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Abstract. We present a sound data-value-dependent method of detecting privacy
violations in the context of multiple views publishing. We assume that privacy vi-
olation takes the form of linkages, that is, identifier-privacy value pair appearing
in the same data record. At first, we perform a theoretical study of the following
security problem: given a set of views to be published, if linking of two views
does not violate privacy, how about three or more of them? And how many po-
tential leaking channels are there? Then we propose a pre-processing algorithm
of views which can turn multi-view violation detection problem into the single
view case. Next, we build a benchmark with publicly available data set, Adult
Database, at the UC Irvine Machine Learning Repository, and identity data set
generated using a coherent database generator called Fake Name Generator on
the internet. Finally, we conduct some experiments via Cayuga complex event
processing system, the results demonstrate that our approach is practical, and
well-suited to efficient privacy-violation detection.

Keywords: Privacy violation, Multi-view publishing, Pre-processing algorithm,
Cayuga system.

1 Introduction

Recently, privacy-preserving data publishing has been proposed whereby the data owner
prevents linking some identity to a specific data record and sensitive information in
the released data while, at the same time, preserves useful information for data min-
ing purpose. Data publishing exports a set of selection-projection views instead of the
whole proprietary table, data users can only access data by submitting queries against
these views. Even though each published view is secure after de-identification, while
an adversary can re-identify an identity by linking two or more views on their common
attributes. Consider a private table Patient(SSN,Name,ZIP,DOB,Sex,Job,Disease) in
Table 1, SSN and Name are explicit identifiers (EIs) which can explicitly identify record
holders, Disease is one of the sensitive attributes (SAs) which contain some privacy in-
formation. Suppose that the data owner releases views v1 =∏SSN,DOB,Job,Disease(Patient),
v2 = ∏Name,ZIP,Job,Sex(Patient) to a data recipient, and we define privacy violations
by ∏SSN,Disease(Patient), ∏Name,Disease(Patient) and ∏SSN,Name,Disease(Patient) which
means that an EI and a SA cannot appear at the same time. Obviously, each of them
does not violate privacy, however, by joining v1 and v2 using v1.Job = v2.Job, an ad-
versary can uniquely re-identify that Dan is a Flu patient which violates Dan’s privacy.
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Table 1. Private table P

SSN Name ZIP DOB Sex Job Disease
387-399 Alice 47677 09/09/80 F Manager OC
387-200 Bob 47602 24/05/87 F Engineer OC
387-486 Carol 47678 08/11/82 M Engineer PC
387-756 Dan 47905 27/08/66 M Dancer Flu
387-665 Ellen 47909 04/10/57 F Engineer HD
387-588 Jack 47906 10/10/62 M Manager HD

The privacy violation presented here is not schema-dependent but data-value-dependent,
for example, if we release another view v

′
2 = ∏Name,ZIP,Job,Sex(σName!=′Dan′Patient), v

′
2

has the same schema with v2, but the joining of v1 and v
′
2 does not violate any privacy.

Now, we further suppose that the data holder releases v3 = ∏SSN,DOB,Sex(Patient),
v4 = ∏ZIP,DOB,Job(Patient) and v5 = ∏ZIP,Job,Disease(Patient) to another data recipient,
Each of these views does not violate privacy, and neither does their pairwise joining.
However, if an adversary performs at first a joining of v3, v4 using v3.SSN = v4.SSN and
v3.DOB= v4.DOB which generates a mediated view v34(SSN,ZIP,DOB,Sex,Job), and
eventually the adversary can also uniquely deduce that Dan is a Flu patient by joining
v34 and v5 using v34.ZIP = v5.ZIP and v34.Job= v5.Job. Furthermore, if these two data
recipients collude with each other behind the scene, the situation will inevitably become
more complicated, they have 5 views in all, v1,v2,v3,v4 and v5, and there will be much
more violation channels and the risk increases. The challenge is how to detect all these
potential violation channels when the number of published views is in dozens. To the
best of our knowledge, no previous work takes this problem into account, and this paper
is the first to present a formal analysis of privacy violation in multiple views publishing,
and the first to propose an algorithm of multi-view pre-processing.

