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Abstract

We present a new machine learning-based algorithm capable of classifying individual
human activities from very short sequences. Our method is based on a “deep” multi-
stage architecture where each layer is learned independently of the other layers. Low-level
shape features are extracted from short sequences of binary shapes and fed to a sequential
probabilistic model (a conditional deep belief network), which learns the evolution of the
low-level features through time through interactions with binary latent variables. No
appearance model is needed. Actions are classified using an SVM trained on the posterior
probabilities of the latent features extracted by the motion model. The method is capable
of not only recognizing actions but also localizing them in space and time. We evaluated
the algorithm on two different databases, the well known Weizmann dataset and our own,
more challenging, dataset.

1 Introduction

Applications such as video surveillance, robotics, source selection, and video indexing often
require the recognition of actions based on the motion of different actors in a video, for
instance, people or vehicles. Certain applications may require assigning activities to several
predefined classes, while others may rely on the detection of abnormal or infrequent activities.
In this paper we deal with the former in a realistic surveillance setting. As opposed to a large
part of the published state of the art, where decisions are often made globally on a whole
video showing a single person, in our work multiple people are allowed to appear in a scene
and classification decisions are taken per person and per “instant”, i.e. per short sequence of
several frames (typically around 7). This is achieved by extracting binary shape sequences for
each moving object using background subtraction, and learning the evolution of shapes over
time through a probabilistic model.

The amount of literature on action recognition has sky-rocketed in the last few years and
it is not possible anymore to give an exhaustive account in this restricted space. We refer
the interested reader to some very recently published surveys [1, 2, 3]. While early work
on modeling human activities focused on articulated motion (e.g. [4]), most recent work on
activity and event recognition does not explicitly model the human body. Instead, the current
state of the art focuses on sparse local features like interest points and space-time interest
points [5, 6, 7, 8, 9, 10, 11], or on motion segmentation through background subtraction
[12, 13, 14], dense optical flow [15] or other holistic features [16, 17], with possible hybrid
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methods [18, 19, 20] and classification through dense matching [21, 22] or graph matching
[23].

Holistic methods generally compute features directly on the whole space-time (ST) cube
of a video, or on ST-patches of it, e.g. moments [13], and volumetric box features on optical
flow components [15]. Local methods combine features from several local primitives, an inher-
ently structural data representation. In order to convert this representation to a numerically
useful representation, most of them discard the structural part and resort to the bag-of-words
(BoW) formalism [6] or its extensions. This tends to improve invariance but severely hurts
discrimination power. Proposed extensions are, for instance, correlograms [24], local grouping
and compound features [11], motion context [17], spatial co-occurrences of pairs of features
[9, 25, 10], and parts-based models [26]. Fully taking into account spatial relationships through
graph matching has recently been proposed [23], but this requires matching against several
graph models per action class.

In contrast to object recognition problems, pure statistical and unstructured machine
learning without feature extraction is difficult in this context due to several reasons: (i) the
non-rigid nature of the relevant information; (ii) the mixture of relevant motion information
and irrelevant texture information in the signal; and (iii) the extremely high dimensional space
in which spatio-temporal data is embedded.

The question of whether and how to use learning is related to the choice of features, which in
the context of video analysis is dominated by the question whether to extract features following
segmentation (e.g. through BG-subtraction), or from local primitives like interest points. It
has often been claimed that segmentation may fail in some cases and “segmentation-free”
methods have become fashionable lately. On the other hand, methods based on local primitives
like interest points or spatio-temporal interest points also suffer from severe drawbacks. Stable
points are hard to extract in numbers large enough to provide high discriminative power on
small and short patches. This requires the approach to classify long sequences, often whole test
videos. This lack of a sufficient number of points has especially been reported for space-time
interest points [5]. They also tend to lack efficiency in cases of slow or smooth motions of non
textured objects since no (or only unstable) points are detected in these areas. Finally, and
most importantly, the inherent nature of a set of features extracted on a set of points makes
the features inherently structural, requiring aggregations into vectors or histograms (like a
BoW representation) or motion context [17, 27] in order to apply the majority of statistical
learning methods. Much of the useful discriminative information (including geometry and
temporal relationships) can be lost during aggregation.

