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Abstract The analysis of digital shapes require tools to determine accurately their
geometric characteristics. Their boundary is by essence discrete and is seen by con-
tinuous geometry as a jagged continuous curve, either straight or not derivable.Dis-
crete geometric estimatorsare specific tools designed to determine geometric infor-
mation on such curves. We present here global geometric estimators of area, length,
moments, as well as local geometric estimators of tangent and curvature. We further
study theirmultigrid convergence, a fundamental property which guarantees that
the estimation tends toward the exact one as the sampling resolution gets finer and
finer. Known theorems on multigrid convergence are summarized. A representative
subsets of estimators have been implemented in a common framework (the library
DGtal), and have been experimentally evaluated for several classes of shapes. The
interested user has thus all the information for choosing the estimator best adapted
to its application, and disposes readily of an efficient implementation.

1 Introduction

Since early developments in image processing and image understanding, many tools
have been developed in order to quantify the geometry of a digital shape. Such
digital shapes can be defined for instance either from a segmentation process as
subset of image pixels sharing the same colorimetric information, or as the result of
the digitization of a continuous object.

In many applications, it is important to have a geometrical quantification or de-
scription from measurements which are invariant under a specific class of transforms
(rotation, translation, scaling, . . . ) or which preserve important geometrical features
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(characteristic points, local convexity, . . . ). In this context, we usually consider dif-
ferential or integral quantities evaluated either on the digital shape or its boundary.
Beside such type of quantification, we can distinguish two classes of geometrical de-
scriptors. The first class corresponds to global descriptors which associate a global
numerical quantity to each shape. In this class, we have arc length or perimeter esti-
mators of digital shape boundaries, but also integral quantities such as geometrical
moments approximated on the digital shape. The second classcontains local esti-
mators which usually associate a numerical quantity to eachpoint of the shape. For
example, curvature or normal vector estimators at boundarypoints belong to this
class.

When defining an algorithm that evaluate such descriptors ondigital shape, so
called estimator, the evaluation of such estimator accuracy may be challenging. In
the literature, several approaches have been proposed. Thefirst one is application
driven and consists in validating the estimators within a complete shape description
pipeline. For instance, one can evaluate a curvature estimator in a global character-
istic points estimation framework of contours.

One can also evaluate the accuracy of the estimator in terms of expected prop-
erties. For instance, we can evaluate the stability of a curvature estimator when
rotations of input shapes are given.

A more formal evaluation process consists in comparing the estimated quanti-
ties with exact Euclidean values on a family of continuous shapes in a multigrid
asypmptotic framework. More precisely, letX be a family of compact simply con-
nected subsets ofR2 with continuous curvature fields. We denote byD(X,h) the
Gauss digitization ofX ∈ X with grid steph, seen as a union of pixels of sideh
in R2. For sake of clarity, we shorten in the sequelD(X,h) into D and denote its
complementary bȳD. Moreover, let us assume thatD contains at least one pixel, i.e.
|D| ≥ 1.

In this multigrid framework, comparing the estimated quantity to the expected
Euclidean one whenh tends to zero is called themultigrid convergenceanalysis of
an estimator [32]. Indeed, at a given resolution, infinitelymany shapes have the same
digitization, which hampers the objective comparison of estimators. For estimators
of local geometric quantities like tangent or curvature, few results exist. We may
quote some convergence results for tangent estimators [39,48, 19]. And there is no
correct convergence results for curvature as far as we know.

In this chapter, we use this multigrid comparison frameworkin order to review
and evaluate existing local and global estimators on digital shapes. A important con-
tribution is to have considered a large set of estimators in aunique technical frame-
work: the DGtal opensource library [1]. DGtal is a generic open source library for
Digital Geometry programming for which the main objective is to structure different
developments from the digital geometry and topology community. For the purpose
of this chapter, we use DGtal to represent multigrid digitalobjects and shapes, to
define the geometric estimators and we provide ways to compare estimated values
to expected Euclidean ones.

The chapter is organised as follows: Sect. 2 focuses on global estimators (area,
moments and arc length) and Sect. 3 is devoted to local estimators (tangent, cur-
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vature). In both cases, each section starts with formal definition of the multigrid
convergence of an estimator. In Sect. 6, we discuss on implementation details of
both the estimator and the comparative evaluation framework.

2 Global Estimators

2.1 Multigrid convergence for global estimators

Multigrid convergence is an interesting way of relating digital and Euclidean ge-
ometries. The idea is to ask for discrete geometric estimations to converge toward
the corresponding Euclidean quantity when considering finer and finer shape digi-
tizations (here, Gauss digitization). The following definition is taken from Defini-
tion 2.10 of [32].

Definition 1 (Multigrid convergence for global geometric quantities).A discrete
geometric estimator̂E of some geometric quantityE is multigrid convergentfor a
family of shapesX and a digitization processD iff for all shapeX ∈ X, there exists
a grid stephX > 0 such that the estimatêE(D(X,h),h) is defined for all 0< h< hX

and
|Ê(D(X,h),h)−E(X)| ≤ τX(h),

whereτX : R+ →R+ with null limit at 0. This function is thespeed of convergence
of the estimator.

The convergence of most estimators depends on the family of shapes in the Eu-
clidean plane that is considered. We therefore introduce several standard families
that will be used to define the range of validity of multigrid convergence theorems.
A curve is said to beCn if it has continuousn-th order derivatives.

• The family of all finite convex shapes in the Euclidean plane is denoted withXC.
• The family of convex sets whose boundary is aCn arc with positive curvature

everywhere is denoted byXn−SC.
• The family of all planar piecewisen-smooth convex set is denoted with

Xn−PW−SC. These sets are convex sets whose boundary consists of a finite num-
ber ofCn arcs with positive curvature everywhere except at arc endpoints. Clearly
Xn−SC(Xn−PW−SC.

For experiments, we will use shapes that are representativeof these families.
Several representative shapes digitized at different scales are illustrated on Fig. 1.
They will be used for the upcoming experiments on global and local geometric
estimators.
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Square Triangle Circle

(a) 1 (b) 0.1 (c) 1 (d) 0.1 (e) 1 (f) 0.1
Ellipse Flower Accflower

(g) 1 (h) 0.1 (i) 1 (j) 0.1 (k) 1 (l) 0.1

Fig. 1 Digitization at two different grid steps (h = 1 or h = 0.1) of tests shapes: (a-d) the square
and triangle are inXC; the circle (e,f) and the ellipse (g,h) belongs toX3-SC; the flower (i,j), and
the “accflower” (k,l) are inX3-PW-SC. All shapes have a diameter 20.

