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ABSTRACT: We designed  an autonomous agent  that  discovers,  learns,  and exploits  basic spatial  regularities  of  
interaction with its environment. To do so, we propose implementing a persistence memory system that records bundles  
of “possibilities of interaction” afforded by objects in the environment, coupled with a local space memory system that  
represents  the  agent’s  surrounding  local  space  (inspired  by  the  vertebrate’s  tectum).  An  experiment  in  a  simple  
simulated environment demonstrates how the agent performs multimodal integration of sensory stimuli, and allocates  
the origin of such stimuli to “phenomena” located in the external spatial environment. Such mechanisms open the way  
to  implementing agents  with minimal  preconception of  their  environment,  and to  modeling intrinsic  motivation in  
autonomous agents.

1. Introduction

We  address  the  question  of  implementing  agents  with 
minimal  initial  preconception  of  their  environment.  We 
define  such  agents  as  environmentally  agnostic.  An 
environmentally agnostic agent has to autonomously learn 
to extract relevant information about the environment, and 
simultaneously organize such information in exploitable 
knowledge  (Georgeon  &  Ritter,  2011).  Environment-
agnostic agents are useful to facilitate the development of 
agent-based  models  and  simulations  by  reducing  the 
amount of knowledge that must be encoded in the agent. 
More  broadly,  studying  such  agents  opens  the  way  to 
modeling the emergence of new behaviors in autonomous 
agents.  

In previous studies, we started to address this question by 
implementing an agent that learned hierarchical sequences 
of  behaviors  in  a  bottom-up  fashion.  To  do  so,  we 
developed  a  novel  algorithm  that  we  called  the 
intrinsically  motivated  schema  mechanism  (Georgeon, 
Ritter, & Haynes, 2009; Georgeon & Ritter, 2011). With 
this  algorithm,  the  agent  was  able  to  autonomously 
capture  and  exploit  hierarchical  sequential  regularities 
afforded  by  the  environment.  This  mechanism 
implemented  intrinsic  motivation  in  that  the  agent’s 
behavior was driven by predefined low-level behavioral 
proclivities that  gave rise to higher-level  behavior.  This 
approach  stands  in  contrast  from  goal  or  task-directed 
navigation algorithms (e.g., Batalin,  Sukhatme, & Hattig, 

2004; Frommberger, 2008). It also differs from classical 
reinforcement learning techniques (e.g., Sutton & Barto, 
1998) in that it addresses the question of developmental 
learning  (i.e.,  fast  learning  during  the  agent's 
development) (e.g., Lungarella, Metta, Pfeifer, & Sandini, 
2003)  rather  than  learning  over  many  trials  (often 
thousands  in  classical  reinforcement  learning).  In 
particular, our agent received no predefined reward when 
a  final  goal  was  achieved  and  we  did  not  implement 
backward propagation of a reward value.

A subsequent study (Georgeon, Cohen, & Cordier, 2011) 
showed  that  an  agent  equipped  with  such  a  sequential 
learning mechanism was able to acquire basic navigation 
skills in an open space environment. This study, however, 
also showed the limits of this purely sequential approach 
when applied to spatial regularity learning. For example, 
the  agent  was  unable  to  notice  that  two  different 
sequences of  movement  may lead to  the same point  in 
space.  Moreover,  the  agent  was  unable  to  discover  the 
persistence  of  objects.   The  agent  stopped  pursuing  a 
target of interest when the target was lost by the sensors 
(hidden or out of span). To overcome these kinds of limits 
and  to  move  on  toward  higher-level  learning,  we  now 
address  the  question  of  the  autonomous  discovery  of 
spatial regularities. We refer to this issue as implementing 
mechanisms of spatial  awareness  in an environmentally 
agnostic agent. 

