Multigrid convergence of discrete geometric
estimators
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Abstract The analysis of digital shapes require tools to determicerately their
geometric characteristics. Their boundary is by essersmgate and is seen by con-
tinuous geometry as a jagged continuous curve, eithegktrar not derivableDis-
crete geometric estimatoese specific tools designed to determine geometric infor-
mation on such curves. We present here global geometrina&istis of area, length,
moments, as well as local geometric estimators of tangehtarvature. We further
study theirmultigrid convergencea fundamental property which guarantees that
the estimation tends toward the exact one as the samplintuties gets finer and
finer. Known theorems on multigrid convergence are sumredria representative
subsets of estimators have been implemented in a commom\rark (the library
D& al ), and have been experimentally evaluated for severaledasfsshapes. The
interested user has thus all the information for choosiegestimator best adapted
to its application, and disposes readily of an efficient iempéntation.

1 Introduction

Since early developments in image processing and imagestadding, many tools
have been developed in order to quantify the geometry of #atlighape. Such
digital shapes can be defined for instance either from a setien process as
subset of image pixels sharing the same colorimetric in&ion, or as the result of
the digitization of a continuous object.

In many applications, it is important to have a geometricsmification or de-
scription from measurements which are invariant under eiipelass of transforms
(rotation, translation, scaling, ...) or which preserveariant geometrical features
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(characteristic points, local convexity, .. .). In this text, we usually consider dif-

ferential or integral quantities evaluated either on thggtdi shape or its boundary.
Beside such type of quantification, we can distinguish tessts of geometrical de-
scriptors. The first class corresponds to global desceptdrich associate a global
numerical quantity to each shape. In this class, we haveagth or perimeter esti-
mators of digital shape boundaries, but also integral dtiemsuch as geometrical
moments approximated on the digital shape. The second atesains local esti-

mators which usually associate a numerical quantity to eaaft of the shape. For
example, curvature or normal vector estimators at boungaiyts belong to this

class.

When defining an algorithm that evaluate such descriptordigital shape, so
called estimator, the evaluation of such estimator acgumzery be challenging. In
the literature, several approaches have been proposedirgthene is application
driven and consists in validating the estimators within mptete shape description
pipeline. For instance, one can evaluate a curvature esiinmaa global character-
istic points estimation framework of contours.

One can also evaluate the accuracy of the estimator in tefmspected prop-
erties. For instance, we can evaluate the stability of aature estimator when
rotations of input shapes are given.

A more formal evaluation process consists in comparing #tienated quanti-
ties with exact Euclidean values on a family of continuousp&s in a multigrid
asypmptotic framework. More precisely, §tbe a family of compact simply con-
nected subsets @2 with continuous curvature fields. We denote DyX, h) the
Gauss digitization oX € X with grid steph, seen as a union of pixels of sithe
in R2. For sake of clarity, we shorten in the seq@éKX, h) into D and denote its
complementary bip. Moreover, let us assume tHatcontains at least one pixel, i.e.
ID| > 1.

In this multigrid framework, comparing the estimated qitsirto the expected
Euclidean one wheh tends to zero is called thaultigrid convergencanalysis of
an estimator [32]. Indeed, at a given resolution, infinitagny shapes have the same
digitization, which hampers the objective comparison d¢ihegtors. For estimators
of local geometric quantities like tangent or curvaturey fesults exist. We may
quote some convergence results for tangent estimatord89.9]. And there is no
correct convergence results for curvature as far as we know.

In this chapter, we use this multigrid comparison framewar&rder to review
and evaluate existing local and global estimators on digfitapes. A important con-
tribution is to have considered a large set of estimatorsunique technical frame-
work: the DGtal opensource library [1]. DGtal is a generieosource library for
Digital Geometry programming for which the main objectig¢a structure different
developments from the digital geometry and topology comityuiRor the purpose
of this chapter, we use DGtal to represent multigrid digitiajects and shapes, to
define the geometric estimators and we provide ways to cargsiimated values
to expected Euclidean ones.

The chapter is organised as follows: Sect. 2 focuses on ésianators (area,
moments and arc length) and Sect. 3 is devoted to local gstismgangent, cur-
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vature). In both cases, each section starts with formal itiefinof the multigrid
convergence of an estimator. In Sect. 6, we discuss on ingritation details of
both the estimator and the comparative evaluation framewor

2 Global Estimators

2.1 Multigrid convergence for global estimators

Multigrid convergence is an interesting way of relatingigiband Euclidean ge-
ometries. The idea is to ask for discrete geometric estimatio converge toward
the corresponding Euclidean quantity when considering finel finer shape digi-
tizations (here, Gauss digitization). The following ddfom is taken from Defini-

tion 2.10 of [32].

Definition 1 (Multigrid convergence for global geometric quantities). A discrete
geometric estimatoE of some geometric quantitly is multigrid convergentor a
family of shapesX and a digitization proceds iff for all shapeX € X, there exists
a grid stephx > 0 such that the estimatg(D(X, h),h) is defined for all 0< h < hx
and

[E(D(X,h),h) —E(X)| < 1x(h),

wherety : Rt — R™ with null limit at 0. This function is thespeed of convergence
of the estimator.

The convergence of most estimators depends on the familyagpfes in the Eu-
clidean plane that is considered. We therefore introduegeraéstandard families
that will be used to define the range of validity of multigriohwergence theorems.
A curve is said to b€" if it has continuous\-th order derivatives.

e The family of all finite convex shapes in the Euclidean planggnoted witXC.

e The family of convex sets whose boundary i€aarc with positive curvature
everywhere is denoted B53"SC,

e The family of all planar piecewisa-smooth convex set is denoted with
Xn-PW=SC These sets are convex sets whose boundary consists ofeanfimit-

ber ofC" arcs with positive curvature everywhere except at arc eimtgacClearly
ansc C XrFPWfSC.

For experiments, we will use shapes that are representattitteese families.
Several representative shapes digitized at differenescale illustrated on Fig. 1.
They will be used for the upcoming experiments on global argll geometric
estimators.
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Fig. 1 Digitization at two different grid stepdi(= 1 orh = 0.1) of tests shapes: (a-d) the square
and triangle are iXC; the circle (e,f) and the ellipse (g,h) belongsX&SC; the flower (i,j), and
the “accflower” (k,I) are ink3PW-SC All shapes have a diameter 20.