2 Related Work

Since Sweeney [8] introduced the concept of linking attack and the concept of k-
anonymity in 1998, most of previous works have addressed the case of privacy pro-
tection using anonymization-based methods, either over traditional data tables, such as
l-diversity [4], t-closeness [6], or over data streams, such as SWAF [10], SKY [5], CAS-
TLE [1] and so on. We refer readers to [3] for a survey of different privacy preserving
approaches with respect to privacy-preserving data publishing. Miklau and Suciu [7]
performed a theoretical study of the query-view perfect-security problem to analyze
the privacy violation between published relational views and queries, while the secu-
rity standard is so strong that it has some practical limitations. They also presented a
spectrum of information disclosure (privacy violation), total, partial and minute among
which we aim to detect the first two types. In 2009, Vincent et al. [9] presented a method
of detecting privacy violations using disjoint queries in database publishing, with the
aim of overcoming the limitations of the perfect-security approach and provided an al-
ternative in applications where a less stringent, but computationally tractable, method
of detecting privacy violations is required. Yao et al. [11] assume that privacy violation
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takes the form of linkages, that is, pairs of values appearing in the same data record, the
assumption of privacy violation in this paper is similar to Yao’s.

3 Contribution

Similar with steps that compose the KDD (Knowledge Discovery in Databases) process,
we proposed a privacy violation detection method consisting of three steps, multi-view
pre-processing, data merging and event processing. In this section, we will at first give
an formal analysis of the problem of detecting privacy violations in the context of mul-
tiple views publishing, then we will introduce all the steps mentioned above.

3.1 Problem Formulation and Definitions

We assume an instance I of an universal relation R with schema D, where D contains
EIs, SAs and other attributes which do not fall into these two categories, written as
OAs, and we use RD to denote the set of all possible relations on D. Data are being pub-
lished under the form of a being set which is a pair (q,r), where q is a list of selection-
projection queries (q1,q2, · · · ,qn) on I, and r is a list of relations (r1,r2, · · · ,rn) such
that ∃G ∈ RD,ri = qi(G) for each i = 1,2, . . . ,n. If q is given, we can abbreviate (q,r)
to V which contains n views, and denote (qi,ri) by vi where vi is in V .

Definition 1 (privacy violation). Given a direct published or a mediated view vi of a
underlying data table, α ⊆ EIs and β ⊆ SAs, and a is a constant value of α and b of β ,
if the result of ∏α ,β (vi) is a finite set of data records, a privacy violation occurs if and
only if | σα=a,β=b(Πα,β (vi)) |= 1.

Problem Definition. Given a set of published views v1,v2, · · · ,vn of the same under-
lying data table, detect any total and partial privacy violation which could be deduced
from one single view vi or the joins �� (vi,v j, · · · ,vk), where 2≤ k− i≤ n.

3.2 Multi-view Pre-processing

In this paper, we regard the views as nodes of a graph with an edge between two nodes
representing a natural join of them. We model our approach as a simple undirected
graph G(V,E) with a finite non-empty view set V and a set of symmetric view pairs E .
For each ordered view pair (w,u) ∈ E , the pair (u,w) also belongs to E . Gi owns some
part of G, denoted as G(Vi,Ei) where

⋃
i Vi = V ,

⋃
i Ei ⊆ E . The natural join of each

view pair in E is an edge, E itself is also called the edge set of G.
As we mentioned above, two views having common attributes do not always violate

privacy, for graph G, that can be saying as inexistence of some edges of E . Take v1,v2,v3

as an example, the sub-graph G1 can be defined by the view set V1 = {v3,v4,v5} and
E1 = {{(v3,v4),(v4,v3)},{(v3,v5),(v5,v3)},{(v4,v5),(v5,v4)}} among which the view
pairs {(v3,v4),(v4,v3)} generate edge v34 and {(v4,v5),(v5,v4)} generate edge v45,
while the view pairs {(v3,v5),(v5,v3)} generate no edge.
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Definition 2 (an edge). Given view pairs {(va,vb),(vb,va)}, va ∈Gi, vb ∈ G j, an edge
exists if and only if ∃t : t ∈ va �� vb, t is a data record. If i = j, the edge is called an
“inner-edge”, otherwise we call it an “inter-edge”.

In our approach, we define the published views v1,v2, · · · ,vn as V1 in level G1, then
|V1 |= n, and | E1 |≤Cn

2 , E1 can be denoted as following:

E1 = {{(v1,v2),(v2,v1)},{(v1,v3),(v3,v1)}, · · · ,{(va,vb),(vb,va)}},1≤ a,b≤ n

According to Definition 2, we know that the edge number of G1 is no larger than Cn
2 . It

is possible that there is no edge in level G1.

Proposition 1. Given va ∈Vi, vb ∈Vj, i �= j, an “inter-edge” equals to a view vc in Vm

or vd in Vj where m > j > i.

Proof. By the commutative property, distributive property and associative property of
binary operations in relational algebra.

