weights, while brighter ones indicate 

higher weights. 

To evaluate the effectiveness of patch-weights, we com
pared the performance of un-weighted sparse representation 
classifier (SRC) and weighted sparse representation classi
fier (W-SRC) (Table 3). Table 3 presents that both F-W
SRC (learned by FRGC v 1.0) and B-W-SRC (learned by 
Bosphorus) performance slightly better than SRC except 
LNPX(Q2,16) + F-W-SRC. For the final fusion score, the 
improvement was about 1 % and 2% by F-W-SRC and B
W-SRC respectively. These results demonstrate W-SRC is 
efficient. On the other hand, since Bosphorus contains of in
formative models with different expressions it is thus more 
helpful than FRGC v 1.0 to identify the expression models 
of FRGC v2.0. 



Approches Rank-one scores 
(I) LNPX(Q2.16)+ SRC 87.01% 

(2) LNPX(Q2.16) + F-W-SRC 86.63% 

(3) LNPX(Q2.16) + B-W-SRC 88.62% 

(4) LNPY(Q2.16)+ SRC 86.13% 

(S) LNPY(Q2.16) + F-W-SRC 88.40% 

(6) LNPY(Q2.16) + B-W-SRC 88.88% 

(7) LNPZ(Q2,16) + SRC 88.43% 

(8) LNPZ(Q2,16) + F-W-SRC 88.6S% 

(9) LNPZ(Q2,16) + B-W-SRC 90.41% 

(10) LNPXYZ(Q2.16) + SRC 92.60% 

(II) LNPXYZ(Q2.16) + F-W-SRC 93.S9% 

(12) LNPXYZ(Q2,16) + B-W-SRC 94.61% 

Table 3. Comparison of rank-one recognition improvements on the 

FRGC v 2,0 database using patch weights learned from FRGC 

v1.0 (F-W-SRC) and Bosphorus (B-W-SRC) databases respective

ly. 

4.3.4 Experiment IV: Comparison to the State-of-art 

In Table 4, MS-LNPs was achieved by combining the result
s of three scales: Ql,S, Q2, 16 and Q3,24. The performance 
of each multi-scale normal component (13), (14) and (15) 
(Table 4) is better than their corresponding single scale (3), 
(6) and (9) (Table 3). The fusion of three multi-scale nor
mal component (16) performances better than each single 
normal component (l3), (14) and (15). These results prove 
that multi-scale LNP achieved by fusing results of different 
single scale is a promising way for improved performance, 

Approches Rank-one scores 
(I) Abate et al. (1024 2D+3D) [I] 92.2% 

(2) Chang et al. [8] 91.9% 

(3) Cook et al. [II] 92.9% 

(4) Mian et al. [21] 93.S% 

(S) Mian et al. [20] 96.2% 

(6) Mian et al. [6] 93.78% 

(7) Huang et al. [IS] 96.1% 

(8) Huang et al. [14] 97.2% 

(9) Kakadiaris et al. [16] 97.0% 

(10) Faltemier et al. [12] 97.2% 

(II) Alyuz et al. [7] 97.S% 

(12) Queirolo et al. [27] 98.4% 

(13) MS-LNPX + B-W-SRC 92.0% 

(14) MS-LNPY + B-W-SRC 94.3% 

(15) MS-LNPZ+ B-W-SRC 94.2% 

(16) MS-LNPXYZ+ B-W-SRC 96.3% 

Table 4. Rank-one recognition rates on the FRGC v2.0 database. 

Compared with the works in the literature, the rank-one 
recognition rate of the proposed method (MS-LNPXYZ + 
B-W-SRC) outperforms (1)-(7), and it is slightly below (8)
(12). It should be emphasized that compared with the tasks 
(1) and (9), which made use of normal information, (1) 
used the difference normal maps as similarity measuremen
t yet did not provide competitive results on the complete 
FRGC v2,0 dataset; while (9) used the wavelet coefficients 
as similarity measurement on both normal map and geom
etry map, and the wavelet filter lead to high computational 
cost. Moreover, there was no reported results only based on 
normal map. 

4.3.5 Experiment V: Comparison of degradation influ-
enced by facial expression 

According to the experimental protocol used in [21] and 
[14] [15], we divided all the probe faces into two subsets 
based on their original labels of expressions. The first sub
set consists of only neutral faces, while the second is made 
up of only non-neutral faces. We made a fair comparison 
with two works in the literature, i.e. Mian et al. [21] and 
Huang et al. [14] [IS], and the performance degradation, 
reflected by the difference between accuracies of subset I 
and II , is utilized to analyze the robustness to facial ex
pression variations. When using the proposed normal based 
descriptor along with the original SRC, it achieves a 6.6% 
drop, which is lower than the 12.3% in [21] and as good as 
that in [15], showing that the proposed facial feature has a 
good tolerance to facial expressions. This result is further 
improved by the spatial weights learned from the FRGC 
v 1.0 and Bosphorus datasets, and the weights based on the 
Bosphorus dataset achieves the lowest degradation of 3.8%, 
highlighting that the proposed weighting strategy improves 
the robustness to the variations of facial expression as well. 

Subset I Subset II Degradation 
(I) Mian etal [21] 99.0% 86.7% 12.3% 

(2) Huang etal [15] 99.1% 92.5% 6.6% 

(3) Huang etal [14] 99.0% 94.9% 4.1% 

(4) MS-LNPXYZ + SRC 97.1% 90.5% 6.6% 

(S) MS-LNPXYZ + F-W-SRC 97.8% 92.5% S.3% 

(6) MS-LNPXYZ + B-W-SRC 98.0% 94.2% 3.8% 

Table 5. Comparing the degradations of rank-one score influenced 

by facial expression on the FRGC v 2.0 database. (Subset I: neutral 

probes, Subset II: non-neutral probes.) 

5. Conclusions and future work 
This paper presented an effective approach for 3D face 

recognition. We first proposed a novel 3D facial surface 
shape descriptor, named the Multi-Scale Local Normal Pat
terns (MS-LNPs), which encodes three normal components 
nx, ny and nz as local pattern histograms at different s
cales. The effectiveness of the proposed shape descrip
tor was demonstrated by our experimental results showing 
that: 1) The feature extracted by LBP from original range 
faces are not so discriminative as local normal patterns (L
NPs), which means normal information is more distinctive 
than range information after local encoding; 2) Original 
normal information is not so discriminative either, which 
highlight the necessity of the encoding method; 3) Sparse 
representation-based classifier (SRC) is more effective than 
the Chi-square distance based method (Experiments 2); 4) 
The average quantification learning based weights of differ
ent local patches are helpful to improve the final accuracy; 
5) Evaluated by the complete FRGC v2.0, our method dis
plays a rank-one recognition rate of 96.3% which is com
parable to the best performance in the literature. 6) The 



proposed approach is very insensitive to facial expression 
variations. 

In our further work, we will continue to investigate other 
methods to encode normal information, and to explore the 
possible contribution of the proposed method to be com
bined with other existing features. Furthermore, more ex
perimental results will be demonstrated to show the useful
ness of the proposed approach in face verification. 
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