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Abstract. We show that (1) the Minimal False QCNF search-problem (MF-search) and
the Minimal Unsatisfiable LTL formula search problem (MU-search) are FPSPACE complete
because of the very expressive power of QBF/LTL, (2) we extend the PSPACE-hardness of
the MF decision problem to the MU decision problem. As a consequence, we deduce a positive
answer to the open question of PSPACE hardness of the inherent Vacuity Checking problem.
We even show that the Inherent Non Vacuous formula search problem is also FPSPACE-
complete.

1 Introduction

Recently, the notion of Minimal Unsatisfiable Linear Temporal Logic formula (MU for LTL) has
been introduced in [32]. This notion is, for instance, fundamental to reduce the search space in LTL
sat-solvers [11], [19], or to understand the cause of unsatisfiability and enable debugging [32], [31],
[19]. Intuitively, an element g ∈ MU(f) from a LTL unsatisfiable formula f is a limit weakening3

of f such that g remains unsatisfiable. We consider the following two fundamental problems:

MU-decision problem
input: a LTL formula f

output: yes while f is minimal unsatisfiable,
no otherwise.

MU-search problem
input: a LTL formula f

output: g ∈MU(f) while f is unsatisfiable, no
otherwise.

The aim of this work is to study computational complexity of the above MU-decision/search
problems. The authors of [13] have shown that the MUCNF decision problem is DP -complete
for propositional logic with formula in Conjunctive Normal Form (CNF) but it is in P while the
deficiency is fixed [20]. An important effort has been devoted to approaches allowing to approxi-
mate/compute MUCNF of propositional logic (see,[37],[23],[26],[27],[33]). The Minimal False QBF
decision problem is PSPACE complete [22] but it is in DP for fixed deficiency [21]. However, only
a few investigations dealt with MF [36]. The author in [32] defines MU for LTL, and recalls that
given a formula and a fixed occurrence, deciding if it is not necessary (w.r.t unsatisfiability) is
PSPACE complete (MU-step-dec). However, the MU decision/search problems (MU-dec/search)

3 some substitutions by TRUE (resp.FALSE) of some subformula occurrences of positive (resp.negative)
polarity



remain open. A few work propose computation of MU for LTL [11],[32],[31], [19]. A recent work
also proposed to compute minimal revision of an unsatisfiable LTL specification [17] in order to
achieve the satisfiability. Some simple results for unrealizability of LTL formula (2-EXPTIME com-
plete) are also given in [32]. In [5], the authors investigated the causes in counterexample of LTL
specification and have shown that the decision problem is NP complete (by considering as inputs
a LTL counter-example, a timestamped variable and a LTL formula). This work is built on the
theory of causes introduced in [24]. Also based on the theory of [24], the authors in [8] analyze
some variables as a cause of verifying a model checking test. In [6], the authors investigated basic
algorithms for Minimal Unsatisfiable boolean circuit. Computing the minimal unsatisfiable formu-
las in SMT is proposed in [10]. Since a Minimal Unsatisfiable LTL formula is a particular case
of inherent non vacuity [15],[32], we consider also complexity result for inherent vacuity. Given a
LTL Formula f and a fixed subformula occurrence Occ(g), deciding if Occ(g) is a witness of in-
herent vacuity of f is PSPACE-complete but deciding whether there is an inherent vacuity in f
is still an open problem [15]. While f ∈ LTL is a conjunction, the decision problem of a smallest
equivalent subset of the f ’s conjuncts (irredundancy) and of a given size is PSPACE complete [9].
Some works were devoted to the vacuity detection (see, [4],[25],[3], [28],[34],[15],[9]). To summa-
rize, although substantial complexity results have been provided in the propositional case, current
corresponding complexity results for LTL appear to be less studied than in the propositional case.
Mainly, complexity results for minimality problems in the LTL case assume additional subformula
or length parameter in the definition of the problem. In this paper, we show that (1) the Minimal
False QBF search-problem (MF-search) and the Minimal Unsatisfiable LTL formula search problem
(MU-search) are FPSPACE complete because of the very expressive power of QBF/LTL and (2)
we extend the PSPACE-hardness of the MF decision problem to the MU decision problem. As a
consequence, we provide a positive answer to the open question of PSPACE hardness of the inherent
Vacuity Checking problem. We even show that the Inherent Non Vacuous formula search problem
is also FPSPACE-complete.

For uniformity purpose we introduce QLTL (QBF ⊂ QLTL and LTL ⊂ QLTL) in Section
2. We also discuss the notions of weakening for QLTL formulas and minimal unsatisfiable LTL
formulas. In Section 3, we start by analyzing the complexity of Minimal FALSE QCNF formulas,
then, we enhance the translation of QCNF sat to LTL Model Checking to show complexity results
for the LTL MU-search problem. Finally, we propose an original proof of PSPACE completeness
of the MU-dec problem. We reuse these results in order to provide complexity results for Inherent
Vacuity Checking. We conclude in Section 4.

2 Preliminaries

Complexity
We recall the basic definition of computational complexity [30],[35]. Let Σ be an alphabet, a total
deterministic computable function f from Σ∗ to Σ∗, associated with a total (at left) binary relation
R(x, y) ∈ Σ∗×Σ∗ with input x ∈ Σ∗ is an always accepting deterministic Turing Machine with three
tapes: a ‘two-ways’ ‘read-only’ input tape (where x lies), a ‘two-ways’ ‘read/write’ computing tape
and a ‘one-way’‘write-only’ output tape with output f(x) such that R(x, f(x)). A FPSPACE search
problem with relation R is such that there exists a polynomial P such that R(x, y)⇒ |y| ≤ P (|x|)
and there exists a function f such that for any x, the total use of space units of the machine (of
the output and of the working tapes) is also bounded by P (|x|). A decision problem associated to a
language L ⊂ Σ∗ over a fixed alphabet Σ is PSPACE iff there exists a FPSPACE function f such



that given any input x ∈ Σ∗, f(x) = ‘yes′ iff x ∈ L (thus for instance f(x) = ‘no′ while x /∈ L). A
logspace function is a function f using O(log(|x|) space at the working tape but no constraint at the
ouptut tape4. There exists a logspace reduction of a decision problem L1 ⊆ Σ∗ to another L2 ⊆ Σ∗
iff there exists a particular logspace function f such that x ∈ L1 iff f(x) ∈ L2. There exists a logspace
reduction from a relation R1 to a relation R2 iff there exists three functions f , g2, h with function
f and h are logspace functions, and g2 is a R2 function such that for any x, R1(x, h(g2(f(x)), x))
holds, i.e., given a x one can compute a y with R1(x, y) by (1) computing f(x), (2) computing
z = g2(f(x)) with R2(f(x), z) and (3) computing y = h(g2(f(x)), x). A PSPACE decision problem
is PSPACE-complete iff any PSPACE-problem is logspace reducible to it. A FPSPACE search
problem is FPSPACE complete iff any FPSPACE problem is logspace reducible to it. We quickly
recall that a NP decision problem is a decision problem which is solvable by a Non-deterministic
Turing Machine, in polytime for the positive answer. DP is the class of languages of the form L1∩L2

with L1 a NP problem and L2 a Co-NP problem (Intuitively one positive call and one negative call
to a NP-complete problem). ΣP

2 is the set of decision problems with a non deterministic polytime
Turing Machine, but with a NP-complete oracle. We recall that NP ⊆ DP ⊆ ΣP

2 ⊆ PSPACE,
without knowing whether the inclusions are strict. The reduction from one of the non deterministic
problem is usually through a deterministic polytime computable function rather than a logspace
function.

QLTL [2]
Let P be a non empty finite set of propositional variables, p ∈ P and A and B are two QLTL

formulas. A temporal logic formula is inductively built by means of the following rules:

TRUE |FALSE |p |A ∧B |A ∨B |¬A|X (A)|AUB |AWB |∃pA |∀pA .