As shown in Fig.1, for G1, we assume that all view pairs in E1 generate m edges, next
we take these m edges as the view set of G2, by executing natural join of each view
pair in E2, we get k edges, and then we take these k edges as the view set of G3, the
rest can be deduced by analogy. Corresponding to these operations, we propose a multi-
view pre-processing algorithm, as shown in Algorithm 1, in this algorithm, we take n
views v1,v2, . . . ,vn and their respective schemes r1,r2, . . . ,rn as original inputs, at first
we get the universal relation R by the union loop R= R∪ri, we assume that we know the
number of views in the first level G1 is L1 = n, and after pre-processing of these n views,
we get L2 views in second level G2 and their corresponding schemes, the rest operations
can be done in the same manner until there is no more view in next level. Finally, we
collect the views in each level and get n+ l views v1,v2, . . . ,vn,vn+1,vn+2, . . . ,vn+l .

One advantages to perform this multi-view pre-processing operation is that we can
transform partial information disclosure detection problem to total information detec-
tion case. Take v3, v4 and v5 as an example, if they are the input views in our algorithm,
after being processed using our multi-view pre-processing algorithm, we get three more
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Fig. 1. Schematic diagram for multi-view pre-processing
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Algorithm 1. Pre-processing Algorithm of Multiple Views
Input: n views: v1,v2, . . . ,vn and corresponding schemes r1,r2, . . . ,rn .
Output: (n+ l) views: v1,v2, . . . ,vn,vn+1,vn+2, . . . ,vn+l .
1: Let R = r1,s = 1, i = 1, l = 0
2: for i← 2 . . .n do
3: R = R∪ ri // R is a universal relation
4: end for
5: Let Li be the number of views in level Gi, L1 = n.
6: repeat
7: for each level Gi in G do
8: for j← (l +1) . . .Li−1 do
9: for k← ( j+1) . . .Li do

10: if r j �= R and rk �= R then
11: if r j ∩ rk �= /0,r j ⊂ (r j ∪ r j),rk ⊂ (r j ∪ rk) then
12: v = v j �� vk //natural join of two views
13: if v �= /0 then
14: vLi+s = v j �� vk //generate views for next level Gi+1
15: rLi+s = r j ∪ rk //generate corresponding relations
16: s = s+1
17: end if
18: end if
19: end if
20: end for
21: Li+1 = Li + s //number of views in next level
22: l = l + s //total number of views in all levels
23: i = i+1 //total number of views in all levels
24: end for
25: end for
26: until s = 0 //no views in next level

views v34, v45 and v345. At this time, v3, v4, v5, v34, v45 and v345 are the final inputs to
data merging step, what we need to do is to check if every tuple of these final views
violate specific privacy.

3.3 Data Merging

We use Cayuga [2] as our event processing engine, however Cayuga can only read
stream data from disk files, such as a text file, or TCP sockets, this implies that we must
merge our multiple pre-processed views into a single file and then store it in a disk.
In our system, we adopt an universal relational assumption, however, the original pub-
lished views and the views generated from the pre-processing algorithm have different
schemes, we must add to different views different additional attributes and set their val-
ues as Null. Take v1 and v2 as an example, the universal relation is {Name, ZIP, Job,
DOB, Sex, Disease}, v1 does not have attributes {Name, Sex}, while v1 does not have
{DOB, Disease}, so we merge them like follows in Table 2:
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Table 2. Merged data of v1 and v2

Name ZIP DOB Job Sex Disease
47677 09/09/80 Manager OC
47602 24/05/87 Engineer OC
...... ...... ...... ......

Alice 47677 Manager F
Bob 47602 Engineer M
...... ...... ...... ......

3.4 Event Processing

After data merging, we now investigate the details of event processing step which is
Cayuga-based. Cayuga system is an expressive and scalable Complex Event Process-
ing (CEP) system developed at the Cornell Database Group, it provides a SQL-like
query language, Cayuga Event Language (CEL), for expressing complex event pat-
terns, instead of operating on tables, Cayuga system performs continuous queries on
data streams with multi-query optimization, it can serve as an event engine in a larger
software environment without being obtrusive where the end user/application interacts
with Cayuga by submitting queries written in CEL to it and receiving query result
streams from it. For further information, we refer readers to Cayuga’s official website
http://www.cs.cornell.edu/bigreddata/cayuga/. The benefit of using Cayuga
system other than the other DBMS is that it has an high-speed query processing engine
which can handles simultaneous events for large-scale data-sets and data streams. What
the data owner should do is to launch specific continuous queries over the final merged
data.

