
Multitarget region tracking based on short-sight
modeling of background and color distribution

temporal variation

Julien MILLE1 and Jean-Löıc ROSE2
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Abstract. We address the problem of multitarget region tracking within
image sequences. Following recent work on joint segmentation and track-
ing as well as non-parametric modeling of color statistics, we develop an
energy-minimization based approach using color histograms. As in a few
other existing approaches, a single color probability distribution per ob-
ject and background is handled. In this context, global histograms may
be problematic for tracking in real scenes with cluttered backgrounds,
where statistical color data is highly scattered, preventing the estima-
tion of reliable color statistics for object/background discrimination. To
overcome this limitation, we introduce a short-sight perception modeling
of background, which concentrates on the vicinity of tracked objects and
thus extract more consistent statistical data for accurate separation be-
tween objects and background. To account for temporal consistency, our
energy is also endowed with a novel data term explicitly based on tem-
poral variation of color distribution within objects and local background
regions.

1 Introduction

A large variety of optimization methods have been proposed and applied to joint
object segmentation and tracking in videos. In this context, a partition of each
frame into several objects and background is usually sought as the minimizer
of an energy functional, enforcing consistency of color statistics and shapes of
objects over time and space [1][2]. Most often, the energy is derived from a
Bayesian probabilistic model [3][4], starting with the maximization of the a pos-
teriori probability of current partition given current observation as well as past
partitions and images. As is, the a posteriori probability is an intractable ex-
pression in general, which raises the need to use mathematical transformations
based on several simplifying assumptions. The energy derived from such Bayesian
framework is generally made up of a data term resulting from the likelihood of
image data given the partition and a prior term which embodies soft constraints
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over object shape and/or motion.
In this work, we are specifically concerned with the energy data term. Shape
and motion priors are beyond the scope of this paper, yet they could be added
in order to specialize the method towards particular applications requiring more
constrained tracking. We aim at tracking objects undergoing simultaneous trans-
lation and arbitrary smooth non-rigid deformations. We focus on data terms
representing color likelihood of pixels with a global region-based non-parametric
model, like in [5]. According to this model, color statistics in a given region,
whether this region corresponds to an object or background, are described with
a single probability density function (PDF) derived from a kernel-based color
histogram. This kind of approach was already addressed for segmentation in sin-
gle images [6][7][8] or videos [5][9].
Global kernel-based probability estimation raises an issue for tracking in real
scenes, especially for the background region, which may be cluttered and contain
many non-tracked objects. In such case, statistical color data is highly scattered,
so that background distribution may not be confident. To overcome this problem,
limiting the spatial range of the energy within a narrow domain may be consid-
ered. We propose an approach based on a short-sight modeling of background,
in which tracked objects deliberately ignore background color data spatially far
from them. It allows to obtain consistent indicators for separation between back-
ground and object regions. A related principle was recently applied for object
segmentation in still images, e.g. [10, 11]. In addition, we propose to model ex-
plicitly the temporal variation of color distribution within regions. To account
for temporal consistency, we integrate an energy criterion penalizing the vari-
ation of histograms between consecutive frames. Our method shares common
ideas with probabilistic color tracking [12] or with the mean shift tracker [13], in
the extent we seek for regions in which color statistics match references resulting
from previous frames. Energy minimization is performed thanks to the recent
variational region growing approach developed in [14]. The benefits of using
simultaneously short-sight background modeling on one hand and color distri-
bution temporal variation on the other hand are demonstrated on synthetic and
real image sequences.