Furthermore, G(A) = AW FALSE and F(A) = TRUEU A. In this paper, while some definitions
hold for QLTL formulas, the focus is on two fragments of QLTL: Quantified Boolean Formula
(QBF [35]) and Linear Temporal Logic (LTL [16]). QBF is the fragment of QLTL without modal
operators (U ,W,X ,F ,G) and LTL is the fragment without quantifiers (∃,∀). Both the satisfiability
and Model Checking decision problems of LTL and QBF are PSPACE complete on the contrary
to the satisfiability problem of QLTL which is non-elementary5 and the model checking is however
PSPACE complete [29]. The set of QBF without quantifier is denoted PROP and is NP-complete
[12]. A QLTL formula is in Prenex form iff it is of the form Qxφ with Qx = Q1x1Q2x2...Qnxn with
Qi ∈ {∀;∃}, and x = (x1, ..., xn) standing for a set of different variables, and φ without quantifier.
In the following, we will assume that any QLTL is in Prenex Form. Except for the case of Vacuity
checking (see Section 3), we will also restrict any formula to possibly contain ¬ symbol solely applied
to propositional variable(s) [18]. We call such a formula Negative Normal Form (NNF).
A propositional variable p in a QLTL f is free iff there exists an occurrence of p in f which is
not in the scope of a quantifier. A closed QLTL is a QLTL without free variables. A literal l is
either a propositional variable p ∈ P , or its negation ¬p. lit(P ) denotes the set of literals of P . We6

define ∼ (1) on literals as ∼ p = ¬p and ∼ ¬p = p; (2) on quantifiers as ∼ ∀ = ∃ and ∼ ∃ = ∀
and ∼ (Q1Q)x1x =∼ (Q1)x1 ∼ (Q)x. A clause is a disjunction of literal(s). A QLTL-clause is a
disjunction of literal(s) and/or modal operator(s) applied to literal(s) (e.g., (aU¬b)∨¬c∨F(d)). We

4 However, one can show that the output is polynomial in |x| yet.
5 Elementary is the class of decision problems for which the execution time is bounded by a finite compo-

sition of exponential in the input size |x| (e.g., O(222
|x|

) unit times).
6 This definition is necessary because ¬¬p is syntactically different from p.



finally say that Φ ∈ QBF is a QCNF if it is of the special prenex form Qxφ with φ a conjunction
of different clause(s). In this case, if Φ gets no quantifier then it lies in CNF ⊂ PROP . Note
that the QCNF-sat decision problem is also PSPACE complete by adapting the proof of [35] to
the QCNF case. By analyzing the proof of the PSPACE-hardness of QBF in [35], one can also
show that the QBF-sat-search problem is FPSPACE-complete. This is the problem of searching a
satisfiable valuation of the free variables of the QBF formula while it is satisfiable. To prove the
FPSPACE hardness, let consider the following points. Since the output tape is PSPACE bounded
in the definition of a FPSPACE problem, the configurations can also contain output tape variables.
This is then sufficient to remove the external existential quantifiers of the configurations in the
proof of [35] to prove QBF-sat search is FPSPACE-hard. The inclusion in FPSPACE is trivial.
A linear time structure is an element M in (2P )N. ∀i ∈ N,∀M∈ (2P )N:

– (M, i) � p with p ∈ P iff p ∈M(i).

– (M, i) � X (A) iff (M, i+ 1) � A.

– (M, i) � AUB iff ∃j ≥ i, (M, j) � B and ∀k, i ≤ k < j, (M, k) � A.

– (M, i) � AWB iff ∀j ≥ i, (M, j) � A or ( ∃j ≥ i, (M, j) � B and ∀k, i ≤ k < j, (M, k) � A).

– The semantics of any propositional combination is defined as usual.

– (M, i) � ∃p (A) iff there exists a linear structure M′ such that (M′, i) � A and where M′
differs from M solely at the instances of p.

– (M, i) � ∀p (A) iff for any linear structure M′ such that M′ differs from M solely at the
instances of p then (M′, i) � A.

A partial instance is a linear structure where solely some variables are instantiated (at any
state).
We write down Mt for the suffix of M starting at time t.

A Kripke Structure K is a labeled automaton K = (S, S0, T, l) with S the set of states, S0 ⊂ S
the set of initial states, T ⊂ S × S a total binary relation standing for the transitions and l a total
function from S to 2P . A K-linear structure is any linear structure M such that there exists a
function m in SN such that m(0) ∈ S0 and ∀i ≥ 0 M(i) = l(m(i)) and (m(i),m(i + 1)) ∈ T . We
note K � f iff any K-linear structureM is such that (M, 0) � f . In this paper we restrict ourselves
to finite Kripke Structure. It may happen that a state s occurs in a formula, without confusion, it
stands for the conjunction of its literals ∧p∈l(s)p ∧p∈P\l(s) ¬p.
Let f be a QLTL formula, a syntactic tree T (f) is defined by the following rules:

– T (p ∈ P ) is a single node labeled by p.

– T (◦g) is a tree with a root node which is labeled by ◦ (◦ ∈ {¬;X ;∃;∀}) and a child subtree
T (g).

– T (g1 ◦ g2) is a tree with a root node which is labeled by ◦ (◦ ∈ {U ;W;∨;∧}) with a left child
subtree T (g1) and a right child subtree T (g2).

A subformula h of f is a ‘subword’ of the ‘word’ f such that h is a also a formula, and the set of
subformulas is denoted sf(f). We will also write Cl(sf(f)) the set of clauses which are in sf(f).
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Fig. 1. Syntactic tree

For instance sf((a∧b)U¬a) = {a; b; a∧b;¬a; (a∧b)U¬a}. The set
of subformula occurrences Occ(sf(f)) corresponds to the set of
nodes of T (f). For each node N , a natural subformula Sf(f)(N)
can be associated with the subformula of the N -root subtree of
T (f). For instance on Figure 1, Occ(sf((a ∧ b)U¬a)) gets two
occurrences of the subformula a. Furthermore a ∧ b is associated
with the labeled node ∧. We also define Cl(Occ(sf(f))) as before.
Let g be another QLTL formula, f [h ← g] is the result of the
substitutions in f of all the occurrences of h by g. For one specific
occurrence of h denoted Occ(h) ∈ Occ(sf(f)), f [Occ(h) ← g] is
the result of the substitution in f of the only occurrence Occ(h)
of h by g.

We divide Occ(sf(f)) into two disjoint sets: Occ(sf(f)) = sf+(f) ∪ sf−(f) where sf+(f) is
the set of the subformula occurrences with positive polarity7. We fix litε(f) = sf ε(f)∩ lit(P ) with
ε ∈ {+;−}. Finally if Occ(g) ∈ Occ(sf(f)) then Occ(g′) ∈ Occ(sf(f)) is a superformula occurrence
of Occ(g) iff Occ(g) is a descendant node of Occ(g′) in T (f). For instance on Figure 1, ¬a is a
superformula occurrence of the ‘second’ occurrence a in ¬a. If K is a Kripke structure and s a state
of K, then for any K-linear structure (M,m) different from S∗sω, M[s ← erase] is the modified
(M,m) where any corresponding occurrence of s has been erased.
We call weak promise wp any occurrence of subformula of an QLTL formula f of the form (AUB)
or (AWB) (we recall F(B) = (TRUE)UB), with B 6= FALSE which is called a promise operand.
We will say that a timestamped state (i,m(i)) of a K linear structure M triggers a weak promise
wp iff f = Z ∧ G(C ⇒ X k[((wp ∨ H) ◦ D) ∧ E)]) with ◦ ∈ {U ;∨}, k ∈ N and such that
(M, i) � C ∧X k(¬D ∧¬H). We will say that a timestamped state (i,m(i)) of a K linear structure
M propagates or postpones a weak promise wp iff (1) there exists i′ with 0 ≤ i′ ≤ i such that
(i′,m(i′)) triggers wp and (2) either (M, j) � A ∧ ¬B where k ≤ i− i′, for any i′ + k ≤ j ≤ i, with
B the promise operand of wp, or k > i − i′. We finally say that a weak promise wp is fulfilled at
(i,m(i)) iff there is a i′ with i′ ≤ i where wp is triggered and propagated until i where (M, i) � B
with B the promise operand of wp.

