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Abstract: In the field of 3D images, relevant information can be difficult to interpret without further computer-aided
processing. Generally, and this is particularly true in medical imaging, a segmentation process is run and
coupled with a visualization of the delineated structures. Amongst all techniques based on deformable models,
simplex meshes, in particular, present good propensities to handle a large variety of shape alterations altogether
with a fine resolution and stability. However, they may not be well suited to cope satisfyingly with other
related tasks, such as rendering, mechanical simulation or reconstruction from iso-surfaces. As a consequence,
triangle meshes are often preferred. Thus, we propose an accurate method to shift from a model to another,
and conversely. For this, we are taking advantage of the fact that they are topologically duals, turning it into
a natural swap between these two models. Unfortunately, they are not geometrically equivalents, leading
to loss of information and to geometry deterioration when performing the conversion. Therefore, optimal
positions of the vertices in the dual mesh have to be found while avoiding shape degradation. An accurate and
effective transformation technique is described in this paper, where we present a direct method to perform an
appropriate interpolation of a simplex mesh to obtain its dual, and/or vice-versa. This original method is based
on the distance minimization between the local tangent planes of the mesh and vertices of each face. Finally,
probing resulting mesh conversions in both directions are commented.

1 INTRODUCTION

Deformable model techniques are widely used in im-
age segmentation tasks. Among these models, it is
indubitable that simplex meshes are valuable candi-
dates (Delingette, 1999), for their favorable charac-
teristics in this type of modeling, as its easy control
and convenient way to model internal forces. With
this type of meshes, as with triangulations, any topol-
ogy can be described. Furthermore, simplex meshes
and triangulations are topologically duals, and this
allows us to naturally obtain a simplex mesh by ap-
plying a dual operation to the triangulation, and vice-
versa. On the other hand, if very efficient algorithms
exist to generate triangulations from a given geome-
try (Treece et al., 1999; Lorensen and Cline, 1987),
this can be more arduous using simplex meshes. So,
in some cases it could be appropriate to generate a
preliminary triangulation (from an isosurface, for ex-
ample), and next to transform this latter into a simplex
mesh, with the intention of controlling the deforma-

tion of the model (Xu et al., 1999).
Moreover, there are some applications for which

simplex meshes are not suitable, and thus triangulated
meshes are more adapted. For example, there are
different meshing methods to generate inner tetrahe-
dral or hexahedral elements (Owen, 1998; Si, 2010),
but in general they need as input a surface repre-
sentation that clearly defines the geometry, with pla-
nar faces and without self-intersections between el-
ements. Piecewise linear complex (PLC) (Barber
et al., 1996) and triangulation are eligible. How-
ever, simplex meshes do not meet these requirements
since faces are not necessarily planar. One possibility
would be to transform the simplex mesh into a trian-
gulation before creating the volumetric mesh. Ren-
dering and calculation of area, may be other tasks
where it is preferable to handle triangulations instead
of simplex meshes.

Triangulations and simplex meshes are topo-
logically duals, but not geometrically equiva-
lents (Delingette, 1999). No homeomorphism can be



built between the set of coordinates of a triangulation
and the one of its dual simplex mesh. Therefore, there
is often loss of information and geometry deteriora-
tion whenever a transformation between these meshes
takes place. Numerous algorithms exist to perform
what is called remeshing (Alliez et al., 2008). Never-
theless, they aim in general to build or adapt triangle
meshes on cloud points, but they are not suited to deal
with the particular case of simplex meshes, and even
less to convert triangulations into simplex meshes.

Currently, the most common way to perform this
conversion is to determine the set of vertices for the
final mesh as the gravity center of each face of the
initial mesh. This technique is very fast, but unfortu-
nately in this case, mesh smoothing is generally very
high; original shape (curvature) and volume is far to
be accurately respected. An alternative is to com-
pute the gravity center of each face and next insert
this point in the mesh before triangulation. Although
this method reduces the alteration in the geometry,
the resulting mesh is not dual to the initial simplex
mesh, and moreover, the number of vertices will rise
considerably. It is also possible to consider only the
face vertices, but the resulting mesh will either not be
topologically dual. Moreover, the converse process
to obtain a simplex mesh from a triangulation is not
straightforward. In (de Putter et al., 2006), the authors
show the importance of such a transformation, espe-
cially in medical applications where simplex meshes
are of great use in the creation of the computational
mesh based on the segmented geometry. They pro-
pose an iterative curvature correction algorithm for
the dual triangulation of a two-simplex mesh. Their
solution provide optimal error distribution between
the two dual surfaces while preserving the geometry
of the mesh, but at the price of an iterative global min-
imization over the whole meshes.