For this reason, apart from the BoW methods mentioned above, machine learning of human
actions has been dominated by methods learning the temporal evolution of features like HMMs,
Semi-Markov models and dynamic belief networks [28, 27, 29, 30, 31, 32, 33, 28, 29, 34].
Typically, a vectorial description is created frame by frame and its temporal evolution is
modeled and learned. HMMs and dynamic belief networks share with our work the property
that dynamical processes are modeled through hidden states. However, mixture models such
as HMMs typically generate each observation from a single category or prototype. Distributed
(also known as componential) state models generate each observation from a set of features
that each contain some aspect of its static or dynamic nature. Our motion model uses a
deep, componential representation capable of efficiently capturing complex interactions. In
[35], a chain graph model for action recognition requires a priori knowledge of the nature (e.g.
causality or correlation) and semantic meaning of relationships between different variables.
In contrast, we assume that no such knowledge of the visible or latent variables exists - it is
learned directly from the data.

Other learning-based methods include biologically-inspired ones [36], convolutional deep
learning [37], methods based on boosting low-level features [38], topic models [7], trajectory
matching [39], statistics calculated on the results of tracking [40], learning of spatio-temporal
predicates and grammars [10, 41, 42] and other not yet mentioned probabilistic graphical
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models [43].
In this work we advocate for the advantages of techniques based on segmentation, which

for the moment are focused on applications where the camera is fixed. However, we argue that
this situation is currently changing, as segmentation is becoming increasingly less difficult for
situations with moving cameras: BG subtraction algorithms have also been proposed for PTZ
cameras [44] and, more importantly, the recent success of depth cameras — like MS Kinect1

or time of flight cameras — delivering RGB as well as depth information, makes it easier to
obtain stable BG subtraction algorithms in generic situations.

It has already been argued that actions can be recognized from short sequences (“snippets”)
instead of lengthy videos. In [45], shape and motion features are calculated separately and
combined before being fed into an SVM classifier. To our advantage, our method does not
require the computation of dense optical flow, just background subtraction. The importance
of combining shape and motion has been reported several times [19, 45, 46]. However, in most
established methods where shape and motion are both used, they are treated separately. One
of the strongest links between them has been achieved in [46], where shape and motion are
combined into 2D motion history and motion energy images. Still, the evolution of shapes
across time is incomplete due to spatio-temporal occlusions and difficult to exploit directly
from these images. In [34], the evolution of silhouettes over time is modeled through HMM-
like models over representations in shape space. The work is close to ours, though, from a
learning perspective, differs in its use of a non-componential discrete hidden state.

In contrast, our approach directly models the evolution of shapes over time through succes-
sive stages: i) a background subtraction algorithm with post-processing produces a sequence
of binary windows for each moving object; ii) low-level shape features are extracted from each
binary window iii) high-level shape features are extracted efficiently with a single pass through
a previously learned probabilistic model which captures dynamic interactions through latent
variables; and iv) the top-level features are input to an SVM to obtain the final decision.

The paper is organized as follows: section 2 first briefly outlines how we extract binary
shapes using background-subtraction. Our primary contributions are described in sections 3
and 4 which cover, respectively, the low-level shape features and the generative motion model,
as well as its use for classification. Section 5 describes the experiments we performed on several
different datasets and section 6 finally concludes.