Weakening QLTL formulas and Minimal Unsatisfiable QLTL formulas

For (Quantified) propositional logic, a basic weakening is essentially defined as the deletion
of a clause in QCNF [22]. It is extended in [7] as the substitution of a particular ‘maximal’ ∨-
subformula (a disjunction) occurrences by TRUE while the formula is in QBF ∩ NNF. However,
for Linear Temporal Logic and related Model Checking, a basic weakening is usually defined for
any subformula occurrence [32]. In what follows, we compare these various definitions and describe
which occurrences are necessary and sufficient to consider in order to check the minimality of an
unsatifiable formula.

Definition 1. ( Basic clausal weakening for QCNF)
Let f = Qx(C1∧ ...∧Cm) an element of QCNF with the clauses Cj. Then a basic clausal weakening
of f is f [Cj0 ← TRUE] for some j0 ∈ [1;m].

7 A subformula occurrence with positive polarity is a subformula occurrence which is in the scope of an
even number of negation(s). The negative case corresponds to an odd number of negation(s).



For f1, f2 and f inQCNF the relation of basic clausal weakeningRCl(sf) is such thatRCl(sf)(f1, f2)
iff f1 is a basic weakening of f2. If R∗Cl(sf) is the reflexive, transitive closure of RCl(sf), then the set

of weakened subformulas of f is WCl(sf)(f) = {g ∈ QCNF |R∗Cl(sf)(g, f)}.

Definition 2. (Basic Occurrence Weakening in QLTL [32]) Let f ∈ QLTL, a basic occurrence
weakening is a formula g such that g is the result of a substitution in f of either (1) a subformula
occurrence in sf+(f) by TRUE, or (2) a subformula occurrence in sf−(f) by FALSE .

For instance if f = G(¬c∨ (a∨ ((¬b)Uc))) then g = G(¬c∨TRUE) is a basic occurrence weakening
of f . Except for case of vacuity checking (see section 3), we will restrict ourselves to occurrences in
sf+. Rsf+ and Wsf+ are defined similarly as RCl(sf) and WCl(sf). However, while the occurrence of
f1 = x∨(c∧((¬b)We)) is substituted by TRUE in f = ∃x(¬r∧(r∨(F(x∨(c∧((¬b)We))))) then the
resulting formula f ′ = ∃x(¬r ∧ (r ∨ (F(TRUE))) is trivially equivalent to f ′′ = ∃x(¬r ∧ (TRUE)).
Consider Eq0 ∈ (Sf+(f))2, with Eq0(Occ(f1), Occ(f2)) iff Occ(f2) is a superformula occurrence
of Occ(f1) and f2 gets one of the following forms f1 ∨ Z,AU/W(f1), (f1)WFALSE, or X (f1).
Then, if Eq is the symmetric, reflexive, transitive closure of Eq0, and if Eq(Occ(f1), Occ(f2)), then
f [Occ(f1) ← TRUE] ≡ f [Occ(f2) ← TRUE]. A class representative of a class Cla from Eq can
be the (right)8 maximal element of Cla with respect to Eq∗0 . For the last example Cla(Occ(f1)) =
Cla(Occ(f2)) with Cla(Occ(f2)) = (r ∨ (F(x ∨ (c ∧ ((¬b)We)))) and Cla(Occ(f2)) is maximal. It
is then sufficient to consider solely a ‘maximal’ representative per class for weakening analysis as
for the QBF case [7]. But if the maximal class representative or a minimal class representative is a
conjunction or of the form AU/WB with A 6= TRUE and B 6= FALSE, then it is not correct to say
its substitution by TRUE is a basic weakening, since any of its conjunct/A substitution by TRUE
weakens f ‘less’ than the conjunction or AU/WB. For instance, if f = ∃b[(c ∧ ¬d) ∨ b ∨ d], then
solely the occurrences {c;¬d; } are the ‘weakest’ maximal non-conjunctives occurrences. Similarly,
if f = ∃x(¬r ∧ (r ∨ (F(x ∨ (c ∧ ((¬b)We))))) then {¬r ; c ; ¬b} are the weakest maximal non-
conjunctive occurrences. We then define a weakest basic weakening of maximal non-conjunctive
subformula occurrences ( Weakest-Max weakening, for short) as follows.

Definition 3. (Weakest-Max weakening for QLTL)
A weakest basic weakening of maximal non-conjunctive subformula occurrences, is a basic Weak-
ening of ‘maximal ’ non-conjunctive subformula occurrence Occ, where Occ is the maximal repre-
sentative element w.r.t. Eq∗0 of Cla(Occ), and Cla(Occ) does not contain any Maximal/minimal
element which is a conjunction or of the form AU/WB with A 6= TRUE and B 6= FALSE.

WeakestMAX(sf+)(f),RWeakestMAX(sf+) and related weakened formulasWWeakestMAX(sf+)(f)
are defined as previously.

Definition 4. (Minimal Unsatisfiable QLTL Formula) Let O be the mapping from any formula
f ∈ QLTL to a set O(f) ⊆ sf+(f). A QLTL formula g is Minimal Unsatisfiable w.r.t. O (g ∈
MUO) iff (1) g is unsatisfiable, (2) g gets no unsatisfiable proper weakened subformula w.r.t RO (i.e.
WO(g)∩UNSAT = {g}). If f is an unsatisfiable QLTL formula, then MUO(f) = MUO ∩WO(f).

For instance, if f = α ∧ ¬α ∧ F(o) ∧ G(¬c) ∧ G(o ⇒ (F(p) ∧ F(g))) ∧ (¬g)Wp ∧ F(i) ∧ (¬i)Wp ∧
G(p⇒ G(¬i)) then MUsf+(f) = {α∧¬α∧ TRUE;TRUE ∧F(i)∧ (¬i)Wp∧ G(p⇒ G(¬i))}. Also
note that the set MUO(f) is identical (by simplifying any TRUE ∨ ..., ∧iTRUE, AU/WTRUE
or G(TRUE) by TRUE) whatever the O be from our two precedent definitions of weakening

8 For subformula occurrence there is only one right maximal element



(O ∈ {sf+;WeakestMax(sf+)}). Thus, in the following, we will solely write MU instead of MUO.
If f is closed, then the unsatisfiability becomes Falsity and we call minimal FALSE (MF) instead of
MU. In the remaining part of this paper, the MU-dec/search problem is restricted to the elements
of LTL, and the MF-dec/search problem is restricted to the elements of QCNF9.

3 Complexity results

The MU-dec problem is obviously in PSPACEPSPACE = PSPACE. To show the hardness one
adapts the proof of hardness for MF-dec [22] to LTL. As a corollary this shows the PSPACE
hardness of the Inherent Vacuity decision problem. To show the FPSPACE-hardness of MU-search,
we start by showing the FPSPACE-hardness of MF-search in QCNF, then we enhance a QCNF
sat / LTL Model Checking reduction from [14]. We conclude that the inherent non vacuous search
problem (INV-search) is FPSPACE-complete.

Minimal False Formula in QCNF
We need two lemmas to prepare the proof. W.l.g. , we fix O = Cl(sf). The first one has been proved
in [22] but it is recalled to understand its extension later.

Lemma 1. [22] Assume Φ = ∀yQxφ is in MF. Then either only y ∈ lit+(Φ) occurs or only
¬y ∈ lit+(Φ) occurs in φ.

(proof) Φ = ∀yQxφ is FALSE iff Φ[y ← TRUE]∧Φ[y ← FALSE] is FALSE iff Φ[y ← TRUE]
is FALSE or Φ[y ← FALSE] is FALSE. For instance if Φ[y ← TRUE] is FALSE, then if a clause C
containing y ∈ lit+(Φ) is in φ this clause can be substituted by TRUE and (Φ[y ← TRUE])[C[y ←
TRUE] ← TRUE] = (Φ[C ← TRUE])[y ← TRUE] remains FALSE. Then Φ[C ← TRUE] is
FALSE. However, it contradicts the assumption Φ is in MF. We conclude that there is no occurrence
of y ∈ lit+(Φ) while Φ[y ← TRUE] is FALSE. The other case is similar.