2.2 Area and moments

Designing a multigrid convergent estimator of the area is fairly simple. We define
thearea estimator by countinĝA as

Â(Y,h) = h2 ∑
(i, j)∈Y

1, (1)

whereY is an arbitrary digital shape andh the gridstep. This estimator just counts
the number ofh-grid square inY and normalizes the result with the area of each grid
square.

As reported in [33], Gauss and Dirichlet knew already that this area estimator
was multigrid convergent for finite convex shape (XC) with a speedO(l ·h), where

l is the shape perimeter. Huxley [26] improves the bound toO(h
15
11(log 1

h)
47
22) for

the familyX3−PW−SC. This simple estimator has thus superlinear convergence for a
rather wide class of shapes.

Klette andŽunić [33] follows the idea of (1) to design thediscrete(p,q)-moment
estimatorm̂p,q, for integersp,q≥ 0, as follows:

m̂p,q(Y,h) = h2+p+q ∑
(i, j)∈Y

ip · jq. (2)

These estimators approximate the(p,q)-moments of a shapeX, which are de-
fined asmp,q(X) =

∫∫
X xpyqdxdy. Their speed of convergence is sumed up in Tab. 1.

In a similar way, central moments may be approximated. We refer the reader to [33]
for further details. Note that moments can be used to determine for instance the
center of gravity or the orientation of a shape. Furthermore, several rotational in-
variant quantities can be obtained as combination of(p,q)-moments. For instance,
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Zernike and Legendre moments widely used in many 2D and 3D shape indexing and
retrieval are linear combination of(p,q)-moments [64, 53]. Hence, convergence re-
sults on(p,q)-moments lead to convergecne of Zernike and Legendre moments as
well.

The previous estimators require to visit all points of the digital object, and
not only its boundary. The computational complexity of these estimators is thus
O(1/h2). However, a discrete variant of Green theorem allows to compute these
quantities by simply visiting the shape boundary, thus reducing the computational
complexity toO(1/h) for convex shapes. See Lien [44] for a generic discrete Green
theorem framework and Brleket al. for a digital geometry application [5].

2.3 Perimeter and length estimators

It is more complex to estimate the perimeter of a digital shape. Indeed, enumerating
the number of grid steps of the digital shape boundary does not lead to a reliable
perimeter estimator. It is called thenaive perimeter estimator̂Lnaive and is defined
as

L̂naive(Y,h) = h ∑
σ∈∂Y

1. (3)

This estimator overestimates the shape perimeter. Indeed,it is clear that it always
returns the perimeter of the axis-aligned bounding box of the shape.

Therefore first approaches to length estimation tried to assign different weights
to different local configurations so as to be more precise. The Rosen-Proffitt esti-
mator [56] and BLUE (best linear unbiased) estimator [17] belong to this category.
However it was proven in Tajine and Daurat [63] that all theseapproaches can never
achieve multigrid convergence, whatever the (finite) number of configurations taken
into account.

More complex approaches are required to achieve convergence. We list below
several of them, which are also experimentally compared (see Fig. 2). Most of them
are not only valid for perimeter estimation but also for curve length estimation.

• The DSS length estimator̂LDSS, proposed by Kovalevsky and Fuchs [34], re-
lies on a greedy decomposition of the input digital contour into Digital Straight
Segments (DSS). It starts from a point, then find the longest DSS starting from
this point. The end point of this DSS defines a new starting point. The process
is repeated till the whole contour has been visited. The DSS end points form
a polygonal line. The length or perimeter of the digital contour is then simply
defined as Euclidean length of this polygonal line.

• The MLP length estimator̂LMLP, proposed by Slobodaet al. [62], also relies
on a polygonal approximation of the digital contour. For a given simple digital
shape, the Minimum Length Polygon (MLP) is indeed the shortest Euclidean
curve which separates the interior pixel centers from the exterior pixel centers.
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The length is then defined as the perimeter of this curve. Several linear-time
algorithms for computing the MLP are available [57, 61].

• TheFP length estimator̂LFP, proposed in [61], relies on yet another polygonal
approximation of the digital contour. One can see it is a translated version of the
MLP, where convex turns are translated outwards and concaveturns are trans-
lated inwards by half-unit diagonal vectors. The advantageis that the polygon
vertices form a subset of the grid points of the input contour.

• Another approach to local length estimation and thus perimeter estimation is to
integrate the tangent estimation along the curve [10, 13] (see next section on
tangent estimation too). TheST length estimator̂LST is based on the symmet-
ric tangent while theλ -MST length estimator̂Lλ -MST is based on theλ -convex
combination of maximal segments [39]. More precisely, if a grid edgeσ has di-
rection vectort(σ) and estimated unit tangent vectorT̂(σ), these two estimators
are defined as:

L̂ST(Y,h) = h ∑
σ∈∂Y

T̂ST(σ) · t(σ), L̂λ -MST(Y,h) = h ∑
σ∈∂Y

T̂λ -MST(σ) · t(σ).

(4)
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Fig. 2 Absolute relative error for several length and perimeter estimators. It is a clear that the naive
length estimator does not converge. The other estimators (DSS, MLP, FP, ST,λ -MST) present a
multigrid convergence. Note that experimentally the convergence speed for DSS, FP, and ST on the

ball is O(h) while MLP andλ -MST achieve a better bound ofO(h
4
3 ). However, on the boundary

of a shape with linear parts, the convergence speed isO(h) for all the estimators except the naive
one.

Some experimental evaluation of the multigrid convergencehas been carried out
for these estimators and is illustrated on Fig. 2. It appearsthat the perimeter of
shapes with rectilinear boundaries is accurately estimated with any of the presented
length estimators but for the naive one. However, for shapeswith sufficiently smooth
boundaries and positive curvature, the MLP andλ -MST have superlinear conver-
gence and should be preferred. Note finally that only DSS, MLP, andλ -MST have
proven multigrid convergence, but the found bounds are not necessarily tight. In
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Fig. 3 Computation time for length estimators implemented in DGtal (Naive, BLUE, RosenProf-
fitt, DSS, MLP, FP). For the sake of clarity, abscissa corresponds to the size of the contour in
number of grid points. Ordinate corresponds to timings in millisecond (Intel Xeon 2.27GHz, DG-
tal 0.4).

Fig. 3, we present computational time for estimators implemented in DGtal release
0.4 (Naive, BLUE, RosenProffitt, DSS, MLP, FP). Convergenceresults for ST and
λ -MST have been obtained from ImaGene library [2]. In these graphs, we can ob-
serve the linear computational cost of all estimators with respect to the size of the
contours. As expected, local estimators outperform the other ones but DSS based
estimator is a good compromise between efficiency and theoretical multigrid con-
vergence.