2 Extracting shape sequences with background subtraction

In many situations, including those encountered in standard databases, background subtrac-
tion (the initial segmentation step of our algorithm) is not difficult to perform. This is evi-
denced by the fact that simple frame differencing often produces results of good quality. We
successfully applied frame differencing with some postprocessing in all experiments described
in this paper (see section 5). However, frame differencing can fail in some difficult conditions,
for example, complex outdoor scenes. Algorithms based on Gaussian mixture models (GMM)
have become the de facto standard for background subtraction in these conditions. They cre-
ate an explicit background model, which allows the detection of objects at a standstill, and
they are capable of tracking multiple background distributions. This permits them to handle
more complex backgrounds, for example, the leaves on a tree or a flag blowing in the wind.
Perhaps the most widely used member of this class is the Stauffer-Grimson algorithm [47]
which also constitutes the basis of a method which we successfully applied as preprocessing
step for our algorithm.

To both the frame differencing and GMM algorithms, we added a filter designed to fill
very large holes which may appear with non textured and uniformly colored moving objects.
Standard morphological operations like closing tend to connect neighboring moving people

1http://www.xbox.com/en-US/kinect
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into a single block. Our filter sets a pixel to foreground if every single one of 8 walks in 8
different directions from this pixel encounters another foreground pixel. This approximates
a topological procedure which fills holes but does not create bridges between neighboring
connected components. The length of the walk is roughly set to the estimated width of a
human body in the video.

Binary shapes are extracted and combined into sequences by thresholding sizes of con-
nected components and associating them across frames according to their overlap. In par-
ticular, given a connected component (CC) at frame t, one or several CCs at frame t+1 are
associated:

- if a single CC at t+1 overlaps the one of at t, it is associated.

- if several CCs overlap the one at t, we check for a possible split from t to t+1: all CCs
at t+1 which sufficiently overlap the CC at t are associated.

No explicit model based tracking is necessary and occlusions are not handled at this moment.

3 The shape/motion model

We argue that actions can be classified accurately by modeling the evolution of associated
binary shapes over time. While we could directly classify the binary image maps extracted by
our background subtraction algorithm (described in section 2), we aim to provide the classifier
with a more statistically salient representation of the input. There is much evidence that
learning several layers of feature detectors can improve performance in vision tasks [48, 49].
This has typically been validated in the domain of static object recognition, but the arguments
for building so called “deep architectures” also extend to sequences [38, 36, 50].

Learning more than one layer of latent variables can motivated in many ways. Foremost,
learning multiple layers of feature extractors is representationally sound. There exist families
of functions that can be represented much more efficiently with deep networks (those with
multiple layers of latent variables) than shallow networks (one hidden layer) [51]. The fact
that deep networks produce hierarchical representations is attractive, because humans organize
their ideas hierarchically. This is not only intuitive, but permits non-local generalization.
What this means is that prototype-based methods like mixture models and clustering require
exponentially more parameters than distributed methods that employ features. Since features
at each layer are derived from features from the layer below, features can become increasingly
abstract (c.f. [52] for empirical evidence). In the case of temporal data, this also translates to
higher layers capturing increasingly longer-term temporal dependencies. Finally, these layers
of feature extractors can be trained unsupervised, that is, without labeled data that is often
expensive to obtain.

We thus propose to extract multiple layers of features from each frame of the binary image
maps before attempting classification. This is done by recursively applying a generative model
that jointly models a “visible” representation of the input at time step, vt, and a latent, or
“hidden” representation of the input, ht. While it may seem natural to simply choose vt to be
the pixels of each frame of the binary image maps, we prefer to model sequences of compact
and robust shape descriptors. We first describe our input representation before focusing on
how to extract features from the shape descriptors.

3.1 Low level features

Complex Zernike moments have been proven to capture shapes robustly and are widely used
as features for object recognition [53, 54]. They are constructed using a set of complex polyno-
mials which form a complete orthogonal basis set defined on the unit disc. Figure 1 illustrates
the representational power of the Zernike decomposition on a binary example shape extracted
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Figure 1: From left to right: an input image from one our datasets, then its reconstruction
with different Zernike moments of different order (8, 12, 16, 20, 24, 28, 32).

from one of our test video databases. Depending on the complexity of the shape, quite accu-
rate reconstructions can be obtained from the moments up to order 20-25, which correspond
to 121 to 182 complex coefficients. We should mention that a reconstruction of good quality
is not necessary to classify a shape or an action.