Lemma 2. Let Φ = Qxφ be a QBF in Prenex Form. Φ is LOGSPACE reducible to an equivalent
QCNF denoted QCNF (Φ).

(Proof) Let Set = {xφ} be the starting set with xφ a fresh variable, and UCS = ∅ the starting
set of clauses. Φ is LOGSPACE reducible to an equivalent QCNF by applying the following rules
until reaching a fixpoint:

– If xψ = xψ1∧ψ2
∈ Set then ∀j ∈ {1; 2} UCS := {xψ ⇒ xψj} ∪UCS and ∀j Set := Set∪ {xψj}.

– If xψ = xψ1∨ψ2 ∈ Set then UCS := {xψ ⇒ (xψ1 ∨ xψ2)} ∪ UCS and ∀j ∈ {1; 2} Set :=
Set ∪ {xψj}.

– If xψ ∈ Set is such that ψ ∈ lit(P ) ∪ {TRUE;FALSE} then UCS := {xψ ⇒ ψ} ∪ UCS.

Let x′ be a vector standing for the set Set and φ′ = xφ∧C∈UCSC, then QCNF (Φ) = Qx∃x′φ′ ≡
Φ.

Theorem 1. ( MF-Search) Given Φ a closed QCNF, providing a MF of Φ if Φ is FALSE, and
answer ‘no’ if Φ is TRUE is a FPSPACE complete problem.

9 In this case WeakestMax(sf+) and Cl(sf) are identical



(proof) The inclusion in FPSPACE is rather obvious. Let Φ0 = Qyφ0 a QBF in prenex form
with free variables x = (x1, ...., xn). Then Φ0 is satisfiable iff ∀x¬Φ0 = ∀x(∼ Q)y¬φ0 is FALSE.
According to lemma 1, if Ψ = ∀x(∼ Q)y∃zψ is a MF of QCNF (∀x¬Φ0) = ∀x(∼ Q)y∃zφ′, then there
exists a corresponding partial instance I(Ψ,x) of the x deduced from Ψ such that Ψ [x ← I(Ψ,x)] is
FALSE. Moreover φ′ � ψ and then we deduce (∼ Q)y¬φ0[x← I(Ψ,x)] ≡ (∼ Q)y∃zφ′[x← I(Ψ,x)] �
(∼ Q)y∃zψ[x ← I(Ψ,x)] ≡ FALSE. This means that TRUE ≡ ¬[(∼ Q)y∃zψ[x ← I(Ψ,x)]] �
Qyφ0[x←∼ I(Ψ,x)], i.e., ∼ I(Ψ,x) � Φ0. Thus, finding a satisfiable model of a QBF is LOGSPACE
reducible to the search problem of a MF of a closed QCNF. This proves the FPSPACE hardness
[30].
Deciding Minimal Unsatisfiable LTL formula
W.l.g. we solely consider O = WeakestMax(sf+).

Lemma 3. (Definitional SNF[18]) Any LTL formula f can be LOGSPACE reduced to an equi-
satisfiable formula in (F,X)-TL [1] of the form f ′ = xf∧2≤i≤mf ′i where any f ′i is one of the following
”globally” scoped LTL-clauses-based forms : G(x∨F(x′)), G(y∨X (y′)) or G(w∨w′∨ (δ∧w′′)). The
xf , x, x

′, y, y′, w, w′, w′′ are literals and δ ∈ {TRUE;FALSE}10. Furthermore, no pair of literals
in the scope of a G operator have the same propositional variables. Finally, ∧2≤i≤mf ′i is satisfiable
with a model M′ which sets xf to FALSE at M′(0).

(Proof)
Let the starting set Set = {xf} with xf a fresh variable, and UCS = ∅ the starting set of unwound
LTL-clauses. Let us apply the following rules until reaching a fixpoint:

– If xψ = xψ1∧ψ2
∈ Set then ∀j ∈ {1; 2} UCS := {xψ ⇒ xψj} ∪ UCS and ∀j ∈ {1; 2} Set :=

Set ∪ {xψj}
– If xψ = xψ1∨ψ2

∈ Set then UCS := {xψ ⇒ (xψ1
∨ xψ2

)} ∪ UCS and ∀j ∈ {1; 2} Set :=
Set ∪ {xψj}

– If xψ = xX (ψ1) ∈ Set then UCS := {xψ ⇒ X (xψ1
)} ∪ UCS and Set := Set ∪ {xψ1

}
– If xψ = xψ1U/Wψ2

∈ Set then UCS := {xψ ⇒ (xψ2
∨ (xψ1∧X (ψ)))} ∪ UCS and Set := Set ∪

{xψ2
;xψ1∧X (ψ)}. In the case of U , we add UCS := {xψ ⇒ F(xψ2

)} ∪ UCS
– If xψ ∈ Set is such that ψ ∈ lit(P ) ∪ {TRUE;FALSE} then UCS := {xψ ⇒ ψ} ∪ UCS

with xψj fresh variables at each step. It turns out that f ′ = xf ∧f ′′∈UCS G(f ′′) is equi-satisfiable
to f . Furthermore, ∧f ′′∈UCSG(f ′′) is satisfiable with a model M′ at FALSE at any time for any
propositional variable. This proves the lemma.

Theorem 2. (MU-dec)
Deciding if an unsatisfiable LTL formula is a minimal unsatisfiable formula is PSPACE-complete.

(proof) For any element in Weakest−Max(sf+(f)), substitute by TRUE and check unsatisfiabil-
ity. f is a MU iff any substitution leads to a satisfiable formula. There is a linear number of subfor-
mulas, and any checking is in PSPACE. Thanks to lemma 3 any LTL formula f can be LOGSPACE
reduced to an equi-satisfiable formula of the form f ′ = xf ∧2≤i≤m f ′i with any f ′i is one of the fol-
lowing forms : G(x∨F(x′)), G(y∨X (y′)) or G(w∨w′∨ (δ∧w′′)). Furthermore, letM′ defined as in
lemma 3. Let α1, ..., αm some subformulas of f ′ such that α1 = xf and f ′i = G(αi) for 2 ≤ i ≤ m. Let
x1, ..., xm be fresh boolean variables, and πi = x1∨..xi−1∨xi+1∨..∨xm. Let ”~” be defined as follows:
~l =∼ l for l a literal, ~X (l) = X (∼ l) and ~F(l) = G(∼ l). Let ω(f ′) the conjunction of the following

10 Once δ is instantiated, the formula is simplified to the equivalent clause



subformulas: (X (x1)∨α1∨π1)∧2≤i≤mG(αi∨πi), (¬x1∨¬xf∨π1)∧2≤i≤m∧op∈αiG(~op∨πi∨¬xi) where
op is an operand of the LTL-clause αi, ∧16=j(¬x1 ∨ ¬xj) ∧2≤i<j≤m G(¬xi ∨ ¬xj), G(X (¬x1)) ∨ π1,
x1 ∨ ... ∨ xm. Assume λ(f ′) = ω(f ′) \ {x1 ∨ ... ∨ xm}. We will show that ω(f ′) is a MU iff f ′ is
satisfiable.
A- If ω(f ′) is MU then f ′ is satisfiable.
If ω(f ′) is MU then λ(f ′) is satisfiable. If M is a linear model of λ(f ′), there are two cases: (1)
Either any xi is False at any time point j in M(j) and (M, 0) � λ(f ′) iff (M, 0) � f ′. Thus, f ′ is
satisfiable. (2) Either there exists a time point j and some xi such that xi is True in M(j). In this
case we have:

– If π1 is FALSE atM(0), then thanks to G(X (¬x1))∨π1, either x1 is TRUE atM(0) and it will
never hold later (but in this case (M, 0) 2 λ(f ′) because (M, 0) 2 (X (x1)∨α1∨π1)∧(¬x1∨¬xf∨
π1)∧(G(X (¬x1))∨π1)∧16=j′ (¬x1∨¬xj′)), or x1 will never hold onM, then i > 1 and j > 0, but
in this case (M, 0) 2 ∧2≤i′<j′≤mG(¬xi′∨¬xj′)∧G(αi∨πi)∧op∈αiG(~op∨πi∨¬xi)∧G(X (¬x1))∨π1
since (M, j) 2 ∧2≤i′<j′≤m(¬xi′ ∨ ¬xj′) ∧ (αi ∨ πi)∧op∈αi(~op∨πi ∨ ¬xi). Thus (M, 0) 2 λ(f ′)

– If π1 is TRUE at M(0) then i > 1 and for instance j = 0. We deduce (M, 0) 2 ∧16=j′(¬x1 ∨
¬xj′) ∧2≤i′<j′≤m G(¬xi′ ∨ ¬xj′) ∧ G(αi ∨ πi)∧op∈αiG(~op∨πi ∨ ¬xi). Thus (M, 0) 2 λ(f ′).