Our  mechanism,  a  spatial  awareness  mechanism  in  an 



environment-agnostic  agent,  was  inspired  by  the  brain 
structure most natural organisms have, whose activation 
maintains  some  geometrical  correspondence  with  the 
animal’s local surrounding environment. We refer to the 
mushroom body in the case of insects, and the tectum in 
the case of vertebrates,  also called the colliculus in the 
case of mammals (e.g., Cotterill, 2001).
 
In  this  study,  we  advocate  implementing  two  initial 
mechanisms: the persistence memory and the local space 
memory. The persistence memory is a long-term memory 
that  memorizes  associations  of  interactions  and  stimuli 
based on their co-occurrence. We name such associations 
by  the  term  bundle.  This  term  refers  to  pragmatic 
epistemology (e.g., Hume, 1739) that postulates that the 
knowledge of objects is constructed through usage rather 
than given a priori.  In this framework, Hume proposed 
the  bundle  theory  of  objects.  This  theory  posits  that 
objects consist only of the collection of their properties 
observed through interaction. Accordingly, we expect our 
agent’s bundles to represent objects in the environment in 
the  form  of  possibilities  of  interaction.  The  second 
mechanism, the local  space memory,  is  inspired by the 
tectum in the vertebrate’s brain, and consists in an internal 
geometrical counterpart of the surrounding environment. 
These  two  mechanisms  constitute  the  agent’s  spatial  
system. The spatial system has two objectives: it  allows 
the  agent  to  perform  a  spatially-organized  multimodal 
integration of sensory stimuli, and it makes the agent able 
to project the consequences of its actions in an egocentric 
referential,  possibly  beyond  the  range  of  the  agent’s 
perception.

We  propose  a  design  methodology  that  begins  by 
indulging  some  hard-coded  preconceptions  to  get  the 
spatial  system running.  In  this  first  step,  we setup and 
demonstrate  the  coupling  between  the  intrinsically 
motivated sequential system and the spatial system. The 
second  step  consists  of  progressively  removing  the 
preconceptions from the spatial system in order to move 
toward an agent as much agnostic as possible. Following 
this approach, we organized the paper in two parts. The 
first part (Section 2) presents the initial experiment made 
with  the  hard-coded  spatial  system.  This  experiment 
illustrates how the agent works. From the lessons learned 
in this initial experiment, we list the infringements of the 
principle of agnosticism that  need to be addressed. The 
second part (Sections 3 and 4) reports our algorithms that 
start  addressing  these  infringements.  Finally,  the  paper 
discusses  our  results  and  draws  recommendations  for 
future work.

2. Initial experiment

We implemented an autonomous agent in the environment 
shown in Figure 1. The agent is represented as a shark. 

Both  the  agent  mechanism  and  the  environment  are 
implemented  in  Java.  We use  the  grid  unit as  distance 
unit. A grid unit correspond to the length of a side of an 
elementary block object. So far, the environment is static: 
the agent is the only thing that moves.  The agent has four 
primitive  possibilities  of  action:  (a)  move  forward 
(approximately one grid unit), (b) turn approximately π/4 
to the left, (c) turn approximately π/4 to the right, and (d) 
eat fish. The agent moves freely in a continuous space and 
gets uneven from the grid. The agent has a visual system 
of 12 pixels covering a total span of π radian. Each pixel 
reports the dominant color seen in its π/12 corresponding 
span.  The  filled  cells  and  the  surrounding  perimeter 
represent walls where the agent would bump if it tries to 
move through them. The agent cannot see through objects 
(wall, alga or fish). The agent also has a  “9-pixels” tactile 
system  (a  3x3  matrix)  that  detects  adjacent  objects  or 
objects below the agent (alga or fish). Fish and alga feel 
soft. Walls feel hard.  

The  agent’s  behavior  is  generated  by  the  intrinsically 
motivated sequence learning mechanism described in our 
previous  work  (Georgeon  &  Ritter,  2011).  We 
implemented the local space memory with a radius of 2 
grid units. When a co-occurrence of two or more stimuli 
is  detected,  the  bundle  formed  by  these  stimuli  is 
constructed in persistence memory and a pointer is placed 
in  the  local  space  memory  to  follow  the  relative 
displacement of this bundle when the agent moves. 