2.4 Summary

Tab. 1 summarizes multigrid convergence results for estimators of global geometric
quantities. It appears that some theoretical bounds are nottight and that some others
are yet to be proven.

3 Local Estimators

3.1 Multigrid convergence for local estimators

Tangent direction, normal vector, curvature are local geometric quantities along the
shape boundary. Each of them is thus some function of the shape boundary. How-
ever, the contour of the shape digitization does not define the same domain. There-
fore we cannot directly compare the true geometric functionwith the estimated geo-
metric function. We provide below a definition of multigrid convergence for discrete
local estimators. It is neither a parametric definition as in[19] nor a point-wise def-
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Convergence speed
Quantity Estimator Shape family Upper bound Observed References

area Â XC O(h) Gauss, Dirichlet

area Â X3−PW−SC O(h
15
11+ε) [26]

moments m̂p,q X3−PW−SC O(h) [33]

moments m̂p,q X3−SC O(h
15
11+ε) [33]

length L̂DSS Convex polygons ≈ 4.5h [34]
length L̂DSS X3−PW−SC (unknown) O(h) [34]
length ε-sausage Convex polygons≈ 5.844h [4]
length L̂ST XC (unknown) O(h) [13]
length L̂FP XC (unknown) O(h) [61]
length L̂MLP XC ≈ 8h [62]

length L̂MLP X3−PW−SC O(h) O(h
4
3 ) [62]

length L̂λ -MST X3−PW−SC O(h
1
3 ) O(h

4
3 ) [36]

Table 1 Known multigrid convergence for several estimators of global geometric quantities.

inition as the standard multigrid convergence reported in [32]. Furthermore, for the
sake of simplicity, there is no direct mapping between the contour and its digitized
counterpart as proposed in [36]. It is a geometric definition, stating that any digital
point sufficiently close to the point of interest has its estimated geometric quantity
which tends toward the expected local value of the geometricfunction. This defini-
tion of multigrid convergence imposes shapes with continuous geometric fields. Of
course, one can afterwards relax this constraint by splitting the shape boundary into
individual parts where the geometric function is continuous.

Let us recall thatX is some family of shapes in the Euclidean plane. We denote by
D(X,h) the Gauss digitization ofX ∈X with grid steph. For anyx in the topological
boundary∂X of X, let Q(X,x) be some local geometric quantity of∂X at x. A
discrete local estimator̂Q is a mapping which associates to any digital contourC, a
pointy∈C and a gridsteph, some value in a vector space (e.g.,R for the curvature).
We are now in position to define the multigrid-convergence ofthis estimator:

Definition 2. The estimator̂Q ismultigrid-convergentfor the familyX if and only if,
for anyX ∈X, there exists a grid stephX > 0 such that the estimatêQ(D(X,h),y,h)
is defined for ally∈ ∂D(X,h) with 0< h< hX, and for anyx∈ ∂X,

∀y∈ ∂D(X,h) with ‖y− x‖1 ≤ h, |Q̂(D(X,h),y,h)−Q(X,x)| ≤ τX,x(h),

whereτX,x : R+∗ → R+ has null limit at 0. This function defines the speed of con-
vergence ofQ̂ towardQ at pointx of ∂X. The convergence isuniform for X when
everyτX,x is bounded from above by a functionτX independent ofx∈ ∂X with null
limit at 0.

It is worthy to note that, for sufficiently regular shapes (par(r)-regular shapes
[40]), there exists a gridstep below which the boundary of the shape digitization has
same topology as the shape boundary ([36], Theorem B.5). Furthermore, these two
boundaries are very close. Indeed, there exists a gridstep below which for anyx∈ X
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there is ay∈ ∂D(X,h) with ‖y−x‖1 ≤ h and conversely for anyy∈ ∂D(X,h), there
is ax∈ X with ‖y− x‖1 ≤ h ([36], Lemma B.9).

Therefore the previous definition of multigrid convergenceguarantees that the
estimated local quantity converges toward the true local geometric quantity every-
where along the shape boundary.

3.2 Methodology for experimental evaluation

When multigrid convergence theorems have been established, we will reference
them and indicate the known convergence rate. We nevertheless carry out an experi-
mental evaluation of many different estimators for two reasons: (1) few convergence
theorems exist for local estimators, (2) practical error bounds at finite scale are also
important for the end-user.

In the next sections, we apply the following methodology foranalyzing estima-
tors:

1. Test shapes. We use the shapes of Fig. 1 for the experiments. They are repre-
sentative of the different shape families that we are studying. Indeed, shapes
composed of linear parts, smooth parts and corners, arise naturally in image
analysis. When the tangent field is not continuous (square, triangle), only the
average error is significant.

2. Graphs of estimations with respect to ground truth. We display the graphs of the
estimated values for different estimators (functionsQ̂) and the expected graph
(functionQ).

3. Error measures for decreasingh. We study the following measures:

εabs(X,y,h) = |Q(X,x(y))− Q̂(D(X,h),y,h)| (5)

or (when vectorial) εabs(X,y,h) = |det(Q(X,x(y)),Q̂(D(X,h),y,h)| (6)

εrel(X,y,h) =
εabs(X,y,h)
|Q(X,x(y))| (7)

εabs(X,h) =
1

#D(X,h) ∑
y∈D(X,h)

εabs(X,y,h) (8)

ε rel(X,h) =
1

#D(X,h) ∑
y∈D(X,h)

εrel(X,y,h) (9)

(10)

Herex(·) is a mapping associating to each digitized point a point on the shape
boundary that is close enough (‖y−x(y)‖1 ≤ h). The same mapping is used for
all estimators.

4. When known, computational complexities for computing estimators will be
given. Otherwise, for fair comparisons, we only measure computation times
for estimators implemented in the DGtal library (see Section 6).
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This methodology allows us to evaluate experimentally the accuracy and multi-
grid convergence properties of discrete local geometric estimators. Section 4 studies
tangent estimators and Section 5 studies curvature estimators. Their implementation
in a common framework is discussed in Section 6.

4 Tangent

The aim of tangent estimators is to determine what is locallythe shape boundary
direction. For curvesγ(s) (at leastC1) defined as functions of a curvilinear abscissa
s, the tangent vector is defined asdγ

ds, which is a unit vector. The tangent direction
φ(s) is defined as the angle between thex-axis and this unit vector.

4.1 Tangent estimators

Given a digital contour and a digital point, tangent estimators return a unit vector.
For easier view, it is also possible to plot the angle of the tangent vector wrtx-axis.
It is clear that the grid edge direction (see arrows in Fig. 9-(d) for an illustration)
is a very bad tangent estimator, since on any shape inX1-SC it will have points with
εabs or εrel close toπ

2 .
More complex approaches are necessary. Digital tangent estimators have been

thoroughly compared in [38, 39]. They have been compared to continuous ap-
proaches in [66, 67]. We describe below some representativetangent estimators,
which will be compared experimentally.