2.2 Area and moments

Designing a multigrid convergent estimator of the areaiidyfaimple. We define
thearea estimator by counting as

A(Y,h) = h? S 1L 1)
(i.jyey

whereY is an arbitrary digital shape ardthe gridstep. This estimator just counts
the number oh-grid square ir'Y and normalizes the result with the area of each grid
square.

As reported in [33], Gauss and Dirichlet knew already th&t #rea estimator
was multigrid convergent for finite convex shap&] with a speed)(l - h), where
| is the shape perimeter. Huxley [26] improves the bound)¢b%_‘rf(log%)‘2%) for
the family X3-PW-SC This simple estimator has thus superlinear convergemeae fo
rather wide class of shapes.

Klette andZuni¢ [33] follows the idea of (1) to design tlléscrete( p, q)-moment
estimatommy, g, for integersp,q > 0, as follows:

Mpg(Y,h) = h*PHa 5 P ja. 2)
(i,)ey

These estimators approximate the g)-moments of a shap¥, which are de-
fined asmp 4(X) = [Jx xPyddxdy. Their speed of convergence is sumed up in Tab. 1.
In a similar way, central moments may be approximated. \er tek reader to [33]
for further details. Note that moments can be used to deterifar instance the
center of gravity or the orientation of a shape. Furthermsegeral rotational in-
variant quantities can be obtained as combinatiofpod))-moments. For instance,
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Zernike and Legendre moments widely used in many 2D and 3peshdexing and
retrieval are linear combination ¢p,q)-moments [64, 53]. Hence, convergence re-
sults on(p, q)-moments lead to convergecne of Zernike and Legendre manasnt
well.

The previous estimators require to visit all points of thgitdi object, and
not only its boundary. The computational complexity of thestimators is thus
O(1/h?). However, a discrete variant of Green theorem allows to edmghese
quantities by simply visiting the shape boundary, thus catuthe computational
complexity toO(1/h) for convex shapes. See Lien [44] for a generic discrete Green
theorem framework and Brledt al. for a digital geometry application [5].

2.3 Perimeter and length estimators

Itis more complex to estimate the perimeter of a digital ghémpdeed, enumerating
the number of grid steps of the digital shape boundary doeterd to a reliable
perimeter estimator. It is called tmaive perimeter estimatdr"@e and is defined
as _
L&ve(y,h =h 3 1. (3)
agedY

This estimator overestimates the shape perimeter. Indteégdlear that it always
returns the perimeter of the axis-aligned bounding box efstmape.

Therefore first approaches to length estimation tried t@agiifferent weights
to different local configurations so as to be more precise& Rbsen-Proffitt esti-
mator [56] and BLUE (best linear unbiased) estimator [11bbe to this category.
However it was proven in Tajine and Daurat [63] that all theygproaches can never
achieve multigrid convergence, whatever the (finite) nunolbeonfigurations taken
into account.

More complex approaches are required to achieve convezg¥Vye list below
several of them, which are also experimentally compareslfgg 2). Most of them
are not only valid for perimeter estimation but also for @llength estimation.

e The DSS length estimatdr®SS, proposed by Kovalevsky and Fuchs [34], re-
lies on a greedy decomposition of the input digital contoto Digital Straight
Segments (DSS). It starts from a point, then find the long&sS Btarting from
this point. The end point of this DSS defines a new startingtpdihe process
is repeated till the whole contour has been visited. The D&Bpoints form
a polygonal line. The length or perimeter of the digital @antis then simply
defined as Euclidean length of this polygonal line.

e The MLP length estimato£M-P, proposed by Slobodet al. [62], also relies
on a polygonal approximation of the digital contour. For zegi simple digital
shape, the Minimum Length Polygon (MLP) is indeed the shsbriEuclidean
curve which separates the interior pixel centers from therex pixel centers.
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The length is then defined as the perimeter of this curve. r@klinear-time
algorithms for computing the MLP are available [57, 61].

e TheFP length estimatot.FP, proposed in [61], relies on yet another polygonal
approximation of the digital contour. One can see it is adi@ed version of the
MLP, where convex turns are translated outwards and cortcans are trans-
lated inwards by half-unit diagonal vectors. The advaniagbat the polygon
vertices form a subset of the grid points of the input contour

e Another approach to local length estimation and thus pegmestimation is to
integrate the tangent estimation along the curve [10, 16} (sext section on
tangent estimation too). TH8T length estimatokST is based on the symmet-
ric tangent while the\ -MST length estimatot?"MST is based on tha -convex
combination of maximal segments [39]. More precisely, i@ g@dgeo has di-
rection vectot (o) and estimated unit tangent vecofo), these two estimators
are defined as:

LSTv,h =h 5 T%7(0)-t(0), L*MST(v,h)=h 5 TAMT(0)-t(0).
oedY oedY
(4)
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Fig. 2 Absolute relative error for several length and perimeténegors. Itis a clear that the naive
length estimator does not converge. The other estimat®S(MLP, FP, STA-MST) present a
multigrid convergence. Note that experimentally the cogeace speed for DSS, FP, and ST on the

ball is O(h) while MLP andA-MST achieve a better bound Gf(h%). However, on the boundary
of a shape with linear parts, the convergence spe@dhs for all the estimators except the naive
one.

Some experimental evaluation of the multigrid convergérasebeen carried out
for these estimators and is illustrated on Fig. 2. It app#aas the perimeter of
shapes with rectilinear boundaries is accurately estithatth any of the presented
length estimators but for the naive one. However, for shajitbssufficiently smooth
boundaries and positive curvature, the MLP an®/IST have superlinear conver-
gence and should be preferred. Note finally that only DSS, MbBA-MST have
proven multigrid convergence, but the found bounds are eroessarily tight. In
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Fig. 3 Computation time for length estimators implemented in D@taive, BLUE, RosenProf-

fitt, DSS, MLP, FP). For the sake of clarity, abscissa cowmadp to the size of the contour in
number of grid points. Ordinate corresponds to timings illiseicond (Intel Xeon 2.27GHz, DG-
tal 0.4).