2.1 Analysis of an example run

A representative run can be seen online (Georgeon, 2011). 
The first two hundred steps of this run are represented in 
Figure 2, using a technique of activity trace representation 
developed in a previous study (Georgeon,  Mille, Bellet, 
Mathern  & Ritter,  2011).  The  various  tapes  show  the 
sensory  and internal  state  of  the agent  at  each step,  as 
described next. A step is a cycle of interaction between 
the agent and the environment.

 
Figure 1: The agent in the environment.



In Figure 2, Tape 1 represents the agent’s tactile system 
(light gray: touching nothing, intermediary gray: touching 
soft, black: touching  hard). The touching in front of the 
agent  is  represented  in  the  center  of  the  tape.  The 
touching to the agent’s left side in the upper part, and to 
the right side in the lower part. The touchings below and 
behind  the  agent  are  not  represented.  Additionally,  red 
circles  represent  bumping  walls,  and  yellow  circles 
represent eating fish. The agent experiments bumping on 
dark  green  walls  on  steps  9  through  13,  and  then 
significantly reduces bumping on such walls.  Similarly, 
the agent learns bumping on light green walls on steps 59 
and 60.

Tape  2  represents  the  agent’s  visual  perception.  The 
twelve  visual  pixels  are  represented  vertically  as 
rectangles  when  the  agent  moves  forward,  and  as 
trapezoids when the agent turns. This tape shows colored 
object traversing the visual field as the agent moves and 
turns.

Tape 3 represents the co-occurrences of interactions from 
different sensory modalities. For example, on step 55, the 
gray square associated with the blue square represents the 
co-occurrence of touching and seeing a fish. On step 56, 
the  gray  square  associated  with  the  yellow  square 
represents the co-occurrence of touching a fish and eating 
a fish. Co-occurrences trigger the construction of bundles, 
or either confirm or infirm existing bundles.

Tape 4 represents the construction of  bundles  from co-
occurrences. For example, on step 9, the agent constructs 
a bundle made of the association of touching, seeing, and 
bumping a wall (green, black, and red cube). On step 55, 
the agent constructs the bundle of seeing and touching a 
fish (gray and blue cube). On step 56, the interaction of 
eating  is  added  to  this  bundle  (gray,  blue,  and  yellow 
cube).

Tape  5  shows  a  bar-graph  whose  color  represents  the 
focus of  the agent’s  current  attention,  and whose value 
represents  the  associated  attractiveness  (positive  or 
negative).  For  example,  during  steps  1  through  8,  the 
agent focuses on the dark green color just because it is the 
preeminent color in its visual field. This colors has a mild 
attractiveness because the agent has not yet learned how 
to  interact  with it.  On step  9,  the  agent  associates  this 
color  with  bumping,  which  makes  this  color  become 
repulsive. Conversely, on step 56, the blue color becomes 
highly attractive when it gets associated with eating a fish. 
At any point in time, the most attractive or most repulsive 
bundle  in  the  surrounding  space  wins  the  agent’s 
attention. The agent has a proclivity to move toward the 
object  of  current  attention  if  it  has  a  positive 
attractiveness, or to turn away from the object of current 
attention if it has a negative attractiveness.

Tape 6 represents the agent’s local space memory, that is, 
the memory of bundles surrounding the agent. The agent’s 
surrounding space is represented as an ellipse,  with the 
front of the agent being on the right. For example, on step 
9, the green area in the ellipse represents the agent being 
aware of the wall in front of it. On steps 188 and 189, the 
trace shows that the agent does not see nor touch any fish, 
but it  is still aware of a fish on its rear-right side (blue 
area in the ellipse).  This awareness causes the agent to 
turn back towards that fish and eat it on step 196.