Thus only the case (1) is possible, i.e., f ′ is satisfiable.
B- if f ′ is satisfiable then ω(f ′) is MU.
Assume f ′ is satisfiable. We have to show that ω(f ′) is (a) unsatisfiable and (b) minimal. (1) Assume
ω(f ′) is satisfiable by a modelM, then only one of xi is TRUE atM(0) but this is the unsatisfiable
case of A-(2), which is a contradiction. Thus ω(f ′) is not satisfiable. (2) Let g be a subformula in
the conjunction of f ′. We will show that γ(f) = ω(f ′) \ {g} is satisfiable for any g:
- case g = X (x1) ∨ α1 ∨ π1. Let M be a model with x1 TRUE only at M(0) and FALSE later on
and the other xis are always False onM. Then (M, 0) � γ(f ′) iff (M, 0) � (¬x1∨¬xf ∨π1)∧2≤i≤m
G(αi ∨ πi), and fixing the other variables as in M′ is sufficient to show (M, 0) � γ(f ′).
- case g = G(αi ∨πi). LetM be a model with xi always TRUE onM and the other xi′s are always
False on M, then (M, 0) � γ(f ′) iff (M, 0) � ∧op∈αiG(~op∨πi ∨ ¬xi). The ops does not have the
same propositional variables, thus by setting in M the literals of Lit(op) always to FALSE for any
ops of αi leads to (M, 0) � γ(f ′).
- case g = x1 ∨ ... ∨ xm then if any xi is always FALSE, and since f ′ is satisfiable and according to
1.(a), (M, 0) � γ(f ′).
- case g = (¬x1 ∨ ¬xf ∨ π1). Let M be a model with x1 TRUE only at M(0) and FALSE later on
and the other xis are always False. Setting the other variables as in a model of f ′ is sufficient to
show (M, 0) � γ(f ′).
- case g = G(~op∨πi ∨ ¬xi). Let M be a model with xi always TRUE and the other xjs are always
False on M. Setting literals in Lit(op) always to FALSE while ~op is in γ(f ′) and the remaining
Lit(op) of αi always at TRUE is sufficient to show (M, 0) � γ(f ′).
- case g = G(X (¬x1)) ∨ π1. Let M be a model with x1 always TRUE and the other xis are always
False on M. Setting xf at FALSE at M(0) is sufficient to show (M, 0) � γ(f ′).
- case g = ¬x1∨¬xj . LetM be a model with x1 and xj always TRUE and the other xis are always
False on M. One gets (M, 0) � γ(f ′).
- case g = G(¬xi ∨ ¬xj). Let M be a model with xi and xj always TRUE and the others xi are
always False on M. One gets (M, 0) � γ(f ′).
Since the satisfiability decision problem of LTL is PSPACE complete [1], and it is LOGSPACE
reducible to the MU decision problem, MU-decision is PSPACE hard. Consider now the problem of



deciding whether, given a LTL formula g, there is a strengthening11 of g which is still equivalent to
g (Inherent vacuity with single occurrence [15]). Let g = ¬ω(f). Since a PSPACE-complete problem
also gets its Co-problem be PSPACE-complete, one gets:

Corollary 1. The inherent vacuity decision problem (with single occurrence) is PSPACE-complete.

b̃0 ã0 b̃1

x̃01

x̃11
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δ̃1, γ1
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Fig. 2. K and K′ for Φ = ∀x1∀x2∃x3∃x4(x1 ∨ x3) ∧ (x1 ∨ x4 ∨ ¬x3) ∧ (¬x2 ∨ ¬x4)

Canonical reduction of QCNF into LTL Model Checking [14]

Let Φ be a closed QCNF . Thus, Φ = Qxφ with φ ∈ CNF is of the form φ = ∧1≤j≤mCj , where
any Cj is a clause and |x| = n. We begin to recall the existence of a Kripke structure K and a LTL
formula Ψ such that: K � Ψ iff Φ is FALSE [14].
We start by the example Φ = ∀x1∀x2∃x3∃x4(x1 ∨ x3) ∧ (x1 ∨ x4 ∨ ¬x3) ∧ (¬x2 ∨ ¬x4). The Kripke
structure K is shown Figure 2. For space commodity, K is indicated by the arrows with simple
arrowhead (do not consider double arrowheads). Intuitively a path at the ‘above’ part of K instan-
tiates the variables of φ (by choosing to display x0i or x1i ), and a path at the ‘right’ part displays
any choosen literal per clause (lj,k). Consistency constraints (1) between instances of variables and
displayed literal per clause and (2) to express universal quantifier of Φ are expressed in the LTL
formula Ψ . In the general case K and Ψ are defined as follows:

Let P be the set of the following fresh propositional variables for LTL formula:

11 some substitutions by FALSE (resp. TRUE) of some subformula occurrences of g with positive polarity
(resp. negative polarity)



– a0, b0
– ∀i 1 ≤ i ≤ n, x0i , x

1
i , ai , bi

– ∀j 1 ≤ j ≤ m, dj , ej , ∀k, l(j,k) with Cj =
∨1≤k≤kj lit(l(j,k))

Moreover, any l(j,k) or xεi is a propositional variable standing for a literal written down lit(l(j,k))
as a literal of Cj , lit(x

0
i ) = ¬xi and lit(x1i ) = xi, with xi ∈ x.

Let a Kripke structure K = (S, {b̃0}, T, l) where any state is defined by its label. For s ∈ S, if

l(s) = {p1, ..., pq}, then ˜(p1, ..., pq) denotes s. Furthermore, b̃0 is the solely starting state. K is the
smallest Kripke structure allowing the following transitions:

– (b̃0, ã0)

– (ãi, b̃i+1) for any i, 0 ≤ i ≤ n− 1

– (b̃i, x̃0i ) , (b̃i, x̃1i ), (x̃0i , ãi), (x̃1i , ãi) for any i,
1 ≤ i ≤ n

– (ãn, d̃1)

– (d̃j , ˜l(j,k)) , ( ˜l(j,k), ẽj) for any j, k such that
1 ≤ j ≤ m, 1 ≤ k ≤ kj ,

– (ẽj , d̃j+1) for any j|1 ≤ j ≤ m− 1

– (ẽm, b̃i) for any i|0 ≤ i ≤ n ,

In case of no confusion, we will write ˜p1, ..., pq to denote the canonical conjunction of its literals:
∧1≤t≤qpt∧p∈P\(∪1≤t≤q{pt})¬p . Let Ψuniv = ∧i|Qi=∀G(ãi−1 ⇒ [((¬bi−1)Ux0i )∧X 2(x1i )]) standing for

the constraints enforcing a potential K linear model to first visit the state x̃1i for any Qi = ∀ and later

visit x̃0i . Furthermore, as long as both states have not been visited, any K linear model cannot go

back to the previous x̃εj states for j < i. Let Ψcons = ∧(i,j,k,ε)|lit(xεi)=∼lit(l(j,k))G(x̃εi ⇒ ((¬l(j,k))Wbi))
which stands for the constraints enforcing the consistency of the instantiated variables xi of Φ at
FALSE (x0i ) or at TRUE (x1i ) with their opposite literal occurring in the clauses. Finally, let
Ψ = ¬(Ψuniv ∧ Ψcons). Then, the authors of [14] have shown that K � Ψ iff Φ is FALSE.