4 Case Study

4.1 Experimental Settings

Dataset Benchmark. We adopt the publicly available Adult Database at the UCI Ma-
chine Learning Repository with 15 attributes, if records with missing values and un-
known values are removed, there are 45,222 instances. In order to build a representative
benchmark BP, we get another identity data set generated using a coherent database
generator called Fake Name Generator on the internet which contains 30 attributes. We
integrate these two datasets and keep the same number of instance, 45,222 tuples, and
only retain some of their attributes. Then we add a column with sensitive values called
“Health Condition” consisting of HIV, Cancer, Phthisis, Hepatitis, Obesity, Asthma,
Flu, Indigestion to the extracted data and randomly assign one sensitive value to each
record. The random technique works in the following way. First, assign a number to
each sensitive attribute, i.e., 1: HIV, 2: Cancer, 3: Phthisis, 4: Hepatitis, 5: Obesity, 6:
Asthma, 7: Flu, 8: Indigestion. Second, for each tuple (record), generate a random num-
ber from 1-8. Then, assign the corresponding sensitive attribute value to the tuple. For
example, for the first tuple in the data set, if the random number is 5, then this record
has the sensitive value “Obesity”. “NationalId” and “Givenname” are chosen as the EIs,
and “Health Condition” and “Password” are SAs.

http://www.cs.cornell.edu/bigreddata/cayuga/
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SELECT *
FROM FILTER {count = 1}
(FILTER{NationalId != '' and Password != ''}
(SELECT *, 1 as count FROM BP) 
FOLD {NationalId != '' and Password != '',,$.count + 1 as count} S) 

SELECT *
FROM FILTER {count = 1}
(FILTER{NationalId != '' and Health Condition != ''}
(SELECT *, 1 as count FROM BP) 
FOLD {NationalId != '' and Health Condition != '',,$.count + 1 as count} S)
………………………………………... 

Fig. 2. Cayuga continuous queries

Table 3. Six views to be published

Views to be published
v1 = ∏NationalId,Birthday,Gender(BP)
v2 = ∏Givenname,Zipcode,Education(BP)
v3 = ∏Zipcode,Company,CCType(BP)
v4 = ∏Gender,CCType,Password(BP)
v5 = ∏Birthday,Zipcode,Health Condition(BP)
v6 = ∏Givenname,CCType,Birthday(BP)

Views and Continuous Queries. In our experiments, we try to publish six views
v1,v2,v3,v4,v5,v6 on our benchmark BP, as shown in Table 3. In our benchmark BP,
we assume that there are two EIs, “NationalId” and “Givenname”, and two SAs “Health
Condition” and “Password”, therefore the number of continuous queries we should
launch is C2

1 ×C2
1 = 4, as shown in Fig.2, the continuous queries are written in the

structured Cayuga Event Language (CEL) and will be executed in the query engine of
Cayuga system.

4.2 Detecting Results

For the six published views, the universal relation contains 10 attributes, they are Na-
tionalId, Givenname, Birthday, Gender, Zipcode, Education, Company, CCType, Pass-
word, and Health Condition. After multi-view pre-processing, the second level has 13
views, and every two of them have common attributes, meanwhile their natural joins
have more than one data records, therefore in the third level we have C13

2 = 78 views,
while for the fourth level and fifth level, the number of view is not a combination of the
previous levels.

After being processed via all steps of multi-view pre-processing, data merging, and
event processing using Cayuga system, we successfully get more than 45222 records
which violate privacy, because privacy violations occur in some levels of G, as shown
in Table 4.

Table 4. Detection outputs of privacy violation

NationalId Givenname Birthday Gender · · · Password Health Condition
170-40-9312 John 6/5/1988 male · · · be6Poowooph Asthma
508-98-9112 Steven 6/30/1983 male · · · acoTo5ah Asthma
130-84-3154 Patrick 2/2/1941 male · · · paiS0roo3 Flu
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

5 Conclusion and Future Work

We present a formal analysis of privacy violation in the context of multi-view publish-
ing: given a set of published views, if linking of two views does not violate privacy,
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how about linking of multiple views? And how many potential violation channels are
there? We propose a pre-processing algorithm of multiple views which can transform
partial violation problem to the total case. Then, we build a benchmark with Adult
Database at UCI Machine Learning Repository, and an identity data set generated us-
ing Fake Name Generator on the internet. Finally, we conduct some experiments via
Cayuga system, the results demonstrate that our approach is practical, and well-suited
to efficient privacy-violation detection. However, we did not conduct the performance
evaluation of the proposed algorithm given that the number and the size of the input
views can be very large, and we did not take the timestamps of views into account, they
are useful if we want to detect privacy violation within a specific time interval. There-
fore, future work includes performance evaluation, detecting minute privacy violation,
algorithm optimization and develop a Cayuga-based privacy violation detector.
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