For all these reasons, it is essential to have an ef-
ficient method to perform transformations between
these two types of meshes. In this paper, a new
technique is presented, achieving reasonable compu-
tation cost and minimal loss of geometric informa-
tion. From a geometric point of view, the problem
can be reduced to find an interpolation of the center
of each face, and to build the dual mesh accordingly
to these points. Subdivision, variational surfaces, tra-
ditional splines or implicit surfaces are amongst the
most used techniques to find interpolating points in
a mesh. As the requirement here is to get a simple
and straightforward method, we propose to use a geo-
metric interpolation, based on the distance to the tan-
gent planes of the vertices of each face. A similar
measure has been successfully used in (Ronfard and
Rossignac, 1996) to compute a local geometric er-

ror based on the maximal distance to a set of planes,
in order to perform triangular mesh simplifications.
An equivalent measure has been employed, using this
time a summation to obtain a quadratic error (Garland
and Heckbert, 1997; Heckbert and Garland, 1999). In
a more recent work, a method for refining triangula-
tions has been developed (Yang, 2005). It is based on
face splitting and interpolation using distance mini-
mization over the neighboring triangles planes. Here,
it is worth to point out that our global objective is to
perform a transformation between meshes, and not to
refine them. However, we mainly got inspiration from
this last work, but in our case the error measurement
is applied to find the vertices of a dual mesh, to per-
mit conversion between simplex meshes and triangu-
lations, and conversely.

The paper is organized as follows. In section 2,
we present essential background on simplex meshes,
their characteristics and relationship with triangula-
tions. The main part concerning the interpolation
method used to find the dual mesh is explained in sec-
tion 3. Application of this method to swap between
meshes is shown in sections 4 and 5, where details
can be found for each swap direction. Finally, some
results are exhibited in section 6, followed by conclu-
sions in 7.

2 TRIANGULATION VS.
SIMPLEX MESH

As stated in the introduction, a simplex mesh can be
seen as the topological dual of a triangulation, each
vertex of the simplex mesh corresponding to a trian-
gle in the dual triangulation (Fig. 1). However, sim-
plex meshes and triangulations are not geometrically
duals. Their geometry is determined by the coordi-
nates of their vertices; nevertheless, the number of
vertices is different between a simplex meshe VS and
a triangulation VT . The Euler’s characteristic for a tri-
angulation without holes and its dual simplex mesh
states:

VT −
VS

2
= 2(1−g), (1)

where g is the genus of the mesh. As the sets of coor-
dinates have different dimensions for a triangulation
and its dual simplex mesh, no homeomorphism can
be constructed between them.

Simplex meshes are privileged candidates to be
used in segmentation methods based on deformable
models. Each vertex of a simplex mesh has three
neighbors pN1(i), pN2(i), pN3(i); between them, a re-
stricted number of entities is defined, the simplex an-
gle and the metric parameters. The simplex angle ρi



Figure 1: Simplex meshes and triangulations are topolog-
ical but not geometrical duals. White dots: triangulation
vertices ; Black dots: simplex mesh vertices.

is defined at each vertex pi by means of its neighbor-
hood. The normal vector

−→
Ni to the plane defined by

the three neighbors, the circle of center Ci and radius
ri defined by these neighbors, and the sphere of cen-
ter Oi and radius Ri defined by the four vertices can
easily be computed. Thus, the simplex angle can be
defined as (Fig.2):

ρ ∈ [−π,π]

sin(ρi) =
ri

Ri
sign

(−−−−→pi pN1(i) ·
−→
Ni

)
cos(ρi) =

‖OiCi‖
Ri

sign
(−−→

OiCi ·
−→
Ni

)
(2)

The simplex angle can be considered as a mea-
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Figure 2: a) Tetrahedron formed by vertex pi and its 3
neighbors pN1(i), pN2(i), pN3(i), with the circle defined by
the neighbors, and the sphere containing those four vertices.
b) Projection on a plane passing through Oi,Ci and pi, re-
vealing the simplex angle.

sure of the height of vertex pi with respect to the
plane defined by its neighbors. The metric parame-
ters ε1i,ε2i,ε3i describe the relative position of a ver-
tex according to its neighbors. The position of the
projection p⊥i of vertex pi on the plane defined by its
neighbors (Fig. 2) can be expressed as:

p⊥i = ε1i pN1(i)+ ε2i pN2(i)+ ε3i pN3(i)