2 Region tracking as a Bayesian estimation problem

2.1 Bayesian inference

Our model is defined over continuous space and discrete time. We consider the
input video as a sequence of frames I = {I1, ..., IT }. Each frame is a mapping
from space domain D ⊂ R2 to m-dimensional color domain C (e.g. m = 3 for
RGB data). Spatio-temporal segmentation aims at providing for each frame It
a partition Pt of the image domain into n+ 1 regions, i.e. background Ω0

t and n
objects {Ω1

t , ..., Ω
n
t }. Tracking is done in a sequential fashion, since next parti-

tion Pt+1 is determined given current frame It and partition Pt. In this context,
we first rely on the Maximum A Posteriori (MAP) framework introduced by
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Mansouri [3], who uses Baye’s theorem and assumes conditional independence
between image pixels:

P ∗t+1 = argmax
Pt+1

p(Pt+1|It, It+1, Pt)

= argmax
Pt+1

∏
x∈D

p(It+1(x)|It, Pt, Pt+1)p(Pt+1|It, Pt)
(1)

Probability p(It+1(x)|It, Pt, Pt+1) is the likelihood of observing a particular
color at space-time location (x, t + 1) given current image and both current
and next partitions. This term will represent our assumptions about color con-
stancy over time, whereas prior probability p(Pt+1|It, Pt) models available prior
knowledge about object shape and/or motion. A tractable expression is obtained
by making the reasonable assumption that the likelihood of observing It+1(x)
depends only on It, Pt and the region which x will belong to at time t + 1.
Moreover, regions are assumed to have distinct color likelihoods, conditioned on
their respective current configurations, which leads to:

p(It+1(x)|It, Pt, Pt+1) = p(It+1(x)|It, Pt,x ∈ Ωit+1) (2)

which we shorten to `it+1(x) for simplicity, corresponding to the likelihood of
color It+1(x) if x is inside region Ωi at time t+1. Hence, the optimal partition
maximizes the joint likelihood over every pixel from every region:

P ∗t+1 = argmax
Pt+1

n∏
i=0

∏
x∈Ωi

t+1

`it+1(x)p(Pt+1|It, Pt) (3)

The MAP estimation of partition Pt+1 is turned into minimization of en-
ergy E[Pt+1], taken as the negative log of posterior probability (3):

E[Pt+1] = − log p(Pt+1|It, It+1, Pt)

=

n∑
i=0

−
{∫

Ωi
t+1

log `it+1(x)dx

}
− log p(Pt+1|It, Pt)

(4)

2.2 Estimation of probability functions

The choice of likelihood functions depends on the assumptions made about tem-
poral consistency of color, whereas prior probability depends on constraints on
shape and motion of the tracked objects. For likelihood functions, we rely on non-
parametric kernel estimation of color Probability Density Functions (PDFs). The
estimation is global, in the extent that a single distribution is used to describe
color statistics in an entire region. In image segmentation, this principle leads for
instance to the maximization of histogram entropy [6] or discrepancy between
region histograms [7]. More sophisticated color models could be used, however
we currently focus on demonstrating the benefits of our approach with a simple
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color model. Let hit be the kernel-based color histogram of region Ωi at time t.
For a given color α, we have:

hit(α) =

∫
Ωi

t

Kσ(It(x)−α)dx

where Kσ is an m-dimensional isotropic Gaussian kernel with zero mean and
standard deviation σ. While normalizing histograms by region areas in order to
obtain PDFs, likelihood functions are formulated so that pixels at time t+1 will
tend to be included into the best matching region, regarding statistics at time t:

`it+1(x) ≈ hit(It+1(x))∣∣Ωit∣∣ =
1∫

Ωi
t

dy

∫
Ωi

t

Kσ(It(y)− It+1(x))dy

Estimating color PDFs in this way may be viewed as computing ”smoothed” nor-
malized color histograms within regions at time t and assigning color likelihood
of a tested pixel x at time t + 1 to the value of the corresponding bin in these
histograms. To some extent, this approach is a ”time-consistent” counterpart
of the histogram-based segmentation model of [6]. As regards prior probability,
with a generic view, we consider a simple non-temporal smoothness prior. No
prior knowledge regarding shape or motion is available. It is thus relevant to con-
sider the length of object boundaries as a regularizer, weighted by user-defined
parameter ω controlling its significance:

− log p(Pt+1|It, Pt) = ω

n∑
i=1

∣∣∂Ωit+1

∣∣
3 Short-sight perception of background

We address one of the shortcomings inherent to tracking approaches based on
global kernel-based estimation of color PDFs. The matter here is the lack of
confidence of color statistics which might appear in cluttered backgrounds, due
to the presence of various objects and static parts with different appearances.
To illustrate the undesirable effect it may have on segmentation, consider the
curve evolution problem related to the minimization of energy (4). Suppose that
a portion of the boundary between background and object Ωi is described by
curve Γ parameterized by arc-length s. Calculus of variations with respect to Γ
gives the following gradient flow (see for instance the mathematical framework
of the region competition approach [15]):

∂Γ (s)

∂τ
= [log `0(Γ (s))− log `i(Γ (s))]n(s) + ...

where time index t+1 is dropped for simplicity, τ is the algorithmic time and n
is the unit normal vector pointing towards region Ωi. Regardless of curve im-
plementation, which may rely either on parametric contours or level-sets, the
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curve will locally expand if color It+1(Γ (s)) matches Ωi’s statistical features
more than the background’s ones, and shrink in the opposite case. Estimating
these statistical features over entire regions can be a drawback for tracking in
real scenes, especially for the background region distribution, which may be clut-
tered and contain many non-tracked objects. In such case, statistical color data
is highly scattered, so that background color likelihood `0 may not be confident.
If `0 gets small for nearly all colors, regions are more likely to include background
pixels and leak outside actual objects.
One may consider ignoring background information in the tracking process, re-
moving term over region Ω0 from energy (4). This would imply to specify a
threshold over the log-likelihood of pixels, below which pixels would be rejected
from the target region. However, such threshold might be sensitive and thus
prevent the method to be easily reproducible. To overcome this limitation and
obtain reliable background image data, we head towards a background model
based on ”short-sight perception”. To some extent, we adapt the philosophy of
local modeling approaches [10][16] to the tracking problem. Our approach is also
related to the idea of spatial context brought up in [17]. Instead of considering
statistical knowledge in the same extent for all background pixels, we attach more
importance to background pixels as they are closer to objects, and introduce a
relaxed version of the minimization problem (4). To this purpose, let d(x, Ωi)
be the euclidean distance from any background pixel x to the nearest pixel in a
given object Ωi:

d(x, Ωi) = min
y∈Ωi

‖x− y‖

As we wish to decrease the contribution of background pixels to color statis-
tics and energy, we introduce a positive real-valued weighting function ψ, which
should be compactly supported and non-increasing with respect to distance d.
Given a chosen support width w, several types of weighting functions are rele-
vant, such as steps or piecewise smooth functions:

ψ1(d) =

{
1 if d ≤ w
0 otherwise

ψ2(d) =

{
1− d

w
if d ≤ w

0 otherwise

Let Bi be the domain around object Ωi where the distance weight is non-zero
for every location. Hence, Bi may be thought of as a band of width w around
the object. We consider that background color statistics are relevant only within
bands Bi, and thus ignore available knowledge about color appearance in the
”far” background F = Ω0\

⋃n
i=1B

i. In our multiple object tracking framework,
each object has its own local perception of surrounding background and ignores
far background. This principle is depicted in fig. 1. In the right part of the image,
background pixels are faded to black proportionally with their distance to the
nearest object boundary. Let k be the histogram over the outer band of a given
object. It is considered as fuzzy in space, in the extent that contributions of
pixels are weighted with respect to their distance to the target object :

kit(α) =

∫
Bi

t

ψ(d(x, Ωit))Kσ(It(x)−α)dx
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The derived band likelihood function q relates the color of a band pixel to the
normalized corresponding bin value in the previous band histogram:

qit+1(x) =
1∫

Bi
t

ψ(d(y, Ωit))dy

kit(It+1(x)) (5)

