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1 Université de Lyon, CNRS
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Abstract. Sales forecasting systems are used by enterprise managers
and executives to better understand the market trends and prepare ap-
propriate business plans. These decision support systems usually use a
data warehouse to store data and OLAP tools to visualize query results.
A specific feature of sales forecasting systems regarding future predictions
modification is backward propagation of updates, which is the compu-
tation of the impact of modifications on summaries over base data. In
Data warehouses domain, some methods propagate updates in hierar-
chies when data sources are subject to modifications. However, very few
works have been performed so far regarding update propagation from
summaries to data sources. This paper proposes an algorithm named
PAM algorithm, to efficiently propagate modifications on summaries.
Experiments on an operational application (Anticipeo3) have been per-
formed to validate our algorithm.
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1 Introduction

A forecasting system is a set of techniques or tools mainly used for analysis of
historical data, selection of most appropriate modeling structure, model vali-
dation, development of forecasts, and monitoring and adjustment of forecasts4.
The most frequently used forecasting systems relate to domains like weather,
traffic or sales.
A sales forecasting system (SFS), also called a business forecasting system is a
kind of forecasting system allowing achievable sales revenue, based on historical

? Research partially supported by the French Agency ANRT (www.anrt.asso.fr) and
by Anticipeo (www.anticipeo.com).

3 See http://www.anticipeo.com
4 See http://www.businessdictionary.com/definition/forecasting-system.html.



sales data, analysis of market surveys and trends, and salespersons’ estimates5.
To be effective, a SFS must adhere to some fundamental principles such as the
use of a suite of time-series techniques [12].
The basic functionalities a SFS supports, are: computation, visualization and
modification. The first functionality, computation of forecasts, uses specific meth-
ods (typically statistical models) to derive sales forecasts. Several predictive
methods have been introduced in the domain of statistics (see, e.g., [10][11]).
The second functionality, visualization of computed forecasts, uses OLAP (on-
line analytical processing) tools to visualize data stored in a data warehouse
(DW). The visualization methods are investigated, especially by resorting to
“roll-up” and “drill-down” operators of OLAP or reporting tools of BI (business
intelligence) (see, e.g., [8][5][13]). However, the third functionality, modification
of computed forecasts during visualization, is a specific problem. In SFSs, source
data are composed of historical data and predictive data while predictive data
are not as stable as traditional source data that we employ in a traditional
DW. Experienced salespersons and sales managers could make some modifica-
tions to adjust computed forecasts to some specific situations, e.g., occasional
offers. These adjustments occur on summarized data and should be propagated
to source data (facts and forecasts) and then to other summarized data. Some
approaches dealing with view maintenance in OLAP were proposed. Some of
them focus on the evolution of multidimensional structure (see, e.g., [1][9]) and
others focus on the optimization of OLAP operators such as pivot and unpivot
(see, e.g., [3]). Approaches to view maintenance in DWs were also investigated.
They concern combined view updates (see, e.g. [14]), multi-view consistency over
distributed data sources (e.g., [2]) and many others. The main context of these
approaches is the propagation of source updates to materialized views. To the
best of our knowledge, the problem of updating summaries and computing the
effect on row data has not been investigated so far. The motivating case study
we consider is a real sales forecasting system called Anticipeo. In this applica-
tion, we are facing the optimization problem regarding update propagation from
summarized data to base data and to other summarized data.
The rest of this paper is organized as follows : Section 2 defines the sales fore-
casts modification problem. Section 3 discusses the current and ad-hoc solutions
to support this issue. In Section 4, we describe a novel algorithm based on intel-
ligent exploitation of dimension-hierarchies. Section 5 describes the evaluation
and the experimental results. We conclude in Section 6.

2 Problem Statement and Motivations

To clearly define our problem, we first review the use of dimensions (and hier-
archies) and the basic data schema by visualization tools of OLAP systems [4].
OLAP systems employ multidimensional data models to structure “raw” data
into multidimensional structures in which each data entry is shaped into a fact
with associated measure(s) and descriptive dimensions that characterize the fact.