• A first natural approach is to use a local least-square fit of a polynomial [7, 43].
These techniques define a fixed window-sizeq. Around the point of interest they
use 2q+ 1 samples which are used to find the polynomial of given degreethat
best fit these data in the least-square sense. We focus here onlow-degree polyno-
mials. TheLR tangent estimator̂TLR-q is the linear-regression with the window
sizeq. The ICIPF tangent estimator̂TICIPF-q is the implicit parabola fitting of
window sizeq, made independently on each coordinate. They were found to be
representative of that kind of methods [66, 67].

• A second approach is to see the digital contour as a discrete signal (x[t],y[t])
and to convolve this signal with a Gaussian derivative of given kernelσ . This
is very similar to the binomial convolution approach of [48,19, 21]. Therefore,
we choose theH1-0GD tangent estimator̂TH1-0GD [67], which defines locally
the window size as the longest maximal digital straight containing the point. A

slight variant is proven to be multigrid convergent inO(h
1
3 ) for smooth shapes

in X3−SC, while its experimental convergent rate is excellent [67] for smooth
shapes.
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• TheMCMS tangent estimator̂TMCMS defines the tangent as the direction of the
most-centered maximal digital straight segment containing the point of interest
[20]. It is proven to be uniformly multigrid convergent inO(h

1
3 ) in [36, 39].

• the λ -MST tangent estimator̂Tλ -MST is based on theλ -convex combination of
the direction of the maximal digital straight segments containing the point of
interest [39]. The functionλ is a mapping governing the way these directions are
combined. We use here a simple triangle functionf , such thatf (0) = 0, f (1) =

0, f (0.5) = 1. It is proven to be uniformly multigrid convergent inO(h
1
3 ) in [36,

39].
• the BC tangent estimator̂TBC see the digital contour as a discrete signal

(x[t],y[t]) and convolves it with discrete binomials and a discrete difference op-
erator, so as to mimick the convolution by a Gaussian derivative [48, 19]. We use
the suggested mask size ofd.h−

4
3 , whered is the continuous shape diameter. It

is proven to be uniformly multigrid convergent inO(h
2
3 ) in [48].

• TheMATAS tangent estimator̂TMATASis an adaptation of the median filter com-
monly used in image processing [50]. If(Pi) are the vertices of the grid contour,
this method consists in choosing the median orientation among the following 2q
vectors centered onPi: (Pi−qPi, . . . ,Pi−1Pi ,PiPi+1, . . . ,PiPi+q).

4.2 Experimental evaluation

We have run these estimators on two representative shapes (the square is represen-
tative ofXC, the ellipse is representative ofX3-SC) at different steps (coarseh= 1,
mediumh = 0.1): results are displayed on Fig. 4. Only MCMS andλ -MST de-
tect perfectly straight parts and corners. Others tend to smooth around corners, the
amount of smoothing being dependent on the (chosen) size of the window. Fur-
thermore, LR and ICIPF oscillate around the correct value onstraight parts. It is
more difficult to tell which estimator is the best along the boundary of smooth
curved parts. MCMS produces a staircase-like function but keeps the convexity of
the shape. MATAS, LR and ICIPF may also oscillate and create false concavities.
BC andλ -MST follow nicely the ground truth function. Overall,λ -MST seems
the most versatile and accurate at these resolutions. Experiments on other shapes
confirm the presented behaviors of these estimators.

We now turn ourselves to the asymptotic behavior of these estimators, namely
their possible multigrid convergence. We focus on the average absolute error of the
tangent vector, i.e.εabs(X,h) (see (8)). The error plots displayed on Fig. 5 show that
tangent estimators with fixed window size are not multigrid convergent. This is the
case of RL, ICIPF and MATAS estimators. Interestingly, but not surprisingly, small
window sizes bring better precision at low scale while greater window sizes bring
better precision at fine scale. This is clearly the problem ofsuch estimators: they
require a user to choose the best possible scale according tothe input data.
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Fig. 4 Plots of tangent directions as a function of the grid edge index for several shapes and
several tangent estimators. For each row, the shape and the digitization step is given. Left column:
BC and MCMS estimators. Right column: MATAS estimator with window 10, ICIPF estimator
with window 0, LR estimator with window 10,λ -MST estimator, H1-0GD estimator. Note that for
a clearer view, only a representative part of the plot is displayed, and that due to implementation,
grid edges indices of the first column are different from the ones of the second column.
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If we look at the other estimators (H1-0GD, MCMS,λ -MST, BC), the window
size is automatically determined, either globally byd.h−

4
3 for BC estimator, or lo-

cally by maximal digital straight segments for the remaining three. All these four es-
timators are experimentally multigrid convergent for mostof the considered shapes.
However, their convergence speed may vary greatly. BC is good for smooth con-
vex shapes, but has low convergence speed on shapes with inflexion points or linear
parts. H1-0GD is excellent on smooth shapes for a fine enough sampling, but is
not good on shapes with linear parts. MCMS andλ -MST are the most versatile.
λ -MST is preferrable to get a continuous tangent. Convergence results are summed
up in Tab. 2.

Convergence speed
Estimator Shape family Upper bound Observed References

T̂BC Polygons ? O(h
1
3 ) (here)

T̂BC X1−SC O(h
2
3 ) O(h

2
3 ) [48]

T̂BC X1−PW−SC ? O(h
1
3 ) (here)

T̂λ -MST andT̂MCMS Polygons O(h) O(h) [36]

T̂λ -MST andT̂MCMS X1−PW−SC ? O(h
2
3 ) [67]

T̂λ -MST andT̂MCMS X3−SC O(h
1
3 ) O(h

2
3 ) [36]

T̂H1-0GD Polygons ? not convergent (here)

T̂H1-0GD X1−PW−SC ? ≈ O(h
2.5
3 ) [67]

T̂H1-0GD X3−SC O(h
1
3 ) O(h

2.5
3 ) [67]

Table 2 Known multigrid convergence for several tangent estimators. LR, MATAS, ICIPF are not
multigrid convergent.

5 Curvature

For curvesγ(s) (at leastC2) defined as functions of a curvilinear abscissas, the
curvatureκ can be defined in three different but equivalent ways:

(i) norm of the second derivative:κ(s) = |d2γ
ds2

|,
(ii) derivative of the tangent orientation: ifφ(s) is the angle between the tangent

and a given line,κ(s) = dφ
ds ,

(iii) inverse of the osculating circle radius: ifρ(s) is the radius of the osculating
circle,κ(s) = 1/ρ(s).