In addition to the shape descriptors of the binary object, additional features have been
chosen to boost discrimination performance. The visible observations of the model are there-
fore comprised of a sequence of real valued vectors vt, where each vector vt corresponds to a
time instant t and holds the real part as well as the imaginary part of the complex Zernike
moments of a single binary subwindow. To this representation we add three additional fea-
tures: (i) the ratio between the height and the width of the bounding box, which is necessary
since the Zernike moments are calculated on a normalized unit disk; (ii) two values for the
gradient of the center of mass of the shape between instants t−1 and t. The manually selected
additional features are necessary since the automatically selected features are calculated from
a normalized bounding box with constant width and height and without any positional infor-
mation. Some classes, like walking and running, are characterized by similar relative frame to
frame movement. The main difference in the actions is the speed of the person’s displacement.
The additional features boost the discrimination performance between these classes.

3.2 Conditional restricted Boltzmann machines

A Restricted Boltzmann Machine (RBM) [55] is a bipartite Markov Random Field consisting
of a layer of stochastic “visible” variables, v = {vi}, connected to a layer of stochastic latent
variables, h = {hj} (see figure 2a). The lack of direct connections among the latent variables
ensures that they are conditionally independent given a setting of the visible variables, which
simplifies inference and learning. RBMs typically use binary visible and latent variables, but
for real-valued data (e.g. Zernike moments) we can use a modified RBM with Gaussian,
real-valued variables and binary latent variables [56].

The RBM can be extended to dynamical data in the form of sequences v={vt} of sets vt

of visible variables vt={vit} and similarly indexed latent variables. This allows the model to
capture temporal dependencies by making its latent and visible variables receive additional
input from previous states of the visible variables. Originally introduced for generative mod-
eling of motion capture data [50], this so-called Conditional RBM (CRBM) is illustrated in
figure 2b. The number, N , of previous observations to which each layer connects is referred
to as the order of the model. Conditioning on past data does not change its most important
computational properties: simple, exact inference and efficient approximate learning.

For the case of real-valued input data, the CRBM defines a joint probability distribution
over a real-valued observation, vt, and a collection of binary latent variables, ht, hjt ∈ {0, 1}:

p(vt,ht|v<t) = exp (−E(vt,ht|v<t)) /Z(v<t). (1)

The distribution is conditional on the history of past N observations, v<t, where v<t =
vt−N , . . . ,vt−1 and it is normalized by constant Z which is intractable to compute exactly2.

2To compute Z exactly we would need to integrate over the joint space of all possible inputs and all settings
of the binary latent variables.
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Figure 2: (a) a restricted Boltzmann machine (RBM); (b) a Conditional RBM for dynamic
data. A single rectangle corresponds to a set of observed or hidden variables of an RBM; (c)
a conditional deep belief network, i.e. a CRBM in multiple layers.

The joint distribution is characterized by an energy function:

E(vt,ht|v<t) =
∑
i

1

2
(vit − ĉit)2 −

∑
j

hjtd̂jt −
∑
ij

Wijvithjt (2)

which captures the pairwise interactions between variables, assigning high scores to improbable
configurations and low scores to probable configurations. Each visible variable contributes
a quadratic offset to E (first term) that dominates Eq. 2 when it deviates too far from a
“dynamical mean” that is a linear function of the previous observations: ĉit = ci+

∑
lAilvl,<t.

The dynamical mean is much like a prediction from an autoregressive model of order N with
constant offsets ci.

Each latent variable contributes a linear offset to E (second term) which is also a function
of the past N observations: d̂jt = dj +

∑
lBjlvl,<t, where dj are, again, constant offsets.