5 See http://www.businessdictionary.com/definition/sales-forecast.html.



Fig. 1. Example of dimension-hierarchies and fact tables

The values within a dimension can be further organized in a containment type
hierarchy to support multiple granularities. In our case, we are interested in
quantitative measures, not qualitative measures.
In the example shown Fig. 1, we present the data model in a sales forecast-
ing system. This data model is based on one fact table with three measures:
turnover, quantity and price; and three different dimensions: customer, product
and time. Each dimension has its hierarchies to describe the organization of data.
Customer dimension has 4 hierarchies, product dimension has 4 hierarchies and
time dimension has 3 hierarchies. For instance, the second hierarchy of customer
dimension is a geographical hierarchy. Customers are grouped by city for level 1,
by department for level 2 and by country for level 3. Base sales are aggregated
on each level according to this geographical organization when one analyzes the
sales through this hierarchy.
Regarding the visualization, the calculation of aggregated information needs to
be performed on the fly. OLAP systems employ materialized views or fictive in-
formation to avoid extra response time. In the example of sales, fictive customers
and fictive products are added to represent elements in superior hierarchy level,
such as the creation of a fictive customer for the city of Lyon, a second fictive cus-
tomer for the department Rhône and a third one for the country France. Thus,
the system has three new entries in the customer dimension and accordingly
some aggregated sales in the fact table regarding these newly created customers.
Finally, all elements of every hierarchy level from every dimension are aggregated
and added to the dimension and fact tables. This pre-calculation guarantees an
immediate access to any direct aggregated information while users perform vi-
sualization demands.

Regarding forecasting systems, the visualization is not the last operation as in
other OLAP systems. The sales forecasts produced by a system are a first ver-
sion which are reviewed by experienced salespersons. Salespersons check these
automatically generated sales forecasts, take into consideration some issues not
considered by the system (e.g. promotional offers) and perform some necessary
modifications. In other cases, salespersons can also perform some modifications



Fig. 2. Example of data modification on an aggregated level

on summaries in order to simulate a new marketing target. This update taking
place on an aggregated level constitutes the major feature of sales forecasting
systems. Compared to classical OLAP systems in which source data are consid-
ered as static, data in sales forecasting systems can be modified many times to
obtain a final result.
Hence, sales forecasting systems need to have the ability to quickly react to
data modification on an aggregated level. Fig. 2 is an example to show how an
aggregation-level modification impacts all the data.
In this example and for the sake of simplicity, we consider only the first two
hierarchies respectively from customer dimension and product dimension of the
previous data model (see Fig. 1). In the fact table, we group all the tuples into 10
sets: named from a to j (For the following, these sets are named “base tuple”).
Aggregates at superior hierarchical levels are presented by rectangles including
the composing base tuples and are formalized by the function α with the com-
posing base tuples in parameters: α(x,y,...). For instance, the circled rectangle,
or the aggregate α(a,i,j) on level 2 of hierarchy 2 of the customer dimension
containing aij means that the result of this aggregate is generated from the base
tuples aij. In this specific case, the result of the aggregate α(a,i,j) is the sum
of sales: a, i and j. Other aggregates are generated and presented in the same
manner. The root rectangle of every hierarchy represents all the sales.
Figure 2 shows the underlying data structure when the system presents the pre-
diction result to sales managers. Sales managers analyze the sales and then decide
to correct the sales of the aggregate α(a,i,j) (i.e. to evaluate beforehand the im-
pact of a strategical or tactical move). Let us see the impact of this modification.
As the aggregate α(a,i,j) is generated from a, i and j, once its result is corrected,
the results of the three tuples should be afterwards corrected. Meanwhile, these
three tuples are also the base tuples which constitute other aggregates in other
hierarchies of all dimensions. All aggregates containing any of these three tuples
in its composition should be corrected as well. The aggregates impacted by the
modification on the aggregate α(a,i,j) are darkened in Fig. 2.