In summary, this experiment illustrates how we envision 
implementing  spatial  awareness  in  an  intrinsically 
motivated agent. The agent was able to gradually learn the 
associations  of  possibilities  of  interaction  afforded  by 
persistent  objects in the environment.  Such associations 
were  memorized  internally  in  the  form  of  bundles. 
Bundles  have  a  value  (attractiveness)  related  to  the 
possibilities  of  interaction  that  they  afford.  The  agent 
maintains a memory of the position of bundles in local 
space memory. This memory, in turn, impacts the agent’s 
sequential behavior.

Figure 2: Activity trace of an example run.

Figure 2: Example activity trace (upper part: steps 0-100, lower part: steps 100-200).



2.2  Infringements of the principle of agnosticism

When implementing this agent, we had to hard code some 
presuppositions about the coupling between the agent and 
the  environment.  We  hard  coded  what  co-occurrences 
were possibly interesting:

a.1 Bumping while touching something with the frontal  
tactile sensor.
a.2  Eating  while  touching  something  with  the  tactile  
sensor below the agent.
a.3  Touching  something  with  the  frontal  tactile  sensor  
while seeing a specific color within the two central visual  
pixels.
a.4 Eating while seeing a specific color within the two  
central visual pixels.

We  hard  coded  the  agent’s  knowledge  of  its  basic 
geometry:

b.1 The position of the tactile sensors in the egocentric  
reference.
b.2 The maximum radius of the local space memory (2  
grid units).

We hard coded the consequences of the agent’s actions in 
the local space memory:

c.1 The move forward action generates a translation of  
one grid unit in the local space memory.
c.2 The turn action generates a rotation of π/4 in the local  
space memory.

To  move  towards  agnostic  agents,  such  hard  coded 
presuppositions  should  be  replaced  with  autonomous 
learning  mechanisms.  To  address  this  concern,  we 
implemented  the  autonomous  learning  algorithms 
described in the next section. 

3. Learning correspondence between sensors, 
actuators, and space

By implementing an algorithm that autonomously learns 
the  correspondence  between  the  values  returned  by 
sensors,  the  agent’s  actions,  and  the  surrounding  local 
space,  we  aim  at  developing  a  general  space-aware 
system as independent as possible from its sensory and 
motor  configuration.  To  do  so,  we  first  address 
presupposition b.1 by implementing an algorithm to learn 
the  correspondence  between  sensors  and  local  space 
(Section 3.1). Then, we address presuppositions c.1 and 
c.2 by implementing an algorithm to learn the geometrical 
transformations  that  apply  to  the  local  space  memory 
depending on each possible action (Section 3.2).

3.1  Correspondence between sensors and local space

This  first  step  consists  in  learning  the  structure  of  the 
sensory system. This point has a paramount importance as 
it allows the agent to determine the provenance of stimuli 
in the surrounding space. The agent can then generate an 
internal image of the environment that it can manipulate. 
As our agent  is  supposed to  be agnostic,  the algorithm 
described  next  is  designed  to  use  uninterpreted  values 
returned by sensors.

We called this algorithm the  sensor mapping algorithm 
that  learns  the  correspondence  between  the  values 
returned  by  sensors  and  the  agent’s  surrounding  local 
space. This algorithm relates to existing algorithms that 
allow robots to exploit uninterpreted sensors (e.g., Pierce 
&  Kuipers,  1997).  Its  specificity,  however,  is  that  it 
constructs a representation of how the sensors cover the 
surrounding space. We call this representation the sensory 
space structure. 