ε1i + ε2i + ε3i = 1 (3)

To perform transformations in any direction be-
tween these two types of dual meshes, we have to find
an associated vertex qu of the dual mesh M2 for each
face fu of the initial mesh M1. When dealing with
triangulations, faces are triangles; and conversely for
simplex meshes, faces are polygons whose vertices
are generally not coplanar. The resulting mesh M2
should have a regular shape and preserve the geome-
try defined by M1, what is far from being straightfor-
ward. For trying to maintain the geometry, we can im-
pose that qu remains close to the tangent planes πi of
each vertex pi defining the face fu. Constraining M2
to have a regular shape, can be achieved by choosing
qu close to the center of the face fu, i.e. minimize the
distance between qu and all pi. Therefore, we must
minimize the distance between a point qu and a set
of points and planes. Accordingly, the purpose of the
present method is to compensate the lack of existing
techniques on these aspects.

3 INTERPOLATION BASED ON
TANGENT PLANES

The equation of a plane can be denoted as A · p = 0,
where A = [a,b,c,d] and p = [xp,yp,zp,1]T is a point
lying on this plane. The coefficients a,b,c are the
components of the unit vector

−→
N normal to the plane,

and d =−−→N · p. For q an arbitrary point in the space,
|A ·q| is the distance to the plane.

Considering now a set of planes πi represented
by Ai · p = 0 (i = 1, . . . ,L), the distance between any
point q = [x,y,z,1]T to each plane πi is |Ai ·q|. On
the other hand, let’s consider a set of points p j ( j =
1, . . . ,M). If we want to find the point q minimizing
its distance to planes πi and points p j, the function to
be considered follows:

D(q) =
L

∑
i=1

αi |Ai ·q|2 +
M

∑
j=1

β j
∣∣q− p j

∣∣2 (4)

where αi and β j are weights for the distance to the
planes (in order to respect geometry and curvature)
and points (controlling shape regularity), respectively.
Equation (4) can be rewritten in matrix form as:

D(q) = qT Qq (5)
where

Q =
L

∑
i=1

αiAT
i Ai +

M

∑
j=1

β jQ j (6)

and

Q j =


1 0 0 −x j
0 1 0 −y j
0 0 1 −z j
−x j −y j −z j x2

j + y2
j + z2

j

 (7)



Since Q j and AT
i Ai are symmetric matrices, then

Q is also symmetric and can be written as:

Q =

q11 q12 q13 q14
q12 q22 q23 q24
q13 q23 q33 q34
q14 q24 q34 q44

 (8)

To minimize the quadratic form of eq. (5), let’s solve
the following system of equations:

∂D(q)
∂x

= 0,
∂D(q)

∂y
= 0,

∂D(q)
∂z

= 0. (9)

Taking the partial derivatives of:

qT Qq = q11x2 +2q12xy+2q13xz+2q14x+q22y2

+2q23yx+2q24y+q33z2 +2q34z+q44,
(10)

it can be noticed that the system in eq. (9) can be
rewritten in a matrix form as:q11 q12 q13 q14

q12 q22 q23 q24
q13 q23 q33 q34
0 0 0 1


x

y
z
1

=

0
0
0
1

 (11)

Finally, the solution of eq. (11) follows:x
y
z

=

q11 q12 q13
q12 q12 q23
q13 q23 q33

−1−q14
−q24
−q34

 (12)

where q = [x,y,z]T .

Weights calculation.

The solution of equation (4) can be understood as an
affine combination of the generalized intersection of
all planes πi (first term) and the average of all points
p j (second term). This affine combination is con-
trolled by the weights αi and βi. For example, let’s
consider points p1, p2 and planes π1,π2 as shown on
Figure 3. Planes intersect at point pα, and the aver-
age of the points (for βi = β) is pβ. The weights αi
should reflect the importance of each plane to the in-
terpolation; and this importance will be estimated in
a different way for triangulations or simplex meshes,
as it will be detailed in the next sections.