The third term is a bilinear constraint on the interaction between (current) visible and latent
variables, characterized by weights W . A large value of Wij means that vi and hj are strongly
correlated. While other energy functions could be considered, Eq. 2 leads to analytically
convenient conditional distributions, which are required for inference and learning.

Learning a CRBM

Ideally we would like to maximize the marginal conditional likelihood, p(vt|v<t), over pa-
rameters θ = {W,A,B, c,d} but this is difficult for all but the smallest models due to the
intractability of computing Z. Learning, however, still works well if we approximately follow
the gradient of another function called the contrastive divergence (CD) [57].

For sake of brevity, we refer the reader to [50] for details of learning a CRBM by CD. In
short, learning relies on two main operations: 1) sampling the latent variables, given a window
of training data, {vt,v<t}:
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p(hjt = 1|vt,v<t) =

(
1 + exp(−

∑
i

Wijvit − d̂jt)

)−1

, (3)

and 2) reconstructing3 the data, given the latent variables:

vit ∼ N

vit; ,∑
j

Wijhjt + ĉit, 1

 . (4)

where N is the normal probability density function. Both Eq. 3 and 4 follow from Eq. 1.
Note that we always condition on the past: it is never updated.

Given a trained CRBM and a N -step history of observations, we can obtain a joint sample
from p(vt,ht|v<t) by alternating Gibbs sampling, i.e. starting at some reasonable initialization
of vt (e.g. vt−1) then alternating between Eq. 3 and 4 for some fixed number of steps (typically
between 30 and 100).

Learning multi-layer representations

CRBMs can form the building blocks of deep networks through a greedy, sequential process.
Once we have trained a CRBM, we can add additional layers of latent variables in the same
way as a Deep Belief net (DBN) [49]. The previous layer CRBM is kept, and the sequence of
hidden state vectors, while driven by the data, is treated as a new kind of “fully observed”
data. The next level CRBM has the same architecture as the first (though we could alter the
number of its hidden units) and is trained in the exact same way. Upper levels of the network
can then model higher-order structure. The resulting model is called a conditional DBN or
CDBN (see figure 2c). While inference in the single-layer CRBM is exact, inference in the
CDBN is only approximate because of the directed connections between hidden variables (we
ignore these connections when performing bottom-up inference).

There are a few practical changes we need to make when training the second layer (and
potentially, layers beyond that). The first layer CRBM has real-valued visible variables and
binary latent variables. Since we are learning a representation on top of the first layer CRBM,
and treating the activations of the latent variables while driven by the data as “observed”,
the second CRBM has binary visible variables and binary hidden variables. This changes the
energy function of the second layer CRBM to:

E(vt,ht|v<t) = −
∑
i

vitĉit −
∑
j

hjtd̂jt −
∑
ij

Wijvithjt (5)

where ĉit and d̂jt have remained the same. Inference (via Eq. 3) does not change (since latent
variables remain binary) but the reconstruction distribution (Eq. 4) becomes:

p(vit = 1|ht,v<t) =

1 + exp(−
∑
j

Wijhjt − ĉit)

−1

. (6)

For simplicity, we have omitted indicies indicating the particular layer of the network.
In the context of our method for activity recognition, training two layers of feature extrac-

tors amounts to 1) learning a “real to binary” CRBM from the low-level features described
in section 3.1; 2) Collecting the sequence of latent features from the first layer CRBM while
driven by the training data; and 3) training a “binary to binary” CRBM on the sequence of
latent features extracted by the first layer CRBM.

3In practice, we sample the hidden state but set the updated visible state to the mean. This suppresses
noise and learns slightly faster.
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Figure 3: A sequence of consecutive artifical frames reconstructed from the Zernike moments
sampled from a CDBN learned from training data of the running class.

It is standard practice to use the real-valued probabilities of the first layer of latent variables
(rather than their binary activities) to train the second layer CRBM. We also use the real-
valued probabilities of the second layer of latent variables (instead of binary activities) as
input to the classifier. This suppresses noise, though we expect that thresholding would also
give similar results.