The  sensor  mapping  algorithm  uses  sensors  for  which 
each returned value can be related to the presence of a 
certain property, for example, an object, on a unique point 
of the surrounding local space. Specifically, it is intended 
to work with sensors that return rough information on the 
distance  of  the  first  detected  object.  Examples  of  such 
sensory  systems  are  a  stereoscopic  visual  system  that 
returns approximate distance and color for each pixel, a 
sonar  system that  returns  distance  and echoic  property, 
and a whiskers system (vibrissa) that returns approximate 
distance  and  tactile  property.  We  formalize  such  a 
requirement as follows:

Each  sensory  modality consists  of  a  set  of  directional 
probes (e.g., a single whisker, or a “light cone” generating 
a “pixel” in a visual system). The positions and directions 
of probes are initially unknown. The probes may not be 
straight but they must be fixed with regard to the agent (if 
not, the algorithm must be run for each configuration of 
the  probes).  Each  probe  returns  two  numerical  values: 
A (abscissa)  and  S (stimulus).  The  value  A reflects  the 
position of the first object detected  along the probe (the 
object’s abscissa along the probe). The only condition on 
this  abscissa  is  of  being  a  monotonic  function  of  the 
distance  of  the  object  from  the  agent.  This  condition 
needs to  consider  the fact  that  objects may mask other 
objects  behind  them.  The  metrics  of  the  abscissa  is, 
however, unknown and may not be linear. These metrics 
may not be consistent across probes and modalities. The 
value S reflects a physical property of the detected object 
(e.g., the color for vision, the tactile feeling for touch), or 
absence of object (e.g., touch nothing).

This set of assumptions indicates that each tuple [probe, 
abscissa] corresponds to a single Point of detection (Pd) in 



the agent’s surrounding space. Each Pd in the environment 
is represented by a Point of sensation (Ps) in the sensory 
space structure. A point of sensation is said active if the 
value  A returned by the corresponding  probe is  greater 
than the point's  abscissa. This means that  every sensor 
used by the sensor mapping algorithm is considered as an 
array of binary sensors, represented by a set of points of 
sensation.  The  sensor  mapping  algorithm  gradually 
adjusts the positions of Pss in the sensory space structure 
to reflect the actual positions of Pds in the environment, 
starting  from  any  arbitrary  configuration  (random  or 
implementing an inborn assumption).  It  relies  upon the 
assumption  that  the  distance  between  two  points  is 
proportional  to  the  average  delay  between  changes  of 
activity or  S value of the corresponding probe at each of 
these  two  points.  The  Pss  are  placed  to  optimize  the 
consistency between the delays in the changes of values 
and Pss’ distance in the sensory space structure.
 
Once the sensory space structure is learned, the agent can 
localize a place in the environment as the  origin of the 
stimulus.  Because  the  metrics  of  the  sensory  space 
structure does not rely on the metrics of the abscissa of 
the  probes,  the  localization  of  the  origin  is  consistent 
across  modalities.  Therefore,  the  sensor  mapping 
algorithm  supports  a  spatially-organized  multimodal 
integration  of  stimuli.  For  example,  the  agent  can 
determine that the origin of a specific tactile stimulus soft 
and  the  origin  of  a  specific  visual  stimulus  green are 
located at the same place in the environment. Allocating 
an origin to stimuli implies assuming that stimuli have a 
cause in  the  environment.  Such  cause  can  be  called  a 
phenomenon,  typically  defined  as  any  observable 
occurrence.  To  external  observers,  these  phenomena 
correspond to physical  objects in the environment (e.g., 
walls, alga, fish). The agent, however, does not see these 
objects as we see them, nor does it allocate them the same 
utility as we do, which is why we refer to the objects as 
phenomena from the agent’s viewpoint.

The agent can construct an origin map that represents the 
location of the phenomena in the environment. Such an 
origin map is, however, not enough to have an operational 
representation of the environment. Additionally, the agent 
needs to learn the relation between its motor actions and 
the origin map. This question is addressed next.

3.2 Correspondence between actions and local space

This algorithm is called the  motion mapping algorithm, 
which  learns the correspondence between the actions of 
the  agent  and  the  geometrical  transformations  in  the 
agent’s  origin  map.  This  algorithm  addresses 
presuppositions c.1 and c.2 introduced in Section 2.2.