Fig. 3, we present computational time for estimators imgeted in DGtal release
0.4 (Naive, BLUE, RosenProffitt, DSS, MLP, FP). Convergersseilts for ST and
A-MST have been obtained from ImaGene library [2]. In thesgpbs, we can ob-
serve the linear computational cost of all estimators watpect to the size of the
contours. As expected, local estimators outperform theradhes but DSS based
estimator is a good compromise between efficiency and tkiearenultigrid con-
vergence.

2.4 Summary

Tab. 1 summarizes multigrid convergence results for estirmaf global geometric
quantities. It appears that some theoretical bounds artgghdeand that some others
are yet to be proven.

3 Local Estimators

3.1 Multigrid convergence for local estimators

Tangent direction, normal vector, curvature are local geoimquantities along the
shape boundary. Each of them is thus some function of theeshapndary. How-
ever, the contour of the shape digitization does not defiaséime domain. There-
fore we cannot directly compare the true geometric funatih the estimated geo-
metric function. We provide below a definition of multigridrovergence for discrete
local estimators. It is neither a parametric definition a8} nor a point-wise def-
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Convergence speed
Quantity Estimator Shape family Upper bound Observed Raefas

area A XC O(h) Gauss, Dirichlet
area A X3-PW-SC  Q(hii+e) [26]
moments Mpg X3-PW-SC O(h) [33]
moments  Mpg Xx3-sc¢ O(hi+e) [33]
length  L[PSS  Convex polygons = 4.5h [34]
length ~ [PSS X3-PW-SC  (unknown)  O(h) [34]
length e-sausage Convex polygonsx 5.844h [4]
length  [ST X¢ (unknown)  O(h) [13]
length  L[FP x¢ (unknown)  O(h) [61]
length ~ [MLP x¢ ~ 8h [62]
length  [MLP X3-PW-SC oh)  O(h?) [62]
length [AMST  x3-PwW-sC o(hi)  O(h?) [36]

Table 1 Known multigrid convergence for several estimators of gla®ometric quantities.

inition as the standard multigrid convergence reporte@#j.[Furthermore, for the
sake of simplicity, there is no direct mapping between the&@ar and its digitized
counterpart as proposed in [36]. It is a geometric definjt&ating that any digital
point sufficiently close to the point of interest has itsmstied geometric quantity
which tends toward the expected local value of the geomitniction. This defini-
tion of multigrid convergence imposes shapes with contirsugeometric fields. Of
course, one can afterwards relax this constraint by sgiittie shape boundary into
individual parts where the geometric function is continstou

Letus recall thaK is some family of shapes in the Euclidean plane. We denote by
D(X,h) the Gauss digitization of € X with grid steph. For anyx in the topological
boundarydX of X, let Q(X,x) be some local geometric quantity X atx. A
discrete local estimato® is a mapping which associates to any digital contoua
pointy € C and a gridstej, some value in a vector space (e for the curvature).
We are now in position to define the multigrid-convergenctaf estimator:

Definition 2. The estimato® is multigrid-convergenfor the familyXif and only if,
for anyX € X, there exists a grid step > 0 such that the estima@(D (X, h),y, h)
is defined for ally € dD(X, h) with 0 < h < hx, and for anyx € dX,

Vye aD(X,h) with Hy_X”l < h7 |Q(D(Xah)aya h) —Q(X,X)| < TX,X(h)7

wherety x : I[g** — R™ has null limit at 0. This function defines the speed of con-
vergence ofQ towardQ at pointx of dX. The convergence isniformfor X when
everyTy x is bounded from above by a functieg independent ok € X with null
limit at O.

It is worthy to note that, for sufficiently regular shapesr(paregular shapes
[40]), there exists a gridstep below which the boundary efghape digitization has
same topology as the shape boundary ([36], Theorem B.5thé&mumore, these two
boundaries are very close. Indeed, there exists a gridsleg/lwhich for anyx € X
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there is ay € dD(X, h) with ||y—x||1 < hand conversely for anye dD(X, h), there
is ax e X with |ly—x||1 < h ([36], Lemma B.9).

Therefore the previous definition of multigrid convergegecgarantees that the
estimated local quantity converges toward the true locafrgdric quantity every-
where along the shape boundary.

3.2 Methodology for experimental evaluation

When multigrid convergence theorems have been establistedvill reference
them and indicate the known convergence rate. We nevesthedery out an experi-
mental evaluation of many different estimators for two ozes (1) few convergence
theorems exist for local estimators, (2) practical errarrmts at finite scale are also
important for the end-user.

In the next sections, we apply the following methodologydoalyzing estima-
tors:

1. Test shapes. We use the shapes of Fig. 1 for the experinfdreg are repre-
sentative of the different shape families that we are stglyindeed, shapes
composed of linear parts, smooth parts and corners, artseatig in image
analysis. When the tangent field is not continuous (squaamgie), only the
average error is significant.

2. Graphs of estimations with respect to ground truth. Weldisthe graphs of the
estimated values for different estimators (functi@)sand the expected graph
(functionQ).

3. Error measures for decreasimg/Ve study the following measures:

gans(X,¥;:h) = [Q(X.x(y)) = Q(D(X,h).y.h)|  (5)
or (when vectorial) &pg(X,y,h) = |det(Q(X,x(y)),Q(D(X,h),y, h)| (6)

o 5abs(xvy7 h)
&el(X,y,h) = QX X)) (7)
_ 1
Eabs(X,h) = #D(X,h) YED%(’h) Eabs(X, Y. h) (8)
_ 1
Erel(X,h) = #D(X.h) yGD%<7h) el (X,y,h) 9

(10)

Herex(-) is @ mapping associating to each digitized point a point erstiepe
boundary that is close enoughy(— x(y)||1 < h). The same mapping is used for
all estimators.

4. When known, computational complexities for computingneators will be
given. Otherwise, for fair comparisons, we only measure patation times
for estimators implemented in the DGtal library (see Sec@in
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This methodology allows us to evaluate experimentally t@ieacy and multi-
grid convergence properties of discrete local geomettimasors. Section 4 studies
tangent estimators and Section 5 studies curvature estisdtheir implementation
in a common framework is discussed in Section 6.