This formulation aims at improving outlining of objects, as discrepancy between
background and object colors is efficient mostly in the outer neighborhood of the
object. Favouring close pixels advantageously prevents the discrepancy from be-
ing affected by changes on background pixel colors as soon as these changes arise
far from the object. Moreover, in case of moving background, spatial fuzziness
of the likelihood will allow gradual changes in local background representations.
Adequacy of color according to statistics in the entire background is replaced
by local weighted likelihoods over bands, which leads to the formulation of the
short-sight energy, to be minimized with respect to candidate partition:

ESS[Pt+1] =

n∑
i=1

{
−
∫
Ωi

t+1

log `it+1(x)dx−
∫
Bi

t+1

ψ(d(x, Ωit+1)) log qit+1(x)dx+ω
∣∣∂Ωit+1

∣∣}
(6)

According to eq. (5) and (6), as background pixels are considered increasingly
far from the objects, the contributions of these pixels decrease, both in the
estimation of likelihoods at time t and in the energy at time t + 1. Notice that
a single background pixel may be included into more than one band, and thus
intervene in the short-sight background representations of several objects. For
instance, this is the case for the background part located between the two close
persons in fig. 1.

Fig. 1. Tracked objects endowed with their own short-sight perceptions of background.
Original image (left), segmented targets with surrounding bands (center) and back-
ground faded to black with respect to its contribution to perceptions (right)

4 Modeling temporal variation of color distribution

The second issue that we focus on is the possible overlapping of color distribu-
tions between regions, arising when objects share several colors, e.g the moving
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disks in fig. 3. Regardless of the perception of background, i.e. short-sighted or
global, such overlapping may be especially disturbing for two adjacent objects
(or an object and background). The two regions compete with each other with
respect to shared colors, and the evolution of pixels is biased towards the region
in which the likelihood is the highest. We tackle this problem by explicitly penal-
izing excessive variation of color distributions between successive frames, using
histogram distance. We rely on the reasonable assumption that the distribution
of each color within the tracked region and background exhibit small variations
between successive frames. Hence, we integrate into energy (6) a term penalizing
strong variations of region and band histograms between current and previous
times:

ESS-TVCD[Pt+1] =

n∑
i=1

{
−
∫
Ωi

t+1

log `it+1(x)dx−
∫
Bi

t+1

ψ(d(x, Ωit+1)) log qit+1(x)dx

+ω
∣∣∂Ωit+1

∣∣+ λ
(
J
(
hit+1, h

i
t

)
+ J

(
kit+1, k

i
t

))}
(7)

where J is a distance measure between histograms. According to this energy
formulation, no assumption is made on the static distribution of color, but only
on its variation. Moreover, we do not theoretically impose that object and back-
ground should have maximally different colors. Commonly employed measures
for PDFs are the Kullback-Leibler divergence, the Bhattacharyya coefficient, or
the Hellinger distance. In this paper, we chose to use the symmetrized Kullback-
Leibler divergence:

JKL (p, q) =

∫
C

(p(α)− q(α))(log p(α)− log q(α))dα

Originally, distances previously cited were designed to compare PDFs instead
of histograms directly. Over a given region, the PDF can be estimated by
normalizing the histogram by the region area, such that the sum of bins in the
PDF is unitary. However, as regards temporal variation of color occurrences, it
is relevant to work with non-normalized histograms. An undesirable property
of using PDFs to penalize color variation is that adding a pixel p into a region
slightly changes the distribution of all colors within this region. All bin values
are modified, regardless of color I(p). This may lead to unwanted behavior of
the evolving region, as it can be encouraged not to add a pixel which is actually
part of the object, if the energy increase on other bins exceeds the energy
decrease on bins near I(p). Using histograms naturally prevents this problem,
since the addition/removal of a pixel p does not change the bin value of colors
unrelated to I(p).