Searching Minimal Unsatisfiable LTL Formulas

Theorem 3. (MU-Search) Given a LTL f , providing a MU of f if f is unsatisfiable, and answer
‘no’ if f is satisfiable is a FPSPACE complete problem.

(proof)
Assume the same notations of the canonical reduction. At this step, encoding K into a LTL formula
ΦK = b̃0 ∧s̃∈S G(s̃ ⇒ X (∨(s̃,s̃′)∈T s̃′) and study the extraction of a MU of ΦK ∧ ¬Ψ is tempting.

However, for instance, it cannot ensure that a MU of ΦK ∧ ¬Ψ gets a corresponding MF because
a MU may be without some ‘universal’ subformulas occurrences of the form sfi = G(ãi−1 ⇒
[((¬bi−1)Ux0i ) ∧X2(x1i )]) which may not lead to a QBF (e.g., if Φ = ∀a∀b(a ∨ b) ∧ (¬a ∨ b), then
g = [ΦK ∧¬Ψ ][sf1 ← TRUE] is still unsatisfiable and a MU of g does not correspond to any MF of
Φ). We then have to create a new Kripke structure K′ by adding variables and several branches in K
(supported by double arrowheads) to enforce most of the subformulas occurrences to be necessary,
i.e., to remain in any MU of ΦK′ ∧ ¬Ψ . To do so we also need to weaken ¬Ψ by adding disjuncts
which are promises to fulfil (F(β)). Unfortunately, we also have to tightly strengthen the just re-
sulting weakened new formula (into ¬Ψ ′) by adding conjuncts, in order that the new branches do
not imply the existence of a K′ linear model of ¬Ψ ′ while Φ is FALSE. Finally, it is still possible to
find such K′ and Ψ ′ such that K′ � Ψ ′ iff Φ is FALSE (see point A). Then, the proof reduces the
latter Model Checking problem to a variant of an LTL unsatisfiability problem (see Temp(Φ) at
point B). Finally, the analysis of the MU(Temp(Φ)) (see section C) regarding the MF (Φ) enables
to show the MF search problem can be reduced to the MU search problem by focusing on mutations



of the l(j,k) at the state ˜l(j,k).
A- K′ � Ψ ′ iff Φ is FALSE

Let P ′ be P augmented with the following variables: β; ∀r 0 ≤ r ≤ 3, δr, γr; ∀i 1 ≤ i ≤ n, µi,
νi, ωi, ρi; ∀j 1 ≤ j ≤ m, τ(j,k) and ζ(j,k) with Cj = ∨1≤k≤kj lit(l(j,k)). For convenience, we define

˜p1, .., pq as a state/conjunction with the corresponding literals over P ′. For technical reasons, from
now, we similarly will extend a state ˜p1, .., pq of K to K′ by adding the new (negated) variables to
the corresponding conjunction. Let the set f − promises = ∪0≤i≤n{ai, bi;x0i } ∪ {β}. The resulting
Kripke structure K′ adds the following transitions to K:

– (ãi−1, ˜(δ0, γ0)) for any i|Qi = ∀
– ( ˜(δ0, γ0), ˜(δ1, γ1))

– ( ˜(δ1, γ1), ˜(f.promises \ {β}, δ2, γ2))

– (ẽj , ˜(β, δ3, γ3)) for any j with 1 ≤ j ≤ m
– ( ˜(β, δ3, γ3), ˜(bi−1, ρi, ωi)) for any i such that
i|Qi = ∀

– ( ˜(β, δ3, γ3), ˜(l(j,k), ζ(j,k), τ(j,k))) for any j, k
such that 1 ≤ j ≤ m and there is no j′, k′

such that lit(l(j,k)) =∼ lit(l(j′,k′)),
– ( ˜(β, δ3, γ3), ˜(l(j,k), ζ(j,k), τ(j,k))) for any j, k

such that lit(l(j,k)) is positive, 1 ≤ j ≤
m and ∃j′, k′ such that lit(l(j,k)) =∼
lit(l(j′,k′)).

– ( ˜(f.pro. \ {β}, δ2, γ2), ˜(f.pro. \ {β}, δ2, γ2))

– ( ˜(l(j,k), ζ(j,k), τ(j,k)), ˜(l(j′,k′), ζ(j′,k′), τ(j′,k′)))
for any j, j′, k, k′ such that 1 ≤ j, j′ ≤ m
and such that lit(l(j,k)) =∼ lit(l(j′,k′)). Fur-
thermore lit(l(j,k)) is a positive literal.

– ( ˜(bi−1, ρi, ωi), ˜(x0i , µi, νi)) for any i|Qi = ∀

– ( ˜(x0i , µi, νi),(
˜f.promises \ {β}, δ2, γ2)) for

any i|Qi = ∀
– ( ˜(l(j,k), ζ(j,k), τ(j,k)), ˜f.promises \ {β}, δ2, γ2)

for any j, k such that 1 ≤ j ≤ m and such
there is no j′, k′ such that lit(l(j,k)) =∼
lit(l(j′,k′))

– ( ˜(l(j,k), ζ(j,k), τ(j,k)), ˜f.promises \ {β}, δ2, γ2)
for any j, k such that 1 ≤ j ≤ m ,such ∃j′, k′
such that lit(l(j,k)) =∼ lit(l(j′,k′)). Further-
more l(j,k) is a negative literal.

In Figure 2, K′ is supported by all the arrows (with simple or double arrowhead). Let Ψ ′ =
¬(Ψuniv′ ∧ Ψcons′) with Ψuniv′ = ∧i|Qi=∀[G(ãi−1 ⇒ [(¬bi−1 ∨ F(β))Ux0i ) ∧ (X2(x1i ) ∨ F(β))])] ∧
G((̃bi∧X (x0i ))⇒ X2((¬x0i ∨F(β))Wai−1) , and Ψcons′ = ∧(i,j,k,ε)|lit(xεi)=∼lit(l(j,k))G(x̃εi ⇒ ((¬l(j,k)∨
F(β))Wbi))
∧(i,j,k,ε)|lit(xεi)=lit(l(j,k)),∀j′,k′lit(lj′,k′ ) 6=∼lit(l(j,k))G(x̃εi ⇒ ((¬ζ(j,k) ∨ ¬τ(j,k) ∨ F(β))Wbi)).

In the following, we show that a K′-linear model of ¬Ψ ′ is necessarily a K-linear model of ¬Ψ ′.
This implies12 K′ � Ψ ′ iff Φ is FALSE:

– ˜(l(j,k), ζ(j,k), τ(j,k)) cannot occur in a K′- linear model of ¬Ψ ′ because for such a model ∀i ∈
[1;n], there exists ε, such that x̃εi is the last occurrence of a x̃ε

′

i before the first visit of

˜(l(j,k), ζ(j,k), τ(j,k)). Furthermore,

• if there are no j′, k′ such that lit(l(j,k)) =∼ lit(l(j′,k′)) then there is a G(x̃εi ⇒ ((g ∨
F(β))Wbi)) with g ∈ {¬ζ(j,k)∨¬τ(j,k);¬l(j,k)} occurring in ¬Ψ ′ such that the weak promise

12 From a K-linear model of ¬Ψ we can derive a K-linear model of ¬Ψ ∧ G((̃bi ∧ X (x0i )) ⇒ X2((¬x0i ∨
F(β))Wai−1), which is also a K-linear model of ¬Ψ ′



(g ∨ F(β))Wbi is postponed from x̃εi to ˜(l(j,k), ζ(j,k), τ(j,k)), but at this latter state F(β)
must hold, which is impossible.

• if there exist j′, k′ such that lit(l(j,k)) =∼ lit(l(j′,k′)) then there exists G(x̃εi ⇒ ((g ∨
F(β))Wbi)) occurring in ¬Ψ ′ with g ∈ {¬l(j′,k′),¬l(j,k)} such that the weak promise

(g ∨ F(β))Wbi is postponed from xεi until the corresponding ˜(l(j′,k′), ζ(j′,k′), τ(j′,k′)) or

˜(l(j,k), ζ(j,k), τ(j,k)), but at this convenient latter state F(β) must hold, which is impossible.