Given a grid point of a digital contour, curvature estimators are expected to return
a value inR close to the curvature of the underlying shape. Estimating the curvature
by finite differences over the two neighbors of a given grid point returns either a
positive (resp. negative) high value in convex (resp. concave) corners (±1/

√
2) or a

null one in runs and is thus a very bad solution.
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(b) The shape is theellipse(in X∞−SC) digitized for stepsh∈ [0.001,1].
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(d) The shape is theflower (in X∞−PW−SC) digitized for stepsh∈ [0.001,1].
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(e) The shape is theaccflower(in X∞−PW−SC) digitized for stepsh∈ [0.001,1].

Fig. 5 Plots in log-scale of the average absolute errors of tangentvectors as a function of the grid
step for several shapes and several tangent estimators. Foreach row, the shape and the digitization
step is given. Left column: MATAS estimator with windows 5 and 10, LR estimator with windows
5 and 10, ICIPF estimator with window 10. Right column: BC estimator, MCMS estimator,λ -MST
estimator, H1-0GD estimator.
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Many curvature estimators have been proposed in the literature to cope with this
problem. They are roughly based on one of the three above-mentioned definitions
as it has been noticed in [70, 25].

In methods (i) and (ii), derivatives are often approximatedfrom the convolution
of either the tangent orientation [70, 65, 20] (i), or the digital contour viewed as a
discrete signal(x[t],y[t]) [48, 19, 21] (ii). They can also be computed from some
polynomials of a given degree locally fitted to the digital contour [49, 25].

Tangents and osculating circles used in methods (ii) and (iii) often relies on fit-
ting techniques, either in a continuous setting (least square line or arc fitting [70]), or
in a discrete setting to limit the arithmetic effects: digital straight segments [65, 20],
digital level layers (extension to polynomials of higher degrees) [58, 23], approx-
imation of the osculating circle with digital straight segments [14, 15, 25], digital
circular arcs [60].

In most approaches, a user-given window or smoothing parameter is used so as
to remove the jaggedness of digital contours and to make it continuous [70, 65, 20,
46, 48, 19, 21, 22]. Few curvature estimators do not require an external parameter
and we chose to focus on these methods.

5.1 Curvature estimators

The curvature estimators that do not require any parameter either rely on discrete
primitives such as digital straight segment (DSS), digitalcircular arc (DCA), or on
global optimization such as the Global Minimum Curvature estimator [27].

In this section, we compare the following curvature estimators:

• TheMS estimatorκ̂MS [14] used only the length of maximal DSSs to estimate
the radius of the osculating circle.
The method relies on the assumption that maximal DSSs of the digitization of
a Euclidean circle behave like chords of heighth and lengthΘ(h

1
2 ). Maximal

DSSs are however almost always tighter and the length of maximal DSSs has
been proved to be inO(h

1
2 ) but inΘ(h

2
3 ) in average [68].

• TheCC estimatorκ̂CC [15] (HK2005 in [25]), associates to any grid point of a
digital contour, the curvature of the circumscribed circleof a triangle defined by
the extremities of its two digital half-tangents.
It has been proved to be convergent if the length of maximal DSSs is inΩ(h

1
2 )

[10]. This condition is however not fulfilled because the length of maximal DSSs
has been proved later to be inΘ(h

2
3 ) in average [68].

• Another estimation of the osculating circles can be obtained from the maximal
DCAs along the digital contour [60]. TheMDCA estimatorκ̂MDCA is the piece-
wise constant function that associates to any grid point of adigital contour the
curvature value of the most centered maximal DCA.
Although this approach seems quite natural, it has been proposed only recently
due to the lack of available implementation of on-line DCA recognition algo-
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rithms [35, 12, 59]. It is a natural extension of the tangent estimator based on the
most centered maximal DSS (MCMS tangent estimatorin Section 4) to the oscu-
lating circle estimation problem. As a result, theλ -MST tangent estimatorused
to improve this tangent estimator may probably improve thiscurvature estimator.
TheMDCA estimatorhas been proved to be convergent [60] if the length of the
maximal DCAs along the digital contour of the digitization of strictly convex
shapes with continuous curvature field is inΩ(h

1
2 ), which is observed on aver-

age.
• TheGMC curvature estimator̂κGMC [27] computes the curvature of the shape

that minimizes its squared curvature among all the Euclidean shapes that may be
digitized as a digital set close to the input.
The first step consists in computing the whole set of maximal DSSs. This pro-
cessing provides tangent and arc length estimations (Section 2.3 and Section 4)
used to bound the set of valid shapes in the tangential space (φ(s), s). In this
tangential space, the polygonal line that minimizes its length is then computed to
approximate the shape of piecewise constant curvature thatminimizes its squared
curvature.
The minimization is performed by an iterative numerical technique that stops
when the difference between the squared curvature of the last two solution shapes
is less than a small quantity, set to 1.10−8 in what follows.

• Finally, for comparisons, we also introduce theBC curvature estimator̂κBC

[48, 19], which is computed from derivative estimations, get by a discrete differ-
ence operator applied on the digital contour viewed as a discrete signal(x[t],y[t])
convolved by a binomial kernel of a given size. The mask size is an input pa-

rameter that is not easy to determine, but following [48], ithas been set tod.h−
4
3

whered is the diameter of the continuous shape.
The multigrid convergence of the estimation of the first (resp. second) derivative
at rateO(h

2
3 ) (resp.O(h

4
9 )) has been proved in [48, 19].

5.2 Experimental evaluation

We first plot the curvature values provided by theMS estimator(resp.CC estimator)
in Fig. 6.a (resp. Fig. 6.b) when applied to the digital contour of Fig. 1.j.

Because a maximal DSS is a good neighborhood to check the local convexity
and concavity of a digital curve [61], theMS estimatorprovides positive curvature
values in convex parts, negative curvature values in concave parts and null curvature
values around inflection points (Fig. 6.a). However, theMS estimatorsystematically
over-estimates the true curvature values in the convex parts and under-estimates
the true curvature values in the concave parts. The deviation is important at low
resolution and increases as the grid steph decreases. This is clearly a bad (and not
convergent) estimator.
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Fig. 6 Curvature plots for the flower, digitized with a grid step equal to 0.1 (Fig. 1.j).MS estimator
in (a) andCC estimatorin (b).

The CC estimatordoes not respect the convex and concave parts of the digital
contour (see the peak of positive curvature value near the starting point in Fig. 6.b),
it oscillates a lot but gives correct results on average at low resolution.

In Fig. 7, we compare the curvature plots derived from theMDCA, GMC, BC
estimatorsto the ground-truth.