If computed on histograms rather than on PDFs, the distance value is mean-
ingful only if the two compared histograms result from regions having similar
areas. Indeed, if the tracked object undergoes negligible change in its area be-
tween successive frames - i.e. we have

∣∣Ωit+1

∣∣ ≈ ∣∣Ωit∣∣ - the PDF distance can be
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expressed directly in terms of the histogram distance. Considering the Kullback-
Leibler symmetrized divergence, the following simplification applies:

JKL

(
hit+1∣∣Ωit+1

∣∣ , hit∣∣Ωit∣∣
)
≈ 1∣∣Ωit∣∣JKL

(
hit+1, h

i
t

)
(8)

In most studied image sequences, the variation of the proportion of area covered
by the object or background is rather small compared to the total area of the
image. When comparing histograms instead of PDFs, the range of distance is
modified. In this case, the absence of normalizing expression 1/

∣∣Ωit∣∣ in eq. (8) can
be compensated by changing the weight associated with the temporal variation
term.

5 Optimization

Functionals over regions are most often optimized by gradient descent applied
on a level set-based reformulation, either of the Euler-Lagrange equation or of
the energy itself. Instead of doing so, we minimize energy (7) with the recent
variational region growing approach [14], which we embed in a greedy evolution
scheme. In addition to its purely algorithmic benefits - direct evolution of a set of
pixels instead of a real-valued level set function, no need for time step parameter,
ad hoc stopping criterion - it avoids to perform continuous calculus of variations.
The partition-dependent optimization problem is turned into a discrete labeling
problem, similar to Markov random fields. Let φ : D → {0, ..., n} be the labeling
function such that φ(x) = i means pixel x is assigned to region Ωi. Energy (7)
is discretized in space and reformulated as a functional of labeling φ (index t+ 1
is dropped for simplicity and δ is the Dirac delta function):

ESS-TVCD[φ] =

n∑
i=1

{
−
∑
x∈D

{
δ(φ(x)− i) log `i(x)− δ(φ(x))ψ(di[x, φ]) log qi(x)

}
+λ
(
JKL

(
hi[φ], hit

)
+ JKL

(
ki[φ], kit

))}
+ ω

∑
(x,y)∈G

δ(φ(x)− φ(y))

where background pixels are selected using δ (φ(x)). CliqueG is the set of couples
of neighboring pixels. When considered at time t + 1, distances to objects d as
well as histograms over objects h and bands k are now themselves functionals of
the labeling:

di[x, φ] = min
{y∈D | φ(y)=i}

‖x− y‖

hi[α, φ] =
∑
y∈D

δ(φ(y)− i)Kσ(It+1(y)−α)

ki[α, φ] =
∑
y∈D

δ(φ(y))ψ(di[y, φ])Kσ(It+1(y)−α)
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On the contrary, since they depend on histograms at time t, likelihood func-
tions `i and qi are independent from labeling φ. Starting from an initial con-
figuration taken as the labeling of partition Pt, current labeling is evolved ac-
cording to the region competition principle [15] until it leads to a local minimum
of ESS-TVCD. At each iteration, the evolution process considers a set of candidate
pixels A, containing pixels having at least one differently labeled neighbor, i.e. lo-
cated on inner or outer boundaries of objects. For each pixel x in A, we consider
a set of candidate labels L(x) which φ(x) may be switched to. Most of the time,
pixels are on the interface between two regions only, so that |L(x)| = 1. Triv-
ially, the set of candidate labels has more elements for pixels located at junctions
between more than two regions. The decision of switching labels of candidate
pixels is made according to the energy decreasing they lead to. Let ∆l

vE[φ] be
the induced energy variation of labeling φ when a single pixel v is switched to
new label l, provided that l ∈ L(v):

∆l
vE[φ] = E[φ̃]− E[φ] s.t. φ̃(x) =

{
l if x = v
φ(x) otherwise

(9)

Variation ∆l
vE[φ] is computed for all pixels v ∈ A and for all l ∈ L(v). Pixels

and associated labels such that ∆l
vE[φ] < 0 are subsequently sorted by increas-

ing variation. Among all pixels leading to energy decreasing, only the first p
pixels are actually switched, in order to maintain stability. In the experiments
we made, p was relatively small compared to |A|. It should be further noticed
that energy variation (9) is not computed as is. Otherwise, due to the nested
functionals over φ, the algorithmic complexity of a brute-force implementation
would be O(|D|2). In practice, it only requires O(w2 + σm) operations, where
the w2 term corresponds to the update of distance d in the circular neighborhood
of radius w around v, and the σm term is the cost of modifying histogram bins
over m-dimensional balls (with radii being functions of σ) around It+1(v).