– ( ˜bi−1, ρi, ωi) cannot occur in a K′ linear model of ¬Ψ ′. Assume M such a model. Let t be the
last time where ãi−1 occurs in M. Then, either:

• x̃0i occurs inMt, but thanks to G((̃bi∧X (x0i ))⇒ X2((¬x0i∨F(β))Wai−1), (¬x0i∨F(β))Wai−1

is postponed from x̃0i to ˜x0i , µi, νi. But at this latter state F(β) must hold, which is impos-
sible.

• or x̃0i does not occur in Mt, but thanks to G(ãi−1 ⇒ (¬bi−1 ∨ F(β))Ux0i )), (¬bi−1 ∨
F(β))Ux0i is postponed from ãi−1 to ˜bi−1, ρi, ωi. But at this latter state F(β) must hold,
which is impossible.

– ˜(δ1, γ1) cannot occur in a K′ linear model of ¬Ψ ′ because for such a model, G(ãi−1 ⇒ [X2(x1i )∨
F(β)]) implies F(β) is propagated from ãi−1 to ˜(δ1, γ1), which is impossible.

Below, we define ΨK′ which stands for K′. At the next step of the proof, it will enable to reduce
the MF search problem to a MU search problem for LTL. To do so, we denote Temp(Φ) = ΨK′∧¬Ψ ′
with ΨK′ defined in the following. It is then straightforward that Temp(Φ) is unsatisfiable iff Φ is
FALSE.

B- Temp(Φ) = ΨK′ ∧ ¬Ψ ′ is unsatisfiable iff Φ is FALSE

Let ΨK′ as ΦK′ except that the occurrences G(s ⇒ X(...)) where s = l̃j,k are erased. Furthermore

one adds the conjuncts G(d̃j ⇒ X2ẽj) for any j|1 < j ≤ m.
We have Temp(Φ) = ΨK′ ∧ ¬Ψ ′ is unsatisfiable iff Φ is FALSE.

In the following, we analyze that an element of MU(Temp(Φ)) corresponds to some maximal

mutations of propositional variables l(j,k) at the corresponding states ˜l(j,k) in K′ but which the
resulting mutated Kripke structure still checks ΨK′ . This enables to show that there exists a corre-
sponding element in MF (Φ).

C- Analysis of a MU(Temp(Φ))

Let MU0(Temp(Φ)) ∈MU(Temp(Φ)).

1. the universal part Ψuniv′ still occurs in MU0(Temp(Φ)):
– Let i be an integer such thatQi = ∀ and assume ¬bi−1∨F(β) has been substituted by TRUE

while weakening from Temp(Φ) to MU(Temp(Φ)) at the universal part. LetM be a K′ lin-

ear structure starting with the state b̃0, which never visits x̃0i and reaches ˜(bi−1, ρi, ωi). From

˜(β, δ3, γ3), no constraint enables to propagate F(β), and any other triggered and postponed

promises are fulfilled at ( ˜f − promises \ {β}, δ2, γ2). From ( ˜f − promises \ {β}, δ2, γ2) any
constraint fromMU0(Temp(Φ)) is obviously checked. ThenM is a model ofMU0(Temp(Φ)),
which is a contradiction.



– Let i be an integer such that Qi = ∀ and assume that G(ãi−1 ⇒ [X2(x1i )∨F(β)]) has been

substituted by TRUE. Let M be a K′ linear structure starting with the state b̃0, directly
reaching ãi−1 but by crossing any x1i′ with 1 ≤ i′ ≤ i − 1 and from ãi−1 follows the solely

branch where ˜(δ1, γ1) occurs. M is a linear model for MU0(Temp(Φ)), because at ˜(δ1, γ1)
any postponed weak promise is solely the remaining subformula (¬bi′−1 ∨ F(β))Ux0i′ or

(g ∨F(β))Wbi′ and they are fulfilled at the first visit of ˜(f − promises \ {β}, δ2, γ2). From

˜(f − promises \ {β}, δ2, γ2), any constraint fromMU0(Temp(Φ)) is obviously checked. Thus
MU0(Temp(Φ)) is satisfiable, but this is a contradiction since it is unsatisfiable. Thus,
MU0(Temp(Φ)) does not get any weakening of G(ãi−1 ⇒ [X2(x1i )∨F(β)]) for any i|Qi = ∀.

– Let i be an integer such that Qi = ∀ and assume that G((b̃i−1 ∧ X (x0i )) ⇒ X2[(¬x0i ∨
F(β))Wai−1]) has been substituted by TRUE. LetM be a K′ linear structure starting with

the state b̃0, reaching x̃0i , and going straightforward to the solely branch where ˜(x0i , µi, νi)

occurs. M is a linear model for MU0(Temp(Φ)), because from ˜(β, δ3, γ3), no constraint
enables to propagate F(β), and any other remaining precedent propagated promises are

fulfilled at ( ˜f − promises \ {β}, δ2, γ2). From ( ˜f − promises \ {β}, δ2, γ2) any constraint is
obviously checked. Then M is a model of MU0(Temp(Φ)), which is a contradiction.

2. the consistency part Ψcons′ still occurs in MU0(Temp(Φ)):
– Assume that G(x̃εi ⇒ ((g ∨ F(β))Wbi)) with g ∈ {¬ζ(j,k) ∨ ¬τ(j,k);¬l(j,k)} has been sub-

stituted by TRUE while weakening from Temp(Φ) to MU(Temp(Φ) at the consistency

part. Let M be a K′ linear structure starting with the state b̃0, going through x̃εi and di-

rectly reaching ẽ1 and from ẽ1, it follows a branch where ˜(l(j,k), ζ(j,k), τ(j,k)) occurs. From

˜(β, δ3, γ3), no constraint enables to propagate F(β). This is because no weak promise13 of
the form (¬g′ ∨ F(β))Wbi must hold anymore. As usual, any other remaining propagated

promises are fulfilled at ( ˜f − promises \ {β}, δ2, γ2). Thus MU0(Temp(Φ)) is satisfiable,
but this is a contradiction since it is unsatisfiable.

3. MU0(Temp(Φ)) gets no weakening in ΨK′\[∪1≤j≤mWeakestmaxsf+(G(d̃j ⇒ X(∨1≤k≤kj ˜l(j,k))))].
Otherwise if there is any weakening in the computation of MU0(Temp(Φ)) from

ΨK′ \ ∪1≤j≤mWeakestmaxsf+(G(d̃j ⇒ X(∨1≤k≤kj ˜l(j,k)))), then MU0(Temp(Φ)) would be sat-
isfiable because of the following points.
– any weakening in a subformula occurrence G(s⇒ X k(∨(s,s′)∈T s′) of Temp(Φ) which is not

of the form G(d̃j ⇒ X(∨1≤k≤kj ˜l(j,k))) leads to at least a weakening of a literal l ∈ lit+ at s′

which may lead at a state which is not in K′. To show this property, consider the s at the
weakened above subformula occurrence and let pref a prefix linear structure in K′ such that
its last state is either (1) the s ∈ K′ if k = 1 either (2) any lj,k while s = d̃j and k = 2. Let
s0 and s1 some states over P ′, we define |s0−s1| = |{p|p ∈ (l(s0)\ l(s1))∪ (l(s1)\ l(s0))}|. It
is clear that for any s0 and s1 in K′, |s0−s1| > 1. Let s′′ such that s′′ = s′[l←∼ l]. It is clear

that |s′ − s′′| = 1. It turns out that s′′ /∈ K′. Let M the linear structure M = pref.s′′.P̃ ′
ω

.

From the state s′′, MU0(Temp(Φ)) ∩ ¬ΨK′ is trivially checked since s′′ /∈ K′ and P̃ ′ /∈ K′.
Furthermore, at the first visit of the state P̃ ′ the weak promises postponed and propagated
from s′′ are fulfilled, and from P̃ ′ any propagated temporal constraint from MU0(Temp(Φ))

is obviously checked because P̃ ′ /∈ K′. Thus, M �MU0(Temp(Φ)).