The visual deviation between the estimated graphs and the ground-truth graph
reflects the average absolute error. For either estimator, the curvature estimations
are more accurate for the ellipse than for the flower. For either shape, the curvature
values get from any estimator get closer to the ground-truth(Fig. 7) and the absolute
error decreases as the grid steph decreases.

For the ellipse and the flower, at grid steph= 0.01, theMDCA estimatorand the
BC estimatorare better than theGMC estimator. In Fig. 7, their graphs are hardly
confounded with the ground-truth graph.

In Fig. 8, the average absolute error has been plotted against the grid steph.
The CC estimatoris not convergent and has the highest errors. However, the other
estimators (̂κMDCA , κ̂GMC, κ̂BC) appear to be multigrid convergent.

We experimentally observed that theMDCA estimatorhas low absolute errors
that decrease as the grid steph decreases. The convergence speed in average of the
MDCA estimatoris O(h0.5) (even maybeO(hα) with α > 0.5) for the ellipse and
the flower (Fig. 8.b and c) butO(h2) for the circle.

TheGMC estimatorand theBC estimatorhave usually higher errors. TheBC es-
timatorhas lower errors than theMDCA estimatorfor the ellipse and for the flower
at low resolution (when the grid step is decreasing from 1 to 0.3). TheGMC estima-
tor has however always higher errors than theMDCA estimator.

The GMC estimatorand theBC estimatorhave usually a slower convergence
speed:

• respectivelyO(h1.2) andO(h0.6) for the circle (note that theGMC estimatoris
sensitive to the stop criterion of its optimization processwhen errors are small),

• respectivelyO(h0.32) andO(h0.5) for the ellipse,
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Fig. 7 Curvature plots for two shapes digitized at three differentresolutions, computed from
MDCA, GMC, BC estimators.

• O(h0.32) for the flower (but note that the error graph of theBC estimatoris not
straight and further experiments should be done at smaller grid steps to get the
convergence speed).

Eventually theMDCA, GMC, BC estimators appear to be experimentally
multigrid-convergent, but there is no correct theoreticalconvergence results for cur-
vature estimation as far as we know, contrary to the case of tangent estimation (Sec-
tion 4).
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Fig. 8 The average absolute error has been plotted against the gridsteph for the digitization of a
circle in a), an ellipse in b) and a flower in c).
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6 Implementation

In this section, we discuss about implementation details ofboth the geometrical es-
timators presented in the previous sections, and the experimental evaluation frame-
work. All the estimators described in this chapter have beenimplemented in DGtal
[1]. DGtal is an open-source C++ library focusing on the implementation of digital
geometry objects and concepts. For short, it allows to represent images and objects
in n−dimensional digital spaces equipped with both geometricaland topological
tools.

In the context of this chapter, we will only consider the representation and the
analysis of shape in dimension 2. As discussed in the introduction, the input dig-
ital object can be obtained either from an explicit description, from a segmenta-
tion process of an image (iso-level,. . . ), or as the digitization D(X,h) of a con-
tinuous shapeX ∈ X. For the first two cases, DGtal provides mechanisms to con-
struct such digital sets either explicitly or from a contourtracking process. For the
last case, DGtal implements various implicit and parametric continuous shapes for
which some global and local geometrical quantities are known. All such shape im-
plementations are model of a concept ofCEuclideanShapes1 (see Fig. 1 for
an illustration of DGtal Euclidean shapes). A digital object is thus obtained from
a GaussDigitizer parametrized by a model ofCEuclideanShapes and a
grid steph. CEuclideanShapes models will be crucial for multigrid conver-
gence analyses.

As discussed above and whatever the way the input digital object is specified, we
need to access to its geometrical information in various ways:

• As a sequence of grid points, subset ofZ2, e.g.for area and moment descriptors;
• As a representation of its boundary,e.g.for tangent or curvature estimators.

In the latter case, several options exist to define and represent a shape contour.
Most of the options depend on the underlying topological model (Kong’s like digi-
tal topology or cellular topology). Furthermore, depending on the algorithm used to
perform the analysis, one may prefer a sequence of chain codes, a sequence of linels
or a sequence of 4-connected grid points to describe the contour (cf Fig. 9).

To obtain a generic and extensible implementation of contour based estimators,
we have defined aGridCurve structure constructed upon on a topological cellular
model which aims to provide several facets of a shape contour. More precisely,
given the result of the contour tracking process, it provides mechanism (Ranges
andIterators on Ranges) to process the boundary sequence either as a set
of grid points or a set of linels. Hence, a local geometrical estimator on contour, or
more precisely a model ofCLocalGeometricalEstimator, have an interface
containing at least the two following methods:

1 DGtal uses a generic programming paradigm based on conceptsand models of concepts. If a
structure name starts from a capital “C”, we describe a concept.
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(a) (b) (c) (d)

Fig. 9 Different representations of an Euclidean shape digitization: as a set of pixels(a), as a
sequence of 4-connected pixels(b), as a sequence of 1-cell orlinels (c) , as a sequence of grid
point displacements(d).

• void init(double h, ConstIterator & begin,
ConstIterator & end,...): initialize the geometrical estimator
with grid steph on a contour defined between iteratorsbegin andend;

• Quantity eval( ConstIterator & it): evaluate the estimator at the
positionit of the contour and return aQuantity.

In our framework, the typeConstIterator is a template parameter chosen in
the contour iterator types provided inGridCurve.

Similarly, we have a concept ofCGlobalGeometricalEstimator and
models of this concept have aneval() method which returns a unique quantity
for a shape (or subset of it).

Based on models of CEuclideanShapes, we can obtain ex-
pected continuous values usingTrueLocalEstimatorOnPoints and
TrueGlobalEstimatorOnPoints. Since both expected and estimated
values are given by estimators with a consistent interface,it makes the
multigrid comparison very simple. Indeed, it allows to design a generic
CompareLocalEstimators which return a statistic on the difference of
two estimator values.

In the following example, we illustrate the mutligrid euclidean shape construc-
tion and the comparison of three length estimators (RosenProffitt, DSS and MLP).
In this example, we have detailed the overall process: shapeconstruction and dig-
itization, domain and Khalimsky space construction, contour tracking and finally,
evaluation of estimators.