Sales managers may perform the modifications many times to obtain a satisfy-
ing result. Sales forecasting systems should provide a short delay between the
modification and the visualization of modified data. Hence, the problem we need
to deal with is how to efficiently update aggregated data through a dimension-
hierarchy structure.

3 Current Solution

A current solution consists in identifying approaches to similar problems and
builds on the implemented solutions. In this system, methods to calculate the
aggregates are well defined. The steps of the current solution which recomputes
everything are as follows:

1. calculate the base tuples wrt the modification and rules,
2. recompute all the aggregates.

To illustrate this process, consider the example shown Fig. 2. The actual result
of the aggregate α(a,i,j) is 500 000 euros, but the sales manager has a new
marketing plan and (s)he estimates the sales can achieve 600 000 euros. Then
(s)he does this modification which is then processed as follows:

Step 1: calculation of modified base tuples
The example in Fig. 2 indicates that the result of the aggregate α(a,i,j) is com-
posed of three tuples: a, i and j ; suppose that the distribution of sales is re-
spectively 100 000 euros, 200 000 euros and 200 000 euros for the three tuples.
When the sales of the aggregate aij raise to 600 000 euros, the modification is
spread over these tuples with respect to the weight of every tuple according to
the company’s previously defined rules; the weight in this case is the actual sales.
For a, i and j, their weights are respective 100 000, 200 000 and 200 000 (i.e.
1:2:2). The formula to calculate corrected result for a tuple t is

evalα,T (t) = val(t) + (val′(α, T )− val(α, T )) ∗ weight(t)∑
t′∈T

weight(t′)

where α is an aggregation operator, T is a set of tuples, val returns current value
of a tuple or an aggregate and val′ returns new value of a tuple or an aggregate.
The corrected results for T={a,i,j} are then:
evalα,T (a) = 100000 + (600000− 500000) ∗ 1

1+2+2 = 120000

evalα,T (i) = 200000 + (600000− 500000) ∗ 2
1+2+2 = 240000

evalα,T (j) = 200000 + (600000− 500000) ∗ 2
1+2+2 = 240000

Step 2: recalculation of aggregated information
The second step consists in recomputing the aggregates on higher levels. We
follow the same process as when the aggregates are created using the hierarchy
dependencies. For instance, the aggregate α(a,c,d) is an aggregate of the base tu-
ples a, c and d ; so its new result is calculated by summing the sales of a, c and d.

Following this straightforward solution, we can regenerate all the hierarchies of
the whole schema with updated data.



4 Update Propagation Algorithm

The current solution advocates the calculation of all the aggregates of all the
hierarchies. However, this solution does some useless work. If we closely look at
the recomputed aggregates in Fig. 2, only the dark ones are concerned with the
modification and need to be updated, that is, 18 aggregates out of 32. Hence,
the current solution leads to the calculation of 14 aggregates in vain. The key
idea is thus to be able to identify and recompute only the concerned elements.
By considering the dependencies between aggregates and base tuples, we can
identify the exact aggregates to modify and hence avoid useless work.
Another drawback with the current solution is its heavy recomputing procedure.
Operations of removing and adding aggregates demand heavy maintenance of
index tables and physical storage. Nevertheless, our approach can keep the ag-
gregates at their logical and physical location and avoid extra effort.
To summarize, our approach follows the following steps:

1. retrieval of participating tuples (from the fact table) to the aggregate
2. creation of a temporary table for the base tuples to be updated

and calculation of the value difference for every base tuple
3. update of impacted base tuples
4. identification of impacted aggregates
5. update of impacted aggregates with the value differences of base tuples

The algorithm for the update propagation through a dimension-hierarchy archi-
tecture is shown Table 1. Line 1 to line 4 identify the base tuples involved in

Algorithm PAM (Propagation of Aggregate Modification)

Input: Schema S, aggregate X, its actual result AR and its objective result OR

Output: An updated schema S’ of all hierarchies

Algorithm:

1: Calculate the modification of the aggregate X: δ = OR - AR

2: Retrieve participating base tuples of X : CX = {x1, x2, ..., xn}
3: Create a temporary table: ∆X = CX