The weights βi can be calculated using an ana-
logue method to the one used for mesh refinement
in (Yang, 2005). We are looking for an interpolated
point q at the center of each face. Assuming that
points pi define a face, and

−→
Ni are the unit normal

vectors to the mesh at pi, then we can estimate the
position for q as:

q̄ = cu +w
L

∑
i=1

((pi− cu) ·
−→
Ni)
−→
Ni (13)

π1

���⃗ � ���⃗ �

π2p1 p2

pα

pβ
Figure 3: Solution of equation (4) as the affine combination
of the generalized intersection of planes πi (pα) and the av-
erage of all points pi (pβ, here for βi = β).

where w is a free positive parameter controlling the
smoothness of the interpolation, and where:

cu =
1
L

L

∑
i=1

pi. (14)

Replacing q by its estimate q̄ = [x̄, ȳ, z̄]T in eq. (11), it
follows:q11 q12 q13 q14

q12 q22 q23 q24
q13 q23 q33 q34
0 0 0 1


x̄

ȳ
z̄
1

=

δx
δy
δz
1

 , (15)

Now, the weights βi that minimize the residues δ

should be found, such that q̄ approximates the solu-
tion of equation (15) for those βi. Because q should
lie close to the face center, the same weight can be
assigned to all points, i.e. βi = β. Using the original
planes to express the residues δ, it follows:

δx =
L

∑
i=1

αiai (Ai · q̄)+β

(
Lx̄−

L

∑
i=1

xi

)

δy =
L

∑
i=1

αibi (Ai · q̄)+β

(
Lȳ−

L

∑
i=1

yi

)

δz =
L

∑
i=1

αici (Ai · q̄)+β

(
Lz̄−

L

∑
i=1

zi

)
(16)

Then, finding the weight β can be achieved by
minimizing δ2

x +δ2
y +δ2

z . The solution of ∂(δ2
x +δ2

y +

δ2
z )/∂β = 0 leads to:

β =
T B
B2 (17)

where:

T =
L

∑
i=1

αi(Ai · q̄)
−→
Ni ,

and B =
L

∑
i=1

(pi)−Lq̄ (18)

4 FROM TRIANGULATION TO
SIMPLEX SURFACE MESH

In this section, we will see the first case, i.e. convert-
ing a triangulation into a simplex surface mesh. In



this case, an appropriate vertex qu on the new simplex
mesh must be calculated for each triangular face tu.
Then, we need information for each triangle tu about
the curvature of the mesh. Let us consider the tangent
planes to the vertices pi (i = 1,2,3) composing trian-
gle tu (Fig. reffig:schemeTri); these planes πi can be
written as Ai · p= 0 as defined previously. The normal
vectors that define these planes can be calculated as:

−→
Ni =

∑
Li
k=1 φk

−→
Nk∥∥∥∑

Li
k=1 φk

−→
Nk

∥∥∥ , (19)

where
−→
Nk (k = 1, . . . ,Li) are the normals of the trian-

gles tk to which the vertex pi belongs, and φk is the
angle of the triangle tk at vertex pi (Fig. 4).

To approximate the surface, the distance between
the new vertex qu and planes πi is minimized. Again,
qu should not lie too far from the center of triangle tu
to preserve a regular shape, therefore qu should min-
imize its distance to vertices pi. As aforementioned,
the direct minimization of eq. (4) will provide us with
an appropriate qu.

tu
p2

p1

p3

���⃗ �

���⃗ �

���⃗ �

π1

π2

π3

φk
a1

Figure 4: Scheme of triangle tu, planes and vertices used to
find vertex qu of the dual simplex mesh.

Each weight αi computation is based on the area ai
corresponding to the sum of the areas of all triangles
tk sharing pi (Fig. 4):

αi =
ai

∑
3
j=1 a j

. (20)

This way, the distance to each plane is weighted
according to the area of triangles that were used to cal-
culate it. The weights βi are calculated using the same
technique as described in section 3, equation (17).

5 FROM SIMPLEX TO
TRIANGULATION SURFACE
MESH

In this section, we are dealing now with the converse
case. A vertex qu of the triangulation must be calcu-

lated for each face fu of the simplex mesh. However,
faces of a simplex mesh do not have a fixed num-
ber of vertices pi (i = 1, . . . ,Nu), and moreover they
are generally not coplanar. The distance between qu
and the planes πi tangent to the vertices pi, is mini-
mized to maintain the geometry of the mesh. These
planes are defined by the vertices pi and the normal
vector at each vertex. In a simplex mesh, normals
are defined by the plane containing the three neigh-
bors pN1(i), pN2(i), pN3(i) (Fig. 2) of the considered
vertex pi (Delingette, 1999). As in the inverse case,
qu should lie close to the center of the face fu to pre-
serve a regular shape. Figure 5 illustrates these planes
and vertices. As previously, eq. (4) can be used to cal-
culate qu by minimizing the distance to planes πi and
vertices pi.

fu

p2

p3

p4
���⃗ �

���⃗ �

���⃗ �

���⃗ �
���⃗ 	

π1

π2

π3

π4π5

p1

p5

Figure 5: Scheme of face fu, planes and vertices used to
find vertex qu of the dual triangulation.