The  motion  mapping  algorithm  consists  first  of 

computing  a  vector  field  that  describes  the  relative 
movements of the  origins in the  origin map when the 
agent moves.  This vector field can be thought of as an 
“optic flow” (Figure 4) in the image made of the points of 
sensation  of  the  sensory  space  structure.  Because  the 
resolution  of  this  image  may  be  low,  we  used  an 
algorithm inspired by the insect eye algorithm developed 
by Franceschini, Pichon and Blane (1992). This algorithm 
estimates the movement by measuring the time between 
variations  of  values  in  a  point  of  sensation  and  its 
neighbors.  Note  that  the  goal  of  the  motion  mapping 
algorithm is  not  to anticipate complex consequences of 
actions  in  the  environment  (such  as  the  trajectory  of 
objects in motion) nor to allow complex navigation and 
localization  in  space  (e.g.,  Mataric,  Meyer,  &  Wilson, 
2009; Meyer, Guillot, Khamassi, Pirim, & Berthoz, 2005), 
but  only to learn the relation between primitive actions 
and the local space.

We assume that the agent cannot move its body parts but 
can only move as  a  whole  block in  a  two-dimensional 
environment.  With  this  assumption,  the  agent’s  actions 
can  be  expressed  as  the  sum  of  a  translation  and  a 
rotation.  Consequently,  the  resulting  geometrical 
transformations in the local space memory consist of the 
sum  of  a  translation  and  a  rotation  in  the  opposite 
direction.  The  algorithm  computes  the  value  of  this 
translation  and  this  rotation  by  measuring  the  average 
translation and rotation in the vector field.

Once the translation and rotation values are known, the 
agent can apply them to the origin map to follow up the 
relative positions of phenomena when the agent moves. 
This approach is related to map learning algorithms based 
on occupancy grids (Elfes, 1989). For example, if a wall 
is on the agent’s left side, and the agent makes a rotation 
step to right, then the agent knows that the wall moved 
behind,  even  though  the  agent  cannot  see  the  wall 
anymore. Moreover, the origin map is now related to the 
agent’s possibilities of actions. For example, the agent can 
estimate  the  distance  of  phenomena  in  terms  of  the 
actions needed to reach them. 

3.3 Bundle construction

As noted in Section 3.1, origin maps are consistent across 
sensory  modalities  because  they  are  based  on  delays 
during movements rather than on the metrics of sensors. 
Therefore, the agent can infer that different stimuli from 
different  sensory  modalities  are  “caused”  by  the  same 
phenomenon  when  the  origins  of  such  stimuli  overlap. 
The  agent  creates  a  bundle  to  represent  the  set  of  the 
different interactions afforded by this phenomenon. Once 
learned,  the  bundles  are  memorized  in  persistence 
memory,  and  can  be  subsequently  recognized.  For 
example,  the agent creates the bundle of touching  hard 



from the  tactile  map,  and  seeing  dark  green,  from the 
visual  map  to  represent  the  phenomenon  “wall”.  This 
mechanism eliminates presupposition a.3. The agent can 
then subsequently enrich the “wall bundle” by adding the 
interaction  “bump”.  Then,  the  sequence  learning 
mechanism will cause the agent to avoid walls when it 
recognizes them, as reported in Section 2. 

4. Second experiment

We implemented these algorithms in a  similar  agent  as 
presented  in  Section  2,  in  the  same  environment  as  in 
Figure 1. We, however, modified the visual and the tactile 
system to provide more precise input to the algorithms. 
The visual system now has a resolution of 5° over a total 
span of 180° (36 “pixels”). Each pixel returns the color 
and  the  distance  of  the  first  detected  object,  with  a 
maximum range of  20 grid units.  The tactile  system is 
composed of 18 whiskers distributed all around the agent. 
Each whiskers return the distance and a tactile property of 
the closest object, with a maximum range of 1.5 grid unit.