4 Tangent

The aim of tangent estimators is to determine what is lodakyshape boundary
direction. For curveg(s) (at leastC?) defined as functions of a curvilinear abscissa
s, the tangent vector is defined %? which is a unit vector. The tangent direction
@(s) is defined as the angle between #axis and this unit vector.

4.1 Tangent estimators

Given a digital contour and a digital point, tangent estonateturn a unit vector.
For easier view, it is also possible to plot the angle of timgéant vector wrik-axis.
It is clear that the grid edge direction (see arrows in Figd9for an illustration)
is a very bad tangent estimator, since on any shape itf it will have points with
Eabs OF &rel Close t0F.

More complex approaches are necessary. Digital tangentasts have been
thoroughly compared in [38, 39]. They have been comparedtdirtuous ap-
proaches in [66, 67]. We describe below some representaigent estimators,
which will be compared experimentally.

e A first natural approach is to use a local least-square fit aflgromial [7, 43].
These techniques define a fixed window-gjzAround the point of interest they
use 21+ 1 samples which are used to find the polynomial of given detrae
best fit these data in the least-square sense. We focus hkeng-diegree polyno-
mials. TheLR tangent estimatof R4 s the linear-regression with the window
sizeq. ThelCIPF tangent estimatoil ''PF-9 is the implicit parabola fitting of
window sizeq, made independently on each coordinate. They were found to b
representative of that kind of methods [66, 67].

e A second approach is to see the digital contour as a discigalgxt], y[t])
and to convolve this signal with a Gaussian derivative oegikernelo. This
is very similar to the binomial convolution approach of [48, 21]. Therefore,
we choose thé11-0GD tangent estimatof H1-9GP [67], which defines locally
the window size as the longest maximal digital straight aorihg the point. A
slight variant is proven to be multigrid convergent@@h%) for smooth shapes
in X3-SC while its experimental convergent rate is excellent [63] $mooth
shapes.
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e TheMCMS tangent estimatorMCMS defines the tangent as the direction of the
most-centered maximal digital straight segment contgitiie point of interest
[20]. It is proven to be uniformly multigrid convergent@(h%) in [36, 39].

e the A-MST tangent estimatoF* ST is based on tha -convex combination of
the direction of the maximal digital straight segments agrihg the point of
interest [39]. The functioi is a mapping governing the way these directions are
combined. We use here a simple triangle functiosuch thatf (0) =0, f(1) =

0, f(0.5) = 1. Itis proven to be uniformly multigrid convergent@(h%) in [36,
39].

e the BC tangent estimatoii B¢ see the digital contour as a discrete signal
(X[t],y[t]) and convolves it with discrete binomials and a discreteediffice op-
erator, so as to mimick the convolution by a Gaussian dévi§48, 19]. We use
the suggested mask sized)h*%, whered is the continuous shape diameter. It
is proven to be uniformly multigrid convergent@(h%) in [48].

e TheMATAS tangent estimatdiAT™Sis an adaptation of the median filter com-
monly used in image processing [50].(R) are the vertices of the grid contour,
this method consists in choosing the median orientatiomantive following 2y
vectors centered oR: (Pi_qPi,...,Pi_1Pi,PiPi11,...,PiPiq).

4.2 Experimental evaluation

We have run these estimators on two representative shdygesdtiare is represen-
tative of XC, the ellipse is representative Ef-SC) at different steps (coarse= 1,
mediumh = 0.1): results are displayed on Fig. 4. Only MCMS aheMST de-
tect perfectly straight parts and corners. Others tend two$imaround corners, the
amount of smoothing being dependent on the (chosen) sizkeofvindow. Fur-
thermore, LR and ICIPF oscillate around the correct valuetomight parts. It is
more difficult to tell which estimator is the best along theubdary of smooth
curved parts. MCMS produces a staircase-like function bepk the convexity of
the shape. MATAS, LR and ICIPF may also oscillate and crealte fconcavities.
BC andA-MST follow nicely the ground truth function. Overall,-MST seems
the most versatile and accurate at these resolutions. Exgets on other shapes
confirm the presented behaviors of these estimators.

We now turn ourselves to the asymptotic behavior of thesenatirs, namely
their possible multigrid convergence. We focus on the ayeeedbsolute error of the
tangent vector, i.&€apg( X, h) (see (8)). The error plots displayed on Fig. 5 show that
tangent estimators with fixed window size are not multigodwergent. This is the
case of RL, ICIPF and MATAS estimators. Interestingly, bot surprisingly, small
window sizes bring better precision at low scale while ggeatindow sizes bring
better precision at fine scale. This is clearly the problersuwh estimators: they
require a user to choose the best possible scale according itoput data.
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Fig. 4 Plots of tangent directions as a function of the grid edgeinfibr several shapes and
several tangent estimators. For each row, the shape andttization step is given. Left column:
BC and MCMS estimators. Right column: MATAS estimator witmdow 10, ICIPF estimator
with window 0, LR estimator with window 10\-MST estimator, H1-0GD estimator. Note that for
a clearer view, only a representative part of the plot isldig, and that due to implementation,
grid edges indices of the first column are different from theof the second column.
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If we look at the other estimators (H1-0GD, MCM&;MST, BC), the window
size is automatically determined, either gIobaIIdetr% for BC estimator, or lo-
cally by maximal digital straight segments for the remagrtiree. All these four es-
timators are experimentally multigrid convergent for mafthe considered shapes.
However, their convergence speed may vary greatly. BC isldonsmooth con-
vex shapes, but has low convergence speed on shapes wikianfi®ints or linear
parts. H1-0GD is excellent on smooth shapes for a fine enoagipling, but is
not good on shapes with linear parts. MCMS and/ST are the most versatile.
A-MST is preferrable to get a continuous tangent. Convergesgults are summed
up in Tab. 2.

Convergence speed

Estimator Shape family Upper bound Observed References
TBC Polygons ? O(h3) (here)
fec x1-sc o(h%) o(h%) [48]
7BC X1-PW-SC ? o(h?) (here)
TAMST gndTMCEMS  polygons o(h) o(h) [36]
TA-MST gngTMCMS  x1-PW-SC 2 O(hg) [67]
TA-MST gpgfMCMs  x3-SC O(h3) O(h%) [36]
TH1-06D Polygons ? not convergent  (here)
4H1-06D X 1-PW-SC ? ~ O(h% ) [67]
TH1-0GD x3-SC O(hé ) O(h23§ ) [67]

Table 2 Known multigrid convergence for several tangent estingatoR, MATAS, ICIPF are not
multigrid convergent.