The surface of the circle defined by the neighbors
of each vertex pi is a good estimation of the impor-
tance the plane πi has within the mesh, therefore its
radius ri is used to calculate the weights αi (Fig. 2(a)).
It follows:

αi =
r2

i

∑
Nu
j=1 r2

j

(21)

Again, in this case, weights βi are calculated us-
ing the same technique described in section 3, equa-
tion (17).

6 RESULTS

When performing a transformation between simplex
meshes and triangulations (and conversely), a similar
mesh to the original one is expected, in order to result
in a minimal geometric perturbation. To measure the
quality of the transformations in both directions, the
set of successive transformations (T1 → S1 → T2 →
·· · → Tk → Sk → Tk+1 → ··· → TN → SN) is per-
formed, where Tk is a triangulation and Sk a simplex
mesh, with (k = 1, . . . ,N). It is obvious that such back



and forth conversion will never be required by any
application, but successive transformations permit to
magnify, and thus pointing out, incorrect behaviors of
a technique.

The proposed technique has been compared to the
most commonly used at this time, i.e. using the Cen-
ter of Mass of each face to compute the corresponding
vertex of the dual mesh (Delingette, 1999). Since all
meshes Tk have the same number of vertices, idem
as do the Sk between them, we have considered that
the most appropriate measure was a simple vertex-to-
vertex distance computation after each transformation
cycle. This way, each triangulation is compared at
each step to the initial triangulation; and correspond-
ingly, each simplex meshes is considered accordingly
to the first simplex mesh obtained.

Figure 6 shows the distance graph measured
for the surface of cerebral ventricles (1360 ver-
tices/simplex faces, 2728 triangles/simplex vertices),
for 150 iterations. The vertex-to-vertex mean dis-
tances are expressed as a percentage of the bounding
box diagonal of T1 or S1, respectively. Curve 6(a)
shows results using the Center of Mass technique,
while 6(b) draws results with our original technique.
If we compare the results for a set of meshes, the Cen-
ter of Mass technique produces high degeneration in
some parts of the mesh (Fig. 7(b), (d) and (f)), los-
ing most of the details present in the initial geometry.
However, using an interpolation based on the tangent
planes as presented in this article, it can be clearly
seen on Fig. 7(c), (e) and (g), that the initial geometry
is much better preserved.

Figure 6: Curves of the mean error of the successive trans-
formations of a cerebral ventricles surface (a) Transforma-
tion based on the faces center of mass. (b) Interpolation
based on tangent planes.

As a complementary result, the Hausdorff dis-
tance was measured as well between initial and
transformed meshes by using the Metro tool that
adopts a surface sampling approach (Cignoni et al.,
1998). The Prism (92 vertices, 180 triangles; from
AIM@SHAPE), Block(2132 vertices, 4272 triangles;
from AIM@SHAPE), Horse (48485 vertices, 96966

(a)

(b) (c)

(d) (e)

(f) (g)
Figure 7: Cerebral ventricles mesh after successive trans-
formations between simplex (lighter) mesh and triangula-
tion (darker). Left: meshes obtained using the faces’ mass
centers, after (b) 5, (d) 15 and (f) 50 cycles. Right: meshes
obtained using our technique, after (c) 5, (e) 15 and (g) 50
cycles.

triangles; from Cyberware, Inc), and Bunny (34834
vertices, 69451 triangles; from Stanford 3D Scanning
Repository) meshes have been considered; and the
distance was measured after a cycle of transforma-
tions, i.e. swapping back and forth to simplex mesh
and triangulation (once again, this is totally artificial
and is achieved for testing purposes only, considering
that our method is local and direct, and that gener-
ally a single one-way conversion is wanted). Figure 8
shows the initial meshes with coloration according to
their distance to the resulting one, and Table 1 shows
the well known ratio between measured distances and
the bounding box diagonal of the original mesh. The
mean and Root Mean Square (RMS) distances be-
tween two surfaces M1 and M2 are defined as:

Mean dist.(M1,M2) =
1
|M1|

∫
p∈M1

HD(p,M2)ds

RMS dist.(M1,M2) =

√
1
|M1|

∫
p∈M1

HD(p,M2)2ds,

where HD(p,M) is the Hausdorff distance between
point p and surface M, and |M| its area. As it can
be guessed, in both cases, the main error is concen-
trated in high curvature areas. But, as previously seen,
the error dramatically decreases with our technique
(Fig. 8, right column) compared to the Center of Mass



(left column).