6 Experiments and discusssion

We provide experimental results on both synthetic and natural image sequences.
Histograms were computed in the initial RGB space quantified to 64 levels per
channel. The standard deviation σ for kernel-based estimation was set to 0.75.
We considered the segmentation in the first frame as an available input. For each
dataset, weights λ and ω were tuned to achieve the best segmentation. In the
optimization process, the number p of modified candidate pixels at each iteration
was typically set to 20. Reported processing time for a single typical 720× 576
frame was in the order of 5s, with a C++ implementation running on an 2.6GHz
Intel Core2 Duo architecture.
Ground truth reference segmentations were available for datasets shown in figs. 2
and 3. Accuracy with respect to ground truth was quantified using the Dice sim-
ilarity index. The ’Toy crocodile’ dataset depicted in fig. 2 holds a single moving
object and a static background, each one having distinct colors. Fig. 3 depicts
the results obtained on the synthetic ’Moving disks’ sequence. With this dataset,
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we aim to evaluate the tracking ability of our model in the difficult case where
object and background have strongly overlapping color distributions. In addition
to color, the background contains non-tracked moving structures similar to the
target object in terms of shape and motion (random translations and rotations).
For both sequences with ground truth data, the obtained Dice percentage was
around 98%, which corresponds to fairly accurate segmentations.
The purpose of the experiment shown in fig. 4 is to demonstrate the perfor-
mance of our approach in case of both moving camera and dynamic object.
The local and fuzzy representation of background data allows our method to be
robust against gradual background changes generated by ego-motion. Fig. 5 de-
picts comparative results of multitarget pedestrian tracking on a dataset taken
from the PETS 2009 benchmark database1 with different energy configurations,
in order to show the improvements made by the short-sight modeling of back-
ground and the integration of temporal color histograms variation. The first
row shows tracking results obtained with minimization of energy (4), i.e. with
likelihood modeling over the entire background and no penalty on temporal
variation. In this case, the region competition quickly becomes unable to suffi-
ciently constrain the evolving regions and prevent leaking outside real objects.
Without constraints, once the region has included tiny parts of background in a
frame, it inevitably propagates in the background in subsequent frames. Replac-
ing the global modeling of background by our short-sight perception managed
to increase object/background color likelihood discrepancy and thus to reduce
unwanted propagation in the background, as shown in the second row. The in-
tegration of histogram temporal variation (third row) allows to advantageously
contrain regions within actual objects, as one would obtain by adding shape and
motion priors (see for instance results obtained in [5]). Hence, in comparison
with shape prior-based approaches, we believe that our method has potential in
the sense the tracking process is basically constrained by a data term without
additional application-dependent shape priors.

7 Conclusion

We introduced a short-sight perception modeling of background for joint segmen-
tation and tracking, focusing on the neighborhood of tracked objects to extract
consistent statistical data for accurate separation between objects and back-
ground. To account for temporal consistency, we integrated a novel data term
explicitly based on temporal variation of color distribution within objects and
local background regions. As a possible extension, the method proposed in this
paper can be easily modified to incorporate shape and motion priors. In this case,
additional terms can be added into the spatio-temporal model. Future work will
also include testing and evaluating the proposed model with other relevant color
spaces (YUV, Lab, etc.), especially those in which brightness and pure color
components are decoupled. We might incorporate motion estimation as well, in

1
http://www.cvg.rdg.ac.uk/PETS2009
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order that color variation and optical flow benefit from each other to perform
spatio-temporal segmentation.

Fig. 2. Single target tracking in case of few overlap between static background and
object color distribution

Fig. 3. Single target tracking in case of strong overlap between moving background
and object color distribution

Fig. 4. Single target tracking in case of ego-motion
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