5 Curvature

For curvesy(s) (at leastC?) defined as functions of a curvilinear abscissahe
curvaturek can be defined in three different but equivalent ways:

(i) norm of the second derivative:(s) = |3—2’|,
(i) derivative of the tangent orientation: ¢i(s) is the angle between the tangent
and a given linek (s) = ‘é—‘g,
(ii) inverse of the osculating circle radius: ff(s) is the radius of the osculating
circle,k(s) =1/p(s).

Given a grid point of a digital contour, curvature estimatare expected to return
a value inR close to the curvature of the underlying shape. Estimatiagtirvature
by finite differences over the two neighbors of a given grighpoeturns either a
positive (resp. negative) high value in convex (resp. ceepeorners£1/+/2) or a
null one in runs and is thus a very bad solution.
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Fig. 5 Plots in log-scale of the average absolute errors of tangmstors as a function of the grid
step for several shapes and several tangent estimatorsaélorow, the shape and the digitization
step is given. Left column: MATAS estimator with windows 5dat0, LR estimator with windows
5and 10, ICIPF estimator with window 10. Right column: BGrastor, MCMS estimaton) -MST

estimator, H1-0GD estimator.
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Many curvature estimators have been proposed in the literad cope with this
problem. They are roughly based on one of the three abovéianed definitions
as it has been noticed in [70, 25].

In methods (i) and (ii), derivatives are often approximédtedn the convolution
of either the tangent orientation [70, 65, 20] (i), or theidibcontour viewed as a
discrete signa(x[t],y[t]) [48, 19, 21] (ii). They can also be computed from some
polynomials of a given degree locally fitted to the digitahtaur [49, 25].

Tangents and osculating circles used in methods (ii) afjdften relies on fit-
ting techniques, either in a continuous setting (leastisgjirge or arc fitting [70]), or
in a discrete setting to limit the arithmetic effects: didtraight segments [65, 20],
digital level layers (extension to polynomials of highegoees) [58, 23], approx-
imation of the osculating circle with digital straight segnts [14, 15, 25], digital
circular arcs [60].

In most approaches, a user-given window or smoothing paearseused so as
to remove the jaggedness of digital contours and to makentiromous [70, 65, 20,
46, 48, 19, 21, 22]. Few curvature estimators do not requirexéernal parameter
and we chose to focus on these methods.

5.1 Curvature estimators

The curvature estimators that do not require any paraméteraely on discrete
primitives such as digital straight segment (DSS), digitedular arc (DCA), or on
global optimization such as the Global Minimum Curvaturinestor [27].

In this section, we compare the following curvature estorst

e TheMS estimatokMS [14] used only the length of maximal DSSs to estimate
the radius of the osculating circle.

The method relies on the assumption that maximal DSSs ofijigzdtion of
a Euclidean circle behave like chords of heighand Iength@(h%). Maximal
DSSs are however almost always tighter and the length of maXDSSs has
been proved to be i@(h%) butin O(h%) in average [68].

e TheCC estimatork ©C [15] (HK2005 in [25]), associates to any grid point of a
digital contour, the curvature of the circumscribed ciraia triangle defined by
the extremities of its two digital half-tangents.

It has been proved to be convergent if the length of maxim&His inQ(h%)
[10Q]. This condition is however not fulfilled because thegémof maximal DSSs
has been proved later to be@(h%) in average [68].

e Another estimation of the osculating circles can be obthfinem the maximal
DCAs along the digital contour [60]. THEDCA estimatokMPCA is the piece-
wise constant function that associates to any grid pointdifjgal contour the
curvature value of the most centered maximal DCA.

Although this approach seems quite natural, it has beernogeaponly recently
due to the lack of available implementation of on-line DCAagnition algo-
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rithms [35, 12, 59]. It is a natural extension of the tangestingator based on the
most centered maximal DS$ICMS tangent estimatan Section 4) to the oscu-
lating circle estimation problem. As a result, theMST tangent estimatarsed

to improve this tangent estimator may probably improvecthivature estimator.
The MDCA estimatothas been proved to be convergent [60] if the length of the
maximal DCAs along the digital contour of the digitizatiohgdrictly convex
shapes with continuous curvature field isfmih%), which is observed on aver-
age.

e The GMC curvature estimatok ®MC [27] computes the curvature of the shape
that minimizes its squared curvature among all the Euclidgdapes that may be
digitized as a digital set close to the input.

The first step consists in computing the whole set of maxinfa6® This pro-
cessing provides tangent and arc length estimations (®e2t8 and Section 4)
used to bound the set of valid shapes in the tangential sgasg 6). In this
tangential space, the polygonal line that minimizes itgthtis then computed to
approximate the shape of piecewise constant curvatureiinahizes its squared
curvature.

The minimization is performed by an iterative numericahtgque that stops
when the difference between the squared curvature of theMasolution shapes
is less than a small quantity, set td @8 in what follows.

e Finally, for comparisons, we also introduce tBE€ curvature estimatok B¢
[48, 19], which is computed from derivative estimationd, lgga discrete differ-
ence operator applied on the digital contour viewed as aetissignalx[t], y[t])
convolved by a binomial kernel of a given size. The mask szani input pa-
rameter that is not easy to determine, but following [48}as been set 0.h~3
whered is the diameter of the continuous shape.

The multigrid convergence of the estimation of the firstifrecond) derivative

at rateO(h%) (resp.O(hg)) has been proved in [48, 19].

5.2 Experimental evaluation

We first plot the curvature values provided by M8 estimatofresp.CC estimatoy
in Fig. 6.a (resp. Fig. 6.b) when applied to the digital comtof Fig. 1.].

Because a maximal DSS is a good neighborhood to check thedoneaexity
and concavity of a digital curve [61], thdS estimatoprovides positive curvature
values in convex parts, negative curvature values in cangasts and null curvature
values around inflection points (Fig. 6.a). However,M& estimatosystematically
over-estimates the true curvature values in the conves @ertl under-estimates
the true curvature values in the concave parts. The demigiamportant at low
resolution and increases as the grid dtefecreases. This is clearly a bad (and not
convergent) estimator.
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Fig. 6 Curvature plots for the flower, digitized with a grid step abo 0.1 (Fig. 1.j).MS estimator
in (@) andCC estimatotin (b).