Figure 9 shows a comparison between the initial
(darker) and the resulting (lighter) meshes, using both
methods. Errors are significantly lower in our case (b)
than for the Center of Mass technique (a). Moreover,
the resulting mesh tends to be inside (resp. outside)
the initial mesh in areas with positive (resp. negative)
curvature for the classic technique, while our tech-
nique avoids this construction artifact, thanks to the
introduction of an appropriate weighting between el-
ement regularity and surface smoothness. Moreover,
from examining equation (4), the question of the topo-
logical validity of the resulting mesh may arise. The
solution is an equilibrium between shape preservation
and mesh smoothing, that behaves properly (i.e. the
point lays inside the triangle). However, for extreme
cases like spiky meshes with very high curvature ar-
eas, some additional feature preserving process may
be required.

The computation time was multiplied by approxi-
mately 30 with our method; e.g. the computation time
for the prism mesh was 7 milliseconds with the cen-
ter of mass and 270 milliseconds with our method1.
However, our method is direct and performed locally
for each vertex, thus computational time is linear ac-
cording to the number of vertices of the mesh. And
from the results we obtain, we believe it is worth pay-
ing an extra (but limited) amount of computation to
drastically improve the final quality of the dual mesh.

Table 1: Hausdorff distances.

Center Distance Gain
of Mass to Planes [%]

min 0,003537 0,000016 99,54
Prism max 0.060099 0.037205 38.09
Mesh mean 0.033701 0.014088 58.20

RMS 0.036620 0,018715 48,89
min 0.0 0.0 0.0

Block max 0.019153 0.014321 25.23
Mesh mean 0.002397 0.001820 24.07

RMS 0.003855 0.002840 26.34
min 0.0 0.0 0.0

Horse max 0.004596 0.003873 15.74
Mesh mean 0.000126 0.000047 62.50

RMS 0.000205 0.000107 48.08
min 0.0 0.0 0.0

Bunny max 0.003321 0.002761 16.85
Mesh mean 0.000220 0.000096 56.36

RMS 0.000324 0.000160 50.62

1developed in Python Language on AMD Athlon 62x2
Dual, 2GHz, 1Gb RAM

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 8: Prism, Block, Horse and Bunny meshes colored
according to the Hausdorff distance after a cycle of trans-
formations. 1) Left, subfigures a), c), e) and g) using Cen-
ter of Mass. 2) Right, subfigures b), d), f) and h) using our
method based on Distance to the tangent planes.

7 CONCLUSION AND
DISCUSSION

We have presented a method to carry out transforma-
tions between triangulations and simplex meshes, and
vice-versa. Compared to the ones proposed in the lit-



(a) (b)
Figure 9: Comparison between the bunny original mesh
(darker) and after a cycle of transformations (lighter). (a)
Using Center of Mass. (b) Using our distance to the tangent
planes.

erature, our method is straightforward and does not
require any iteration. It is intuitively based on the in-
terpolation of the initial mesh to find the correspond-
ing vertices of the dual mesh. The interpolation is
based on a direct and local minimization of the dis-
tance to tangent planes, and vertices of each face. Our
transformation technique was compared to the most
frequently used method, which is based on placing the
dual vertices at the center of mass of the initial faces,
and the weaknesses of this latter have been illustrated.
The performance of the proposed method was mea-
sured using a vertex-to-vertex distance between both
triangulations and simplex meshes, after performing
a chain of successive transformations. Moreover, we
measured the Hausdorff distance between meshes af-
ter performing a cycle of transformations, i.e. after
carrying out a transformation to simplex mesh and
back to triangulation. The performance of our method
was more than satisfactory, providing a more than sig-
nificant reduction of the error, of nearly 50%, at rea-
sonable linear time. Thus, our method has proven to
be adequate to be used in any application requiring
topological mesh transformation while preserving ge-
ometry, and without increasing complexity.
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