4.1 Sensor mapping

The sensor mapping algorithm was tested with the tactile 
system, with  a resolution of 3 points of detection on each 
whisker at a distance of 0.5, 1, and 1.5 grid units from the 
center of the agent. Figure 3 allows a comparison of the 
actual  points  of  detection (Figure  3.a)  with the  learned 
points of sensation in the tactile sensory space structure 
(Figure  3.b).  This  result  was  obtained  after  1000 steps 
starting  from  an  initial  condition  where  the  individual 
points of sensation were placed randomly (independently 
from the whisker to which they belong). This result shows 
that  the  agent  was  able  to  approximately  learn  the 
configuration  of  its  whiskers.  The  whiskers,  however, 
appear “shrinked”. We believe that the precision on the 
whiskers’ length could be  improved by considering the 
movement of the agent learned from the motion mapping 
algorithm.  This  would  involve  interweaving  the  sensor 
mapping algorithm with the motion mapping algorithm in 
the future developments.   

 

 

 

 

(a)                                     (b)

Figure 3: the real tactile system (a) and the sensory 
space  structure  (b)  given  after  1000  steps.  Black 
radial  lines  represent  whiskers  and  the  black  circle 
line represents the whiskers' basis.

Figure 3b also provides a representation of an instance of 
the tactile origin map when the agent is sensing a “wall 
phenomenon”  on  its  left  side  (dark  green)  and  a  “fish 
phenomenon” on its front (blue). 

4.2 Motion mapping 

Figure 4 reports examples of vector fields computed by 
the  motion  mapping  algorithm  applied  to  the  visual 
system. To obtain these results, we, however, hard coded 
the visual sensory space structure rather than learning it 
with the sensor mapping algorithm. As noted in Section 
4.1,  merging  these  two algorithms remains  a  challenge 
that we plan to address in future studies. 

 

     (a)                                             (b)

Figure  4:  average  movement  flow  given  by  the  visual 
system, for a rotation (a) and a translation (b).        

The  average  translation  and  rotation  vectors  are  then 
computed for  each action. The Table 1 summarizes  the 
coefficients measured after 100 steps. Coefficients are the 
ratio between the linear or angular speed and the distance 
(in  grid  unit)  or  angle  (in  radius)  covered  in  one 
simulation  step.  Even  though there  is  a  non  negligible 
error, translation and rotation actions are recognizable.

Table 1 : real and measured translation (Tx and Ty) and 
rotation (Rz) coefficients.

action Real coefficients Measured 
coefficients

Move forward   Tx = 0
  Ty = 0.333
  Rz = 0

  Tx = 0.022
  Ty = 0.376
  Rz = 1.19 . 10-4

Turn right   Tx = 0
  Ty = 0
  Rz = 1.75 . 10-3

  Tx = 0.058
  Ty = 0.017
  Rz = 1.53 . 10-3

Turn left   Tx = 0
  Ty = 0
  Rz =-1.75 . 10-3

  Tx = 0.061
  Ty =-0.015
  Rz =-1.51 . 10-3



Figure 5.b shows an instance of the origin map for the 
tactile system, using whiskers with 15 points of detection 
each. In this figure, colored areas represent the origin of 
tactile stimuli: touching soft (light gray), touching edible 
(middle gray), touching hard (dark gray), empty (white), 
and black areas indicate untouched areas.

(a)

(b)                                      (c) 

Figure 5: figure (a) shows the actual position of the agent 
in the environment. (b) map represents the tactile origin 
map, (c) the visual origin map. The red point shows the 
position of the agent in its own egocentric reference, the 
front of the agent is on the top.

Figure 5.c shows the instance of the origin map for the 
visual  system  in  the  same  situation.  In  both  of  these 
figures, the agent’s location is represented by a red point 
and the agent’s front is oriented upwards. More precisely, 
the  agent  keeps  track  of  the  probabilities  of  different 
phenomena at each location but the colors in the figures 
only  represent  the  most  likely  phenomenon  at  each 
location. Figure 5.a represents the corresponding situation 
of the agent in the environment. Figure 5 shows that this 
mechanism provides the agent with a sense of persistence 
of phenomena: in the lower part  of the visual map, the 
yellow and blue phenomena are still present in the visual 
origin map while being outside of the agent’s visual span. 