The CC estimatordoes not respect the convex and concave parts of the digital
contour (see the peak of positive curvature value near #rérgg point in Fig. 6.b),
it oscillates a lot but gives correct results on averagevatésolution.

In Fig. 7, we compare the curvature plots derived from Mi2CA, GMC, BC
estimatorsto the ground-truth.

The visual deviation between the estimated graphs and thendrtruth graph
reflects the average absolute error. For either estimdterctirvature estimations
are more accurate for the ellipse than for the flower. Foeeishape, the curvature
values get from any estimator get closer to the ground-{iith 7) and the absolute
error decreases as the grid steglecreases.

For the ellipse and the flower, at grid step- 0.01, theMDCA estimatomand the
BC estimatorare better than th&MC estimator In Fig. 7, their graphs are hardly
confounded with the ground-truth graph.

In Fig. 8, the average absolute error has been plotted aghimgrid steph.
The CC estimatoris not convergent and has the highest errors. However, tex ot
estimators gMPCA| RGMC 2BCy gappear to be multigrid convergent.

We experimentally observed that tMDCA estimatorhas low absolute errors
that decrease as the grid stedecreases. The convergence speed in average of the
MDCA estimatoris O(h®%) (even maybeD(h?) with a > 0.5) for the ellipse and
the flower (Fig. 8.b and c) b@(h?) for the circle.

TheGMC estimatorland theBC estimatohave usually higher errors. TiBC es-
timator has lower errors than thHdDCA estimatoffor the ellipse and for the flower
at low resolution (when the grid step is decreasing from 13).0heGMC estima-
tor has however always higher errors than MiBCA estimator

The GMC estimatorand theBC estimatorhave usually a slower convergence
speed:

e respectivelyO(hl-?) andO(h%®) for the circle (note that th&MC estimatoris
sensitive to the stop criterion of its optimization procesen errors are small),
o respectivelyO(h%3?) andO(h%®) for the ellipse,
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Fig. 7 Curvature plots for two shapes digitized at three differesgtolutions, computed from

MDCA, GMC, BC estimators

0O(h%32) for the flower (but note that the error graph of 1B€ estimatoiis not

straight and further experiments should be done at smaliérsteps to get the

convergence speed).

Eventually theMDCA, GMC, BC estimators appear to be experimentally
multigrid-convergent, but there is no correct theoretomalvergence results for cur-
vature estimation as far as we know, contrary to the casengetat estimation (Sec-

tion 4).
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6 Implementation

In this section, we discuss about implementation detaitsotii the geometrical es-
timators presented in the previous sections, and the erpatal evaluation frame-
work. All the estimators described in this chapter have begemented in DGtal
[1]. DGtal is an open-source C++ library focusing on the iempéntation of digital
geometry objects and concepts. For short, it allows to ssreimages and objects
in n—dimensional digital spaces equipped with both geometdaal topological
tools.

In the context of this chapter, we will only consider the eg@ntation and the
analysis of shape in dimension 2. As discussed in the inttimhy the input dig-
ital object can be obtained either from an explicit deswiptfrom a segmenta-
tion process of an image (iso-level,...), or as the didiiiraD (X,h) of a con-
tinuous shap& € X. For the first two cases, DGtal provides mechanisms to con-
struct such digital sets either explicitly or from a conttnaicking process. For the
last case, DGtal implements various implicit and pararoentinuous shapes for
which some global and local geometrical quantities are knal such shape im-
plementations are model of a conceptGHucl i deanShapes? (see Fig. 1 for
an illustration of DGtal Euclidean shapes). A digital olbjecthus obtained from
aGaussDi gi ti zer parametrized by a model @Eucl i deanShapes and a
grid steph. CEucl i deanShapes models will be crucial for multigrid conver-
gence analyses.

As discussed above and whatever the way the input digitaboly specified, we
need to access to its geometrical information in varioussvay

e As a sequence of grid points, subsefZsf e.g.for area and moment descriptors;
e As arepresentation of its boundaeyg.for tangent or curvature estimators.

In the latter case, several options exist to define and reptes shape contour.
Most of the options depend on the underlying topological edgidong’s like digi-
tal topology or cellular topology). Furthermore, depeigddm the algorithm used to
perform the analysis, one may prefer a sequence of chairscadequence of linels
or a sequence of 4-connected grid points to describe thego(df Fig. 9).

To obtain a generic and extensible implementation of carntbased estimators,
we have defined @ i dCur ve structure constructed upon on a topological cellular
model which aims to provide several facets of a shape conkdare precisely,
given the result of the contour tracking process, it prosidechanismRanges
andl t er at or s on Ranges) to process the boundary sequence either as a set
of grid points or a set of linels. Hence, a local geometrisingator on contour, or
more precisely a model @Local Geonet ri cal Est i mat or , have an interface
containing at least the two following methods:

1 DGtal uses a generic programming paradigm based on conaegtmodels of concepts. If a
structure name starts from a capital “C”, we describe a qunce
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Fig. 9 Different representations of an Euclidean shape digitmatas a set of pixelga), as a
sequence of 4-connected pixély, as a sequence of 1-cell bnels (c) , as a sequence of grid
point displacementg&d).

e void init(double h, Constlterator & begin,
Constlterator & end,...): initialize the geometrical estimator
with grid steph on a contour defined between iteratbeggi n andend;

e Quantity eval ( Constlterator & it):evaluatethe estimator atthe
positioni t of the contour and return@antity.

In our framework, the typ€onst | t er at or is a template parameter chosen in
the contour iterator types provided@ i dCur ve.

Similarly, we have a concept afd obal Geonetri cal Esti mat or and
models of this concept have aval () method which returns a unique quantity
for a shape (or subset of it).

Based on models of CEucli deanShapes, we can obtain ex-
pected continuous values usindr uelLocal Esti mat or OnPoi nts and
Trued obal Esti mat or OnPoi nts. Since both expected and estimated
values are given by estimators with a consistent interfatemakes the
multigrid comparison very simple. Indeed, it allows to dgsia generic
Conpar eLocal Esti mat or s which return a statistic on the difference of
two estimator values.