4: Calculate the differences for every base tuple: ∀xi ∈ ∆X: δi = δ * weight coeffi

Add the result to ∆X

5: Update all the base tuples impacted: ∀ei ∈ ∆X: value of ti = value of ti + δi
6: Identify aggregates to update:

A = {results after filtering by dependencies to ∆X}
7: For Ai in A

8: Retrieve its composition: CAi = {a1, a2, ..., am}
Identify base tuples which are also in ∆X: U = ∆X ∩ CAi

Calculate new result of Ai: ∀ui ∈ U value of Ai = value of Ai + δui

9: End for

Table 1. Algorithm for the update propagation



the modification and calculate their values in difference. Line 5 allows to update
these base tuples. Line 6 to line 9 identify impacted aggregates and perform the
update.
Let us take the previous example to illustrate the approach. A sales manager
changes the sales of the aggregate α(a,i,j) from 500 000 euros to 600 000 eu-
ros. Once (s)he confirms the modification, the system will proceed using the
algorithm in Table 1.

Step 1: retrieval of the participating tuples to the aggregate
Retrieve the composition of the aggregate α(a,i,j): sales of the aggregate α(a,i,j)
is the sum of a, i and j. Hence, the composing tuples are a, i and j.

Step 2: creation of temporary table and calculation
Create a temporary table ∆X for the base tuples identified in step 1.
Calculate the δ for the aggregate α(a,i,j): δ = 600000 - 500000 = 100000
Considering W=

∑
t∈{a,i,j} weight(t), calculate the differences in value for every

tuple using the weight coefficient.

δa = δ ∗ weight(a)W = 100000 ∗ 1
1+2+2 = 20000

δi = δ ∗ weight(i)W = 100000 ∗ 2
1+2+2 = 40000

δj = δ ∗ weight(j)W = 100000 ∗ 2
1+2+2 = 40000

The differences in value of base tuples are added to the temporary table. This ta-
ble also contains the dependency information to higher hierarchical levels (shown
Table 2).

Step 3: update of base tuples
Update the base tuples impacted by the aggregate modification (same procedure
as in the current solution). The new values of these base tuples are computed
by their actual values and the values in difference calculated in step 2. In this
case, a is updated to 120 000, i to 240 000 and j to 240 000.

Step 4: identification of impacted aggregates
Identify all the aggregates concerned with the modification of the sales of the
aggregate α(a,i,j) by using the links between aggregates and registered base
tuples in the temporary table∆X. In this case, we identify all the dark rectangles.

Step 5: update of impacted aggregates
Propagate the changes to every involved aggregate. Let us illustrate this issue
with the customer dimension hierarchy 1. We loop for every level of the hierarchy.

element identifier customer dim link product dim link δx
a customer linka product linka 20000
i customer linki product linki 40000
j customer linkj product linkj 40000

Table 2. Temporary table ∆X created to store influenced base tuples



For level 1, two aggregates need to be updated: acd and ij. The aggregate acd
is composed of a, c and d and among these base tuples, only one is registered in
the table ∆X, namely, the base tuple a. Hence, the value of acd is changed only
by adding the δa or 20 000.
val′(α, {a, c, d}) = val(α, {a, c, d}) + δa = val(α, {a, c, d}) + 20 000
Another element ij of level 1 and the root element abcdefghij on level 2 can be
calculated in a similar way: val′(α, {i, j}) = val(α, {i, j}) + 40 000 + 40 000;
val′(α, {a, b, c, d, e, f, g, h, i, j}) = val(α, {a, b, c, d, e, f, g, h, i, j}) + 20 000 + 40
000 + 40 000.
Doing this way, we updated only the aggregates impacted by the modification
for hierarchy 1 of the customer dimension. The propagation in other hierarchies
are processed in the same manner. Finally, we obtain updated data over the
entire schema.