Figure 3 shows consecutive individual frames reconstructed from Zernike moments sampled
from a two-layer CDBN with 150 latent variables in each layer and an order of 3 for each layer,
trained on sequences of Zernike moments up to order 40. The sequence has been initialized
with 6 observations which were not part of the training set. By generalizing to unseen shape
sequences, we see that the model is capable of modeling the dynamics of 2D shape rather than
simply storing sequences of repeating frames.

4 Classification

Given a training set of videos and per-frame labels, a classification decision is obtained with
a series of stages:

1. Background subtraction We pre-process each frame of video with a background sub-
traction algorithm (details are given in section 2). This yields binary shape sequences.

2. Computing low-level features The Zernike moments and additional low-level features
(see section 3.1) are computed for each frame.

3. Extraction of mid-level features A CRBM with linear-Gaussian visible units and bi-
nary hidden units is trained on all sequences of low-level features (regardless of label).
A single motion model is thus learned for the entire training dataset. We then pass each
sequence through the trained CRBM and collect the sequences of real-valued hidden-unit
posteriors, p(hjt = 1|vt) (i.e. we compute Eq. 3 for each frame of the low-level features).

4. Extraction of high-level features A CRBM with binary visible units and binary visible
units is trained on all sequences of low-level features (i.e. the posteriors of the first
CRBM while driven by the training data). Once the CRBM is trained, we then apply
p(hjt = 1|v) (again through Eq. 3) for every frame of the mid-level features, where
h are the hidden units of the topmost CRBM. We store the sequences of real-valued
hidden-unit posteriors. These will be the input to the classifier.

5. Training an SVM We note that, up to this point, the labels have not been used. We
now train a standard classifier such as an SVM, k-NN, or AdaBoost — in our case, an
SVM — using the pairs of top-level features produced by the conditional DBN and the
associated labels (from the original data).
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When presented with a novel (i.e. test) example video, we proceed through the above stages,
though we simply perform bottom-up inference in the trained conditional DBN (its parameters
are not adjusted). Likewise, we simply perform prediction in the SVM using the top-level
features as input.

5 Experimental results

Our proposed method has been evaluated on two different datasets:

- the well known Weizmann dataset [13] comprised of 93 short videos and 10 action classes
(bend, jack, forward jump, vertical jump, side jump, run, walk, skip, one handed wave,
two handed wave);

- a dataset which we collected ourselves and which contains 120 videos in 4 classes (run,
walk, vertical jump, sit down). We attempted to make our dataset more difficult than
Weizmann in three ways: i) different activities are performed in different directions
with respect to the camera (see figure 4); ii) multiple people are present in each video
simultaneously performing different activities; and iii) we include videos as short as
between 3 and 10 frames.

We ran two kinds of experiments. Detection and recognition performance have been measured
quantitatively through a widely used protocol employed for action recognition. As usual, when
testing on a video showing a given subject, all videos of the same subject (even showing a
different activity) have been removed from the training set. This ensures that the learned
features do not depend on the appearance of the subjects, but rather on their motion only.
The splits into training and test sets have been done per video. For the Weizmann dataset we
report accuracy using 9-fold cross-validation.

Classification — classification performance is given on two different levels: per classifi-
cation entity, i.e. per units of short sequences of 7 frames, as well as per whole video, where
the latter decisions are obtained with a voting strategy. On the Weizmann dataset we obtain
a classification rate of 94.7%, a result which has also been obtained by other methods very
recently [45, 38]. We achieve a score of 84.2% per sequence of 7 frames, which indicates that
activities can be recognized robustly from short sub sequences, mainly due to the CRBM.

Figure 4 shows some of the bounding boxes and shapes extracted with the frame differenc-
ing algorithms as well as the corresponding binary shape sequences. Although the shapes are
only partially formed for some of the actions, in particular the ones for the class hand waving,
classification performance is excellent on the short sequences.