In the following example, we illustrate the mutligrid ewdian shape construc-
tion and the comparison of three length estimators (Rog#filerDSS and MLP).

In this example, we have detailed the overall process: shapstruction and dig-
itization, domain and Khalimsky space construction, cantoacking and finally,
evaluation of estimators.

...

/1 h and radius are parameters here

...

Il Types

typedef Ball2D<Space> Shape;

typedef Space::Point Point;

typedef Space::RealPoint RealPoint;

typedef Space::Integer Integer;

typedef HyperRectDomaiqSpace> Domain;

typedef KhalimskySpaceNBSpace :: dimension, Integes KSpace;
typedef KSpace:: SCell SCell;

typedef GridCurve<KSpace>::PointsRange PointsRange;
typedef GridCurve<KSpace>::ArrowsRange ArrowsRange;
typedef PointsRange :: Constlterator ConstlteratorOnPoints;

/I Euclidean ball
Shape aShape(Point(0,0), radius);
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/1 Gauss Digitization

GaussDigitizexSpace , Shape dig;

dig . attach( aShape );// attaches the shape.

dig.init( aShape.getLowerBound(), aShape.getUpperbbdynh);

I/l The domain size is given by the digitizer according to
Il the window and the step.
Domain domain = dig.getDomain() ;

/1 Create cellular space
KSpace K;

bool ok = K.init( dig.getLowerBound(), dig.getUpperBound ()true );
if (1 ook)
{

std:: "
<< ".error.in.creating.KSpace."<< std::endl;
return false;

}
try {

Il Extracts shape boundary
SurfelAdjacencyKSpace :: dimension SAdj( true );
SCell bel = SurfacesKSpace>::findABel( K, dig, 10000 );

I/l Getting the consecutive surfels of the 2D boundary
std::vectokPoint> points;
SurfacescKSpace>::track2DBoundaryPoints( points ,

K, SAdj,

dig, bel );
trace.info ()<< "#.tracking ..."<< endl;

Il Create GridCurve

GridCurve<KSpace> gridcurve;
gridcurve.initFromVector( points );

trace.info ()<< "#grid-curve.created .h=" << h<< endl;

Il ranges
ArrowsRange ra
PointsRange rp

= gridcurve.getArrowsRange () ;

= gridcurve.getPointsRange();

Il Three length estimators working on different contour
Il representations

RosenProffittLocalLengthEstimatot ArrowsRange:: Constlterato}> RosenProffittlength;
RosenProffittlength.init(h, ra.begin(), ra.end(), gxdrve.isClosed());

DSSLengthEstimater PointsRange :: Constlterator DSSlength;
DSSlength . init(h, rp.begin(), rp.end(), gridcurve.is@led ());

MLPLengthEstimato& PointsRange :: Constlterato» MLPlength;
MLPlength. init(h, rp.begin(), rp.end(), gridcurve.is@€ded());

trace.info ()<< "#Estimations "<<std :: endl;
trace.info ()<< "#h_true_oRosenProffitLDSSMLP." <<std :: endl;

trace.info ()<< h<< "." << M.PI%2.0
<< "." << RosenProffittlength . eval ()
<< "." << DsSSlength.eval ()

<< "." << MLPlength. eval ()
<< std::endl;
}catch ( InputException e )
{

std::cerr<< "."
<< "werrorain.finding.a-bel.” << std::endl;
return false;

}

7 Related problems and perspectives

7.1 Geometric estimators along damaged or noisy contours

In real applications, images may have been damaged or &gmuidevices may
induce noise in the image data. Furthermore, binarizatigorgthms and segmen-
tation algorithms may also damage the boundary of the regiorshapes. These
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contours are thus not any more the perfect digitization adehEuclidean shapes
(e.g. shapes iX"PW-SO) and have parts that are winding where they should be
straight. We will call them hereaft@oisy contourgan example is given on Fig. 10
where a kangaroo shape has been damaged by Gaussian noise).

Eon Y A i ¥
(a) Noise detection (b) Zoom on kangaroo’s back

Fig. 10 Noisy contour and noise detection along it by the method 8f.[Zhe input image has
been damaged by two different Gaussian noises in diffeegions. The thresholded shape has a
boundary which is damaged in these regions (noisy contawd The detector indicates for each
contour point what is the local scale at which this part ofdbetour should be analyzed: the scale
or noise level at a point is indicated by the size of the lighetbox around it. It is worthy to note
that the noise level is almost everywhere proportionnahéeamount of contour degradation.

In the pattern recognition community, a lot of tools haverbéeveloped to ana-
lyze the geometry of noisy contours, especially to deteat&oor dominant points
(see for instance [49]). These points are related to curgatdormation. However,
these tools are not designed for estimating quantitatitredygeometric character-
istics of the contours but rather qualitatively. We only tpibere works that give
quantitative geometric information on perfect or noisy tooms.

A common way to tackle noise along contours is to filter thetconwith a
smoothing kernel. The size of the kernel given by the userdeenor less propor-
tional to the amount of damage along the contour. The BC tanggimator and
the BC curvature estimator are members of this family of mégpies [48, 19, 21].
These techniques are efficient when the contour is rathéoranly damaged, but
they smooth indifferently noise and high-curvature paftshe contour (like cor-
ners).

Approaches based on fitting like the LR or ICIPF estimato®s |7 43] are also
able to tackle noise along contours, since they tend to findthdian or average
polynomial that best approaches locally the data. Agasmwimdow size parameter
is used to suppress at the same time arithmetic effects aisd adefacts. This
parameter is generally set by the user.
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In the digital geometry community, a common technique isde the so-called
blurred segment$16] instead of digital straight segment. Compared to digit
straight segment whose thickness is always less than Irebdlsegments have a
user-given maximal thickness. The noisy parts of contoerais ignored when us-
ing a larger thickness. Several estimators just replacelatad segments with blurred
segments so as to take into account noisy contours. Fonoestéhe curvature esti-
mator presented in [52] is the noisy variant of the CC estimdthe GMC estimator
also uses blurred segments to handle noisy contours. Ttlentdss is generally set
by the user.