/ / . . . .
/ / h and r a d i u s are parameters here
/ / . . . .
/ / Types
t ypedef Bal l2D<Space> Shape ;
t ypedef Space : : P o i n t P o i n t ;
t ypedef Space : : R ea l P o i n t R ea l P o i n t ;
t ypedef Space : : I n t e g e r I n t e g e r ;
t ypedef HyperRectDomain<Space> Domain ;
t ypedef KhalimskySpaceND<Space : : d imens ion , I n t eg e r> KSpace ;
t ypedef KSpace : : SCel l SCel l ;
t ypedef GridCurve<KSpace>:: Po in t sRange Po in tsRange ;
t ypedef GridCurve<KSpace>::ArrowsRange ArrowsRange ;
t ypedef Po in tsRange : : C o n s t I t e r a t o r C o n s t I t e r a t o r O n P o i n t s ;

/ / Eu c l i d ea n b a l l
Shape aShape ( P o i n t ( 0 ,0 ) , r a d i u s ) ;
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/ / Gauss D i g i t i z a t i o n
G au s s D i g i t i ze r<Space , Shape> d ig ;
d ig . a t t a c h ( aShape ) ;/ / a t t a c h e s t h e shape .
d ig . i n i t ( aShape . getLowerBound ( ) , aShape . getUpperbound ( ) , h ) ;

/ / The domain s i z e i s g i ven by t h e d i g i t i z e r a cco r d i n g t o
/ / t h e window and t h e s t e p .
Domain domain = d ig . getDomain ( ) ;

/ / C rea te c e l l u l a r space
KSpace K;

boo l ok = K. i n i t ( d ig . getLowerBound ( ) , d ig . getUpperBound ( ) ,t rue ) ;
i f ( ! ok )
{

s t d : : c e r r<< ” ”
<< ” e r r o r i n c r e a t i n g KSpace . ”<< s t d : : en d l ;

re turn f a l s e ;
}

t ry {

/ / E x t r a c t s shape boundary
S u r f e l A d j acen cy<KSpace : : d imens ion> SAdj ( t rue ) ;
SCel l b e l = S u r f aces<KSpace>:: f i ndABel ( K, dig , 10000 ) ;

/ / G e t t i n g t h e c o n s e c u t i v e s u r f e l s o f t h e 2D boundary
s t d : : v ec t o r<Po in t> p o i n t s ;
S u r f aces<KSpace>:: t r ack 2 D B o u nda r yP o in t s ( p o i n t s ,

K, SAdj ,
d ig , b e l ) ;

t r a c e . i n f o ( )<< ” # t r a c k i n g . . . ”<< en d l ;

/ / C rea te GridCurve
GridCurve<KSpace> g r i d c u r v e ;
g r i d c u r v e . i n i t F r o mV ec t o r ( p o i n t s ) ;
t r a c e . i n f o ( )<< ” # g r i d curve c r ea t ed , h=” << h<< en d l ;

/ / ranges
ArrowsRange r a = g r i d c u r v e . getArrowsRange ( ) ;
Po in t sRange rp = g r i d c u r v e . g e t P o i n t s R an g e ( ) ;

/ / Th ree l e n g t h e s t i m a t o r s work ing on d i f f e r e n t co n t o u r
/ / r e p r e s e n t a t i o n s

R o s en P r o f f i t t Lo ca l L en g t h E s t i m a t o r< ArrowsRange : : C o n s t I t e r a t o r> R o s e n P r o f f i t t l e n g t h ;
R o s e n P r o f f i t t l e n g t h . i n i t ( h , r a . beg in ( ) , r a . end ( ) , g r i dc u r v e . i s C l o s ed ( ) ) ;

DSSLeng thEst imato r< Po in tsRange : : C o n s t I t e r a t o r> DSSlength ;
DSSlength . i n i t ( h , rp . beg in ( ) , rp . end ( ) , g r i d c u r v e . i s C lo s ed ( ) ) ;

MLPLengthEst imator< Po in tsRange : : C o n s t I t e r a t o r> MLPlength ;
MLPlength . i n i t ( h , rp . beg in ( ) , rp . end ( ) , g r i d c u r v e . i s C lo s ed ( ) ) ;

t r a c e . i n f o ( )<< ” # Es t i ma t i o n s ”<<s t d : : en d l ;
t r a c e . i n f o ( )<< ” #h t r u e R o s e n P r o f f i t t DSS MLP ” <<s t d : : en d l ;
t r a c e . i n f o ( )<< h << ” ” << M PI∗2.0

<< ” ” << R o s e n P r o f f i t t l e n g t h . ev a l ( )
<< ” ” << DSSlength . ev a l ( )
<< ” ” << MLPlength . ev a l ( )
<< s t d : : en d l ;

}ca tch ( I n p u t Ex cep t i o n e )
{

s t d : : c e r r<< ” ”
<< ” e r r o r i n f i n d i n g a b e l . ” << s t d : : en d l ;

re turn f a l s e ;
}

7 Related problems and perspectives

7.1 Geometric estimators along damaged or noisy contours

In real applications, images may have been damaged or acquisition devices may
induce noise in the image data. Furthermore, binarization algorithms and segmen-
tation algorithms may also damage the boundary of the regions or shapes. These
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contours are thus not any more the perfect digitization of “nice” Euclidean shapes
(e.g. shapes inXn−PW−SC), and have parts that are winding where they should be
straight. We will call them hereafternoisy contours(an example is given on Fig. 10
where a kangaroo shape has been damaged by Gaussian noise).

(a) Noise detection (b) Zoom on kangaroo’s back

Fig. 10 Noisy contour and noise detection along it by the method of [28]. The input image has
been damaged by two different Gaussian noises in different regions. The thresholded shape has a
boundary which is damaged in these regions (noisy contour inred). The detector indicates for each
contour point what is the local scale at which this part of thecontour should be analyzed: the scale
or noise level at a point is indicated by the size of the light blue box around it. It is worthy to note
that the noise level is almost everywhere proportionnal to the amount of contour degradation.

In the pattern recognition community, a lot of tools have been developed to ana-
lyze the geometry of noisy contours, especially to detect corner or dominant points
(see for instance [49]). These points are related to curvature information. However,
these tools are not designed for estimating quantitativelythe geometric character-
istics of the contours but rather qualitatively. We only quote here works that give
quantitative geometric information on perfect or noisy contours.

A common way to tackle noise along contours is to filter the contour with a
smoothing kernel. The size of the kernel given by the user is more or less propor-
tional to the amount of damage along the contour. The BC tangent estimator and
the BC curvature estimator are members of this family of techniques [48, 19, 21].
These techniques are efficient when the contour is rather uniformly damaged, but
they smooth indifferently noise and high-curvature parts of the contour (like cor-
ners).