5 Experiments

The main technical characteristics of the server on which we run the evaluation
are: two Intel Quad core Xeon-based 2.4GHz, 16GB RAM and one SAS disk
of 500GB. The operating system is a 64-bit Linux Debian system using EXT3
file system. Our evaluation has been performed on real data (copy of Anticipeo
database) implemented on MySQL.
The total size of the database is 50 GB of which 50% is used in the computation
engine, 45% for result visualization and 5% for the application. Our test only
focuses on the data used by the update: one fact table and 2 dimension tables:
customer and product. The fact table is about 300 MB with 257.8MB of data and
40.1 MB of index. The customer dimension table contains 5420 real customers
and 1319 fictive customers (6559 in total) and the product dimension table con-
tains 8256 real products and 404 fictive products (8660 in total). Each of these
dimension tables is composed of 4 hierarchies. It presents a similar structure to
Fig. 1 with different number of levels in each hierarchy (from 2 levels to 4 levels).
Note that the time dimension is merged in the fact table for some performance
issues [6][7]. Hence, only two explicit dimensions are materialized in dimension
tables.
The objective of the evaluation is to compare the time of the whole schema up-
date using the current solution and our algorithm. The tests are performed on 3
hierarchies which have 2, 3 and 4 levels, respectively. In our evaluation, we mod-
ify one aggregate from each level of every hierarchy to compare the evaluation
time resulting form the current solution and from our approach.
We first perform tests with the current solution. The result is shown Table 3.
Step 2 and step 3 stays almost the same for different hierarchies because the
whole schema is recomputed for each update.
The same tests are performed with our algorithm. The result is shown Table
4. The time spent on the base tuples update is almost the same as the current
solution because they follow the same procedure.
We then compare the total evaluation time using the two solutions in one chart



Hierarchy H1 Hierarchy H2 Hierarchy H3
Level 1 Level 2 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 4

Step 1* 0.9 7.9 0.9 1.0 7.5 0.08 0.8 2.9 7.8
Step 2* 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2
Step 3* 179.4 181.9 185.6 181.2 188.3 180.9 179.5 179.7 176.4
Total 180.4 190.0 186.6 182.4 195.9 181.2 180.4 182.8 184.4

* Step 1: updating base tuples; Step 2: deleting aggregates; Step 3: reconstructing

Table 3. Evaluation time of an aggregate modification using the current solution

Hierarchy H1 Hierarchy H2 Hierarchy H3
Level 1 Level 2 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 4

Step 1* 0.3 2.9 0.3 0.3 2.9 0.04 0.3 1.2 3.0
Step 2* 0.9 7.8 0.9 2.0 7.2 0.1 0.8 2.8 7.7
Step 3* 5.4 53.5 5.2 5.4 56.1 0.6 4.3 21.0 54.4
Total 6.6 64.2 6.4 6.7 66.2 0.7 5.4 25.0 65.1

* Step 1: creating temporary table; Step 2: updating base tuples; Step 3: propagating

Table 4. Evaluation time of an aggregate modification using our algorithm

shown Fig. 3. The scenario of modification on the root (top level of every hi-

Fig. 3. Comparison of evaluation time using two solutions

erarchy) takes much more time than other levels and stays almost the same
because we modify all the base tuples6. Even so, we get a nearly 200% better
performance. In all other pratical cases, our algorithm presents more than 3000%
better performance in average.

6 The modification of the root aggregate is rare in the application. We perform this
experiment to show the worst evaluation time we can have in our approach.



6 Conclusion

In this paper, we discussed the problem of efficiently propagate an aggregate
modification through a dimension-hierarchy structure. Current solution naively
recomputes all the aggregates of all the hierarchies, which is time-consuming
and does not fulfill the performance needs. We proposed the algorithm PAM
to reduce the modification cost. Our algorithm is based on the dependencies of
aggregates and bases sales. It identifies the exact sets of aggregates to be updated
and calculates at the mean time the value in difference for each aggregate. We
proved that with our approach, the update propagation time can be reduced
by more than 3000% compared to the current solution implemented in a real
application.
For further work, we will take into consideration more factors that could affect
the evaluation time, such as complexity of dimensions, complexity of hierarchies,
complexity of queries, etc. And we will also investigate the update propagation
of an aggregate which results from multi-hierarchies.
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