Note that digital estimators based on digital straight seg(like the HO-1GD,
MCMS andA -MST tangent estimators, or the MDCA curvature estimatan) &lso
be adapted to noisy contours by subsampling the input carouinstance, we can
use a 3x 3 tile over the input contour so as to remove perturbationneatgr than
1 pixel along the contour. However we have yet not run a fullefeexperiments
so as to know if this approach leads to better estimatorsttieones quoted in the
preceding paragraphs.

Finally, all these techniques require the determinatioora or several param-
eters in order to process at best noisy contours. This scamoothing parameter
must not be too low otherwise damaged parts are considegéechirvature places
or corners, but it must not be too high also in order to preséatures and to have
accurate estimates of geometric information.

If a grey-level input noisy image is available, scale spataysis may provide
information on the amount of noise [18, 31, 9, 24]. They cdrrandle directly
noisy contours. For noisy contours, Kerautret and Lacha8ftiave recently pro-
posed a method to automatically detect the meaningful scdildigital contours. It
can give locally along the contour what it is the amount obea@nd the first scale at
which the contour should be analyzed (see Fig. 10, and odéngonstration [29]).
Their technique relies on the asymptotic properties of makidigital straight seg-
ments. They have proposed a varianhefIST estimator for noisy contours, which
uses the noise information given by the meaningful scaléf [3

7.2 Geometric estimatorsin 3D and nD

In higher dimensions, several 2D estimators or framewaskssxtended. However,
many open problems exist and beside the fact that few midt@pnvergent proofs
exist, a complete experimental multigrid evaluation ofvadure estimators for in-
stance has not been done yet on digital surfac&s ifin this section, we just give a
brief overview of existing techniques:

e Surface area:to compute the area of a surfaceZip, a first solution is based on
weighted local configurations [69, 45]. The idea is to asseci weights to lo-
cal configurations of surface voxels or surfels. Then, gaeiobject, the surface
area is approximated by summing all weights associated toafigurations de-
fined on the object surface. Similarly to the BLUE estimatzgights are given
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by a statistical analysis to minimize surface area erroafgiven class of shapes.
By deriving results from the length case in dimension 2 [88]face weighted
configuration estimators can never achieve multigrid cayeece. In [47], the
authors use statistical analysis and integral geometrgsigd a fast estimation
of the surface area. Again, the quality of the estimatioroigtiolled by a param-
eter (number of line probes). Another option is to geneedliwe discrete normal
vector integration scheme as described in [10, 13]. As betan [11], we can
prove that if the normal vector estimation is multigrid ceryent, then the in-
tegration of the vector field leading to the surface arearedion is multigrid
convergent as well.

e Normal vector field computation: at a pointx on a smooth surface, the normal
vector atx can be defined as the cross product of first order derivativegan-
gent) of two curves lying on the surface crossing.dh a digital context, given a
surface element of a cellular representation of a digitdbse, two natural digi-
tal 4-connected curves can be defined by the intersectidmedfurface with the
two axis planes containing the surfel elementary normatoretlence, Lenoir
et al. suggested to compute the normal vector at a surfel as the prosluct
of tangent computed on the two 2D digital curves [41]. Foltoyvthis frame-
work, multigrid convergence can be achieved if the tangstitator used on the
2D curves is multigrid convergent [11, 36]. The normal vedteld of a digital
surface inz", for arbitraryn, can be computed with a similar approach [37].

e Curvature: For curvature computation on digital surfaces, only fevinestors
have been proposed in the digital geometry framework. Weitah.enoir’s slice
based approach for the mean curvature estimation [42],<3aap area evalua-
tion for the gaussian curvature [10], techniques based tegial invariants for
both mean and gaussian curvatures [6, 55, 54]. Integratianatechniques are
definitely relevant in the digital geometry context, everase of noisy surface.
However, they require a window parameter which could bedatliffito set for a
large class of shapes.

In the computational geometry field, several techniqueg leeen proposed to
construct accurate curvature estimators with boundedsefdsually, bounds are
parametrized by a sampling parameter for a given samplipotmesis. An ex-
ample of a sampling hypothesis for a smooth surface woultidiethe sampling
density should be proportional to the curvature. In thisterst) convergence or
stability of geometric estimators have been proposed asctifun of the sam-
pling parameter. In many situations the sampling theoresad in computational
geometry do not match with the specific isotropic behaviatigital surfaces. In
[3, 8, 51], estimators are defined on point sets based on Wosbructures and
the error is given in terms of Hausdorff distance (which iasistent with digi-
tal surfaces). Investigating the links between computatigeometry and digital
geometry on this subject is a challenging problem.
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7.3 Current bottlenecks and open problems

As detailed in the previous sections, we can overview ctitheoretical bottlenecks
in the design of discrete geometric estimators:

e Stability w.r.t. noise: Prior detection of the contour local noise level to be used
as an estimator parameter, or with estimator which are #tieafly robust to a
given noise model.

e Estimators of differential quantity of order 2: In our point of view, existing
curvature estimators are not yet satisfactory since eitbeproof of multigrid
convergence exists, or the convergence is controlled byxeerreal parameter
(windows size, Gaussian kernel width, .. .). It would beliegting, for instance,
to focus on the multigrid behavior of circular arc segmendimital 2D contours.
Indeed, many proofs related to the length or the tangenthatitn are based
on the multigrid behavior of DSS. On digital surfaces andighbr dimension,
we think that a better understanding of links between coatfrtal and digital
geometry results would lead to new results in this domain.

Beside these theoretical bottlenecks, complete multigriderimental evalua-
tions are now mandatory when designing a new discrete estinvdith the help of
both a theoretical methodology (multigrid shape databasesaror measures) and
opensource libraries mCGene [2] or D& al [1]), we expect to have a complete
and stable experimental framework. An important futurekveould be to continue
the implementation of existing estimators with compasasiudies. In dimension 3,
main bottlenecks are related to efficiency and computattiwosis. Indeed, in many
Material sciences or Medical imaging applications, we mayehto analyse digital
shapes whose size achieves up to 2048 the implementation of 3D estimators,
several theoretical and technical problems have to be aslede(out-of-core tech-
niques, hierarchical data representation and adaptiegitigs, .. .).
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