Localization+recognition — The second experiment qualitatively evaluates perfor-
mance in a multiple person environment. Figure 5 shows 16 consecutive frames from a video
with 3 different people performing two different actions (walking and jumping). Although
we do not rely on a tracker to determine robust positions of the different moving people, the
decision on an individual level are impressive. A video showing the performance in more detail
can be downloaded on our website4.

The different design choices of our system have been set as follows: all binary shapes
have been extracted with the frame differencing algorithm. The Zernike features have been
calculated up to order 30. The motion model is a CDBN with two layers and Gaussian units
in the first layer. The order of both layers was set to 3 (3 connections from the past to the
current time instant), the first layer contained 800 hidden units and the second layer 400
hidden units. Classification was done with an SVM and RBF kernel. The system has been
implemented in Matlab R2010b and includes parts of Taylor et al.’s CRBM code available

4http://liris.cnrs.fr/christian.wolf/vids/st-shapes.avi
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Figure 4: Segmentation and detection results on some consecutive frames of the two databases:
(a) The Weizmann dataset (b) Our dataset.

Figure 5: Recognition results on 16 consecutive frames of a video of our dataset.
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Method Accuracy

Proposed method 94.7
Schindler and Gool [45] 100.0

Fathi and Mori [38] 100.0
Gorelick et al. [13] 99.6

Sun et al. [19] 97.8
Bregonzio et al. [20] 96.7

Niebles et al. [7] 90.0
Klaser et al. [58] 84.3

Scovanner et al. [59] 82.6
Niebles et al. [43] 72.8

Method Accuracy

Proposed method 91.7

(a) (b)

Table 1: Classification accuracy per video on the two standard datasets: (a) The Weizmann
dataset; (b) The KTH dataset - subset D1.

online5 as well as Chang et al.’s libsvm6. It runs with 1.4 frames per second on a laptop using
a Intel Core 2 processor with 2.5Ghz and 4GB RAM. Realtime performance should be easily
achievable if the system is re-implemented in C++.

6 Conclusion

We have presented a novel method for the recognition and classification of individual hu-
man actions which makes decisions on very short sequences of binary shapes. The system
learns several layers of features and is able to classify a new unseen sequence quickly in one
bottom-up pass of the multi-layer model. Due to the rich componential nature of the hidden
states, the model is able to learn human motion efficiently from shape which results in highly
discriminative features and excellent classification performance. In addition to classification
performance, the fact that we have learned a dynamical model of human motion from shape
alone is a notable result, as previous such approaches (e.g [50]) have only considered motion
capture data. This has been achieved, in part, by using the Zernike decomposition. The cur-
rent limitation of the system, addressed in future work, is its lack of robustness to occlusions.
This is shared, to the best of our knowledge, with all established work.
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[25] A.-P. Ta, C. Wolf, G. Lavoué, A. Baskurt, J. Jolion, Pairwise features for human action
recognition, in: I.C. on Pattern Recognition, 2010.

[26] K. Mikolajczyk, H. Uemura, Action recognition with appearancemotion features and fast
search trees, Computer Vision and Image Understanding 115 (3) (2011) 426–438.

[27] Q. Shi, L. Cheng, L. Wang, A. Smola, Human Action Segmentation and Recognition
Using Discriminative Semi-Markov Models, International Journal of Computer Vision
93 (1) (2010) 22–32.

[28] N. Cuntoor, B. Yegnanarayana, R. Chellappa, Activity modeling using event probability
sequences, IEEE Tr. on image proc. 17 (4) (2008) 594–607.

[29] O. Boiman, M. Irani, Detect. irreg. in images and in video, International Journal of
Computer Vision (IJCV) 74 (1) (2007) 17–31.

[30] T. Xiang, S. Gong, Activity based surveillance video content modelling, Pattern Recog-
nition 41 (7) (2008) 2309–2326.

[31] T. Xiang, S. Gong, Incremental and adaptive abnormal behaviour detection, Computer
Vision and Image Understanding (CVIU) 11 (1) (2008) 59–73.