4.3 Bundle construction

As  introduced  in  Section  3.3,  bundles  are  constructed 
when different sensory stimuli have overlapping origins. 
Figure  6  illustrates  this  mechanism.  Figure  6.a 
summarizes  the bundles  constructed in  this  instance by 
associating  visual  stimuli  (x  axis)  with  tactile  stimuli 
(y axis): empty, hard, soft, and edible.

Figure 6.b shows the agent’s local space memory in the 
same instance as  presented in Figure 5.   In Figure 6.b, 
bundles are represented by their  colors  but actually are 
multimodal  representations  of  phenomena  that  are 
spatially localized in the agent’s surrounding local space. 

These  bundles  are  also  used  to  recognize  and  localize 
phenomena  according  to  partial  perceptions,  by 
completing missing sensory modalities.  For example, in 
the instance shown in Figure 5.a, the agent can see green 
object in front of it, but cannot touch them. The agent can 
determine  the  missing  tactile  stimulus  according  to  the 
learned bundles. In this case, there is one bundle which 
include the visual green stimulus: the “wall” bundle. The 
phenomena corresponding to green walls are then added 
to the local  space memory.  Figure 6.c shows the local 
space memory completed by such a recognition system.

5. Discussion and Conclusion

We propose  the  implementation  of  a  spatial  system to 
enable an autonomous agent to keep track of objects in its 
environment. Such system improves the agent’s ability to 
construct  increasingly  elaborated  behaviors.  This 
implementation is  part  of  an  ongoing  study of  how an 
intrinsically motivated agent becomes aware of the world 
in  which  it  exists.  We  believe  that  the  algorithms 
presented  here  shed  some  light  on  this  question  by 
illustrating the relations between the capacity of an agent 
to  orient  itself  in  space  and  its  capacity  to  allocate  a 
“cause” to its perceptions in the world (phenomena). In 
particular,  this  work  confirms  the  importance  of  time, 

(a)

(b)                                       (c)

Figure  6:  Bundle  construction.  (a)  composition  of 
bundles, y axis: empty, hard, soft, edible, x axis: color. 
(b) local space memory containing bundles represented 
by their color. (c) local space memory completed with 
most probable bundles according to partial perception.



delays,  and  sequences  in  a  cognitive  system,  as  many 
recent studies tend to show (e.g., Nicolelis, 2011). All our 
algorithms involve  time:  the  sensor  mapping  algorithm 
constructs  spatial  dependencies  from  temporal 
dependencies,  the  motion  mapping  algorithm  learns 
relations  between  actions  and  space,  and  the  agent’s 
decision process is based on sequence learning. We argue 
for a methodology relying on techniques of activity trace 
analysis  to  study temporal  dependencies  in  a  cognitive 
system. 

More practically,  this work opens the way to modeling 
agent’s  behavior  without  having  to  program  specific 
behavioral  rules  and  predefined  sensors.  This  will 
facilitate agent modeling in the future, and will facilitate 
studies on the emergence of complex behaviors.

Our  current  implementation,  however,  still  has 
limitations.  One  limitation  is  that  the  sensor  mapping 
algorithm and the motion mapping algorithm remain to be 
merged together.  The agent should simultaneously learn 
the consequences  of  its  actions and the structure of  its 
sensory system. We believe that  the separation of these 
algorithms causes imprecision in the whole process that 
still  prevented  us  from  being  able  to  set  up  a 
comprehensive  experiment  to  demonstrate  the  overall 
improvement of the agent’s behavior. Another limitation 
is  that  some  hard-coded  presuppositions  still  remain. 
Specifically, presuppositions a.1 and a.2 require creating 
bundles by associating tactile or visual stimulations with 
active interactions such as bumping or eating. Addressing 
this limitation requires taking vision and touch as active 
processes and merging the control of these processes with 
the intrinsically motivated sequence learning mechanism. 
We plan on addressing these questions in future work.
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