13 i has been fixed here



– For similar argument any weakening in s = b̃0 ensures that a linear model of MU0(Temp(Φ))
is (s′)ω with s′ /∈ K′.

4. LetH ⊂ [1,m] and Sf = ∪j∈H{fj} the subformulas14 of the form fj = G(d̃j ⇒ X(∨1≤k≤kj ˜l(j,k)))
for any j|1 < j ≤ m which have been weakened in Temp(Φ) by TRUE at a positive occurrence

of the variable l(j,k) in ˜l(j,k) for computing MU0(Temp(Φ)). Then Φ[Ch ← TRUE]h∈H is in
MF (Φ).
The reasons are summarized below.

– ¬β is not weakened at any ˜l(j,k) in any fj? Let s0 = ˜(l(j,k), β). Otherwise, a linear structure
of K ∪ {s0} which checks the rules of ¬Ψuniv′ and sometimes which visit the ‘weakened’
state s0 where β ∈ l(s0) is a model of MU0(Temp(Φ)) since s0 /∈ K′ does not propagate
any new weak promise. This leads to a contradiction.

– no ¬x0i is weakened at any ˜l(j,k) in any fj? Let s0 = ˜(l(j,k), x
0
i ). Otherwise, let M a

linear structure of K′ ∪ {s0} starting with the state b̃0, which never visit x̃0i , reaching

the ‘weakened’ state s0 where x0i ∈ l(s0), crossing ẽj and going directly to ˜(bi−1, ρi, ωi).

First, ¬bi ∨ F(β))Ux0i is fulfilled at s0. Second, from ˜(β, δ3, γ3) , no constraint enable
to propagate F(β), and any others remaining promises of f − promise are fulfilled at

( ˜f − promises \ {β}, δ2, γ2). From ( ˜f − promises \ {β}, δ2, γ2) any constraint is obviously
checked. Furthermore, s0 /∈ K′, thus it does not propagate any new weak promise. Thus,
M is a model of MU0(Temp(Φ)). This leads to a contradiction.

– no ¬ai−1 is weakened at any ˜l(j,k) in any fj? Let s0 = ˜(l(j,k), ai−1). Otherwise, Let M a

linear structure of K′ ∪{s0} starting with the state b̃0, reaching x̃0i , displays the ‘weakened’
state s0 where ai−1 ∈ l(s0), crosses ẽj and goes straightforward to the solely branch where

˜(x0i , µi, νi) occurs. First, the propagated (¬x0i ∨F(β))Wai−1 is fulfilled at s0. Second, from

˜(β, δ3, γ3) , no constraint enable to propagate F(β), and any others remaining promises of

f − promise are fulfilled at ( ˜f − promises \ {β}, δ2, γ2). From ( ˜f − promises \ {β}, δ2, γ2)
any constraint is obviously checked. Furthermore, s0 /∈ K′, thus it does not propagate any
new weak promise. Thus, M is a model of MU0(Temp(Φ)). This leads to a contradiction.

– no ¬bi is weakened at any ˜l(j,k) in any fj? Let s0 = ˜(l(j,k), bi). Otherwise, Let M a lin-

ear structure of K′ ∪ {s0} starting with the state b̃0, which never visit x̃0i and that reach

˜(bi−1, ρi, ωi). First, the propagated (g ∨F(β))Wbi is fulfilled at s0. Second, from ˜(β, δ3, γ3)
, no constraint enable to propagate F(β), and any others remaining propagated promises of

f − promise are fulfilled at ( ˜f − promises \ {β}, δ2, γ2). From ( ˜f − promises \ {β}, δ2, γ2)
any constraint is obviously checked. Furthermore, s0 /∈ K′, thus it does not propagate any
new weak promise. Thus, M is a model of MU0(Temp(Φ)). This leads to a contradiction.

– Let M a K′ linear structure and j0 /∈ H. But, if M � (MU0(Temp(Φ)))[Occ(l(j0,k)) ←
TRUE], then letMH,j0 =M[l̃(j,k′) ← erase][ẽj ← erase][d̃j ← erase]{(j,k′)|j∈H∪{j0},l(j,k′)∈Cj}.
According that neither ¬ai−1,¬bi and ¬x0i are weakened at any state,MH,j0 propagates any
of the triggered weak promises of types ..Wbi, ...Ux

0
i or ...Wai−1 inMU0(Temp(Φ)))[Occ(l(j0,k))←

TRUE] exactly as in ¬Ψ ′, thus15 the states ofMH,j0 actually lies (if one renames the vari-

14 One formula per j is sufficient
15 As for point A of the (proof)



ables) in KΦ[Cj←TRUE]j∈H∪{j0}
⊂ K′Φ[Cj←TRUE]j∈H∪{j0}

. Furthermore, remark that since

¬β is not weakened too, then any fulfilling state from M is still in MH,j0 . By renam-
ing the remaining index j′ in MH,j0 and projecting over the propositional variables of
Temp(Φ[Cj ← TRUE]j∈H∪{j0})), we have MH,j0 � (Temp(Φ[Cj ← TRUE]j∈H∪{j0})) be-
cause the weak promises of Temp(Φ[Cj ← TRUE]j∈H∪{j0}) are still eventually fulfilled16

at the remaining states b̃i|j0 , ãi|j0 or x̃0i |j0 (F(β) cannot be triggered because it would

not be fulfilled in K′|j0). Thus, (Φ[Cj ← TRUE]j∈H∪{j0}) is satisfiable for any j0, since

MU0(Temp(Φ)) is a MU.
– Assume (Φ[Ch ← TRUE]j∈H) is satisfiable, then Temp(Φ[Cj ← TRUE]j∈H) is satisfiable

with a model MH ranging over KΦ[Cj←TRUE]j∈H . By renaming the index j let M =MH

(̃b0),MH (̃b1), ..., MH(d̃j),MH(∅̃),MH(ẽj)... which is MH into which some states have
been added, some propositional variables have been added, such that the resulting linear

structure is almost in K. Precisely, if any ∅̃ is substituted inM by the corresponding l̃(j,k)(
weakened at MU0(Temp(Φ), so j ∈ H ) the modified linear structure is now a K-linear

structure . Since, ∅̃ /∈ K′, M does not trigger any new weak promise from MU0(Temp(Φ))
w.r.t. Temp(Φ[Ch ← TRUE]j∈H). Furthermore, since any propagated weak promise which
is fulfilled of Temp(Φ[Ch ← TRUE]j∈H), is also fulfilled for MU0(Temp(Φ)), and since
the remaining consistency part of MU0(Temp(Φ)) never triggers a F(β) because there is
no visit at a state where l(j,k) holds for j ∈ H, then M � MU0(Temp(Φ)). But this is a
contradiction since MU0(Temp(Φ)) is unsatisfiable, i.e., (Φ[Ch ← TRUE]h∈H) can solely
be FALSE.

Since the FPSPACE complete MF search problem is Logspace reducible to the MU for LTL
search problem, the FPSPACE hardness is shown.

Consider now the Inherent Non Vacuity (INVac) search problem, i.e. searching a limit strength-
ening h of g such that h ≡ g. Let g = ¬[(Temp(Φ)∧u)∨(¬Temp(Φ)∧¬u)] . An INVac strenghtening
h of g is such that u is at TRUE in h iff Temp(Φ) is unsatisfiable. Furthermore in this case, the
weakening of Temp(Φ) at h is minimal, i.e. it is in MU(Temp(Φ)). We deduce, the following corol-
lary.

Corollary 2. (INV acOcc(sf)-search) Given a LTL formula f , searching an inherent non vacuous
strengthening of f (for single occurrences) is FPSPACE-complete

4 Conclusion

We have shown that the MF search problem, the (LTL) MU search problem and the (LTL) INVac
search problem are FPSPACE Complete. Furthermore, we have shown that the MU-dec and the
Inherent Vacuity checking decision problem are PSPACE complete. Although deficiency is the
Backbone of lower Complexity Bound in the QBF case [21], no corresponding bound exists for
LTL.
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