Approaches based on fitting like the LR or ICIPF estimators [70, 7, 43] are also
able to tackle noise along contours, since they tend to find the median or average
polynomial that best approaches locally the data. Again, the window size parameter
is used to suppress at the same time arithmetic effects and noise artefacts. This
parameter is generally set by the user.
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In the digital geometry community, a common technique is to use the so-called
blurred segments[16] instead of digital straight segment. Compared to digital
straight segment whose thickness is always less than 1, blurred segments have a
user-given maximal thickness. The noisy parts of contours are thus ignored when us-
ing a larger thickness. Several estimators just replace standard segments with blurred
segments so as to take into account noisy contours. For instance, the curvature esti-
mator presented in [52] is the noisy variant of the CC estimator. The GMC estimator
also uses blurred segments to handle noisy contours. The thickness is generally set
by the user.

Note that digital estimators based on digital straight segments (like the H0-1GD,
MCMS andλ -MST tangent estimators, or the MDCA curvature estimator) can also
be adapted to noisy contours by subsampling the input contour. For instance, we can
use a 3×3 tile over the input contour so as to remove perturbation no greater than
1 pixel along the contour. However we have yet not run a full set of experiments
so as to know if this approach leads to better estimators thanthe ones quoted in the
preceding paragraphs.

Finally, all these techniques require the determination ofone or several param-
eters in order to process at best noisy contours. This scale or smoothing parameter
must not be too low otherwise damaged parts are considered high-curvature places
or corners, but it must not be too high also in order to preserve features and to have
accurate estimates of geometric information.

If a grey-level input noisy image is available, scale space analysis may provide
information on the amount of noise [18, 31, 9, 24]. They cannot handle directly
noisy contours. For noisy contours, Kerautret and Lachaud [28] have recently pro-
posed a method to automatically detect the meaningful scales of digital contours. It
can give locally along the contour what it is the amount of noise and the first scale at
which the contour should be analyzed (see Fig. 10, and onlinedemonstration [29]).
Their technique relies on the asymptotic properties of maximal digital straight seg-
ments. They have proposed a variant ofλ -MST estimator for noisy contours, which
uses the noise information given by the meaningful scales [30].

7.2 Geometric estimators in 3D and nD

In higher dimensions, several 2D estimators or frameworks can extended. However,
many open problems exist and beside the fact that few multigrid-convergent proofs
exist, a complete experimental multigrid evaluation of curvature estimators for in-
stance has not been done yet on digital surfaces inZ3. In this section, we just give a
brief overview of existing techniques:

• Surface area:to compute the area of a surface inZ3, a first solution is based on
weighted local configurations [69, 45]. The idea is to associated weights to lo-
cal configurations of surface voxels or surfels. Then, givenan object, the surface
area is approximated by summing all weights associated to all configurations de-
fined on the object surface. Similarly to the BLUE estimator,weights are given



Multigrid convergence of discrete geometric estimators 25

by a statistical analysis to minimize surface area error fora given class of shapes.
By deriving results from the length case in dimension 2 [63],surface weighted
configuration estimators can never achieve multigrid convergence. In [47], the
authors use statistical analysis and integral geometry to design a fast estimation
of the surface area. Again, the quality of the estimation is controlled by a param-
eter (number of line probes). Another option is to generalize the discrete normal
vector integration scheme as described in [10, 13]. As detailed in [11], we can
prove that if the normal vector estimation is multigrid convergent, then the in-
tegration of the vector field leading to the surface area estimation is multigrid
convergent as well.

• Normal vector field computation: at a pointx on a smooth surface, the normal
vector atx can be defined as the cross product of first order derivatives at x (tan-
gent) of two curves lying on the surface crossing atx. In a digital context, given a
surface element of a cellular representation of a digital surface, two natural digi-
tal 4-connected curves can be defined by the intersection of the surface with the
two axis planes containing the surfel elementary normal vector. Hence, Lenoir
et al. suggested to compute the normal vector at a surfel as the cross product
of tangent computed on the two 2D digital curves [41]. Following this frame-
work, multigrid convergence can be achieved if the tangent estimator used on the
2D curves is multigrid convergent [11, 36]. The normal vector field of a digital
surface inZn, for arbitraryn, can be computed with a similar approach [37].

• Curvature: For curvature computation on digital surfaces, only few estimators
have been proposed in the digital geometry framework. We cancite Lenoir’s slice
based approach for the mean curvature estimation [42], Gauss map area evalua-
tion for the gaussian curvature [10], techniques based on integral invariants for
both mean and gaussian curvatures [6, 55, 54]. Integral invariant techniques are
definitely relevant in the digital geometry context, even incase of noisy surface.
However, they require a window parameter which could be difficult to set for a
large class of shapes.
In the computational geometry field, several techniques have been proposed to
construct accurate curvature estimators with bounded errors. Usually, bounds are
parametrized by a sampling parameter for a given sampling hypothesis. An ex-
ample of a sampling hypothesis for a smooth surface would be that the sampling
density should be proportional to the curvature. In this context, convergence or
stability of geometric estimators have been proposed as a function of the sam-
pling parameter. In many situations the sampling theorems used in computational
geometry do not match with the specific isotropic behavior ofdigital surfaces. In
[3, 8, 51], estimators are defined on point sets based on Voronoi structures and
the error is given in terms of Hausdorff distance (which is consistent with digi-
tal surfaces). Investigating the links between computational geometry and digital
geometry on this subject is a challenging problem.
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7.3 Current bottlenecks and open problems

As detailed in the previous sections, we can overview current theoretical bottlenecks
in the design of discrete geometric estimators:

• Stability w.r.t. noise: Prior detection of the contour local noise level to be used
as an estimator parameter, or with estimator which are theoretically robust to a
given noise model.

• Estimators of differential quantity of order 2: In our point of view, existing
curvature estimators are not yet satisfactory since eitherno proof of multigrid
convergence exists, or the convergence is controlled by an external parameter
(windows size, Gaussian kernel width, . . . ). It would be interesting, for instance,
to focus on the multigrid behavior of circular arc segment ondigital 2D contours.
Indeed, many proofs related to the length or the tangent estimation are based
on the multigrid behavior of DSS. On digital surfaces and in higher dimension,
we think that a better understanding of links between computational and digital
geometry results would lead to new results in this domain.

Beside these theoretical bottlenecks, complete multigridexperimental evalua-
tions are now mandatory when designing a new discrete estimator. With the help of
both a theoretical methodology (multigrid shape database and error measures) and
opensource libraries (ImaGene [2] or DGtal [1]), we expect to have a complete
and stable experimental framework. An important future work would be to continue
the implementation of existing estimators with comparative studies. In dimension 3,
main bottlenecks are related to efficiency and computational costs. Indeed, in many
Material sciences or Medical imaging applications, we may have to analyse digital
shapes whose size achieves up to 20483. In the implementation of 3D estimators,
several theoretical and technical problems have to be addressed (out-of-core tech-
niques, hierarchical data representation and adaptive algorithms, . . . ).
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