[32] D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, Semi-supervised adapted hmms for
unusual event detection, in: CVPR, Vol. 1, 2005, pp. 611–618.

[33] H. Zhou, D. Kimber, Unusual event detection via multi-camera video mining, in: ICPR,
Vol. 3, 2006, pp. 1161–1166.

[34] M. F. Abdelkader, W. Abd-Almageed, A. Srivastava, R. Chellappa, Silhouette-based Ges-
ture and Action Recognition via Modeling Trajectories on Riemannian shape manifolds,
Computer Vision and Image Understanding 115 (3) (2010) 439–455.

[35] L. Zhang, Z. Zeng, Q. Ji, Probabilistic image modeling with an extended chain graph
for human activity recognition and image segmentation, IEEE Transactions on Image
Processing (to appear).

[36] H. Jhuang, T. Serre, L. Wolf, T. Poggio, A biologically inspired system for action recog-
nition, in: International Journal of Computer Vision (IJCV), 2007, pp. 1–8.

[37] G. W. Taylor, R. Fergus, Y. Lecun, C. Bregler, Convolutional Learning of Spatio-temporal
Features, in: European conference on Computer vision, 2010.

13



[38] A. Fathi, G. Mori, Action recognition by learning mid-level motion features, in: IEEE
(Ed.), I.C. on CVPR, 2008, pp. 1–8.

[39] A. Dyana, S. Das, Trajectory representation using gabor features for motion-based video
retrieval, Pattern Recognition Letters 30 (10) (2009) 877–892.

[40] C. Stauffer, W. Grimson, Learning patterns of activity using real-time tracking, IEEE
Tr. on PAMI 22 (8) (2000) 747–757.

[41] M. S. Ryoo, J. K. Aggarwal, Stochastic Representation and Recognition of High-Level
Group Activities, International Journal of Computer Vision 93 (2) (2010) 183–200.

[42] L. Wang, Y. Wang, W. Gao, Mining Layered Grammar Rules for Action Recognition,
International Journal of Computer Vision 93 (2) (2010) 162–182.

[43] J. Niebles, F. Li, A hierarchical model of shape and appearance for human action classi-
fication, in: CVPR, 2007, pp. 1–8.

[44] C. Guillot, M. Taron, P. Sayd, Q. Pham, C. Tilmant, J.-M. Lavest, Background subtrac-
tion adapted to ptz cameras by keypoint density estimation, in: British Machine Vision
Conference, 2010, pp. 34.1–34.10.

[45] K. Schindler, L. van Gool, Action snippets: How many frames does human action recog-
nition require?, in: CVPR, 2008.

[46] A. Bobick, J. Davis, The recognition of human movement using temporal templates, IEEE
Tr. on PAMI 23 (3) (2001) 257–267.

[47] C. Stauffer, W. Grimson, Adaptive background mixture models for real-time tracking,
in: CVPR, Vol. 2, 1999, pp. 2246–2253.

[48] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document
recognition, Proc. of IEEE 86 (11) (1998) 2278–2324.

[49] G. Hinton, S. Osindero, Y. Teh, A fast learning algorithm for deep belief nets, Neural
Comput 18 (7) (2006) 1527–1554.

[50] G. W. Taylor, G. E. Hinton, S. Roweis, Modeling human motion using binary latent
variables, Proc. NIPS 19.

[51] Y. Bengio, Learning deep architectures for ai, Foundations and Trends in Machine Learn-
ing 2 (1) (2009) 1–127.

[52] H. Lee, R. Grosse, R. Ranganath, A. Y. Ng, Convolutional deep belief networks for
scalable unsupervised learning of hierarchical repr., in: ICML, 2009, pp. 609–616.

[53] A. Khotanzad, Y. Hong, Invariant image recognition by zernike moments, IEEE Tr. on
PAMI 12 (5) (1990) 489–497.
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