
Detection of conflicting Compliance rules
Francois Hantry ∗,Mohand-Said Hacid †,Romuad Thion ‡

Université Claude Bernard Lyon 1,
LIRIS CNRS UMR 5205, France

Email: ∗ francois.hantry, †mohand-said.hacid, ‡Romuald.thion@liris.cnrs.fr

Abstract—Web-based dynamic systems and pres-
sured business environments need more than ever
formal methods to analyze evolving compliance rules.
Providing adequate tools to tackle the problem of
debugging conflicting temporal compliance rules is an
ongoing research topic. This problem is of paramount
importance to achieve automatic support for early
declarative design and to support evolution of rules in
contract-based or service-based systems. In this paper
we investigate the problem of extracting temporal
unsatisfiable cores in order to detect the inconsistent
part of a specification. We extend classical boolean
conflict driven solver to provide a new temporal
conflict driven solver for temporal logic.

I. INTRODUCTION

Web-based dynamic systems and pressured busi-
ness environments need more than ever tools to an-
alyze evolving compliance rules. Methods for com-
pliance requirements analysis have become critical
in many computer science domains (e.g., business
process management, service oriented computing,
e-commerce, component-based software). Compli-
ance rules stems from different sources: internal
ones are driven by strategical or financial con-
siderations [1]; external ones originate from cross
organisational contracts [2], regulations or laws
(e.g., Sarbanes-Oxley Act [3]). Formalization of
compliance rules offers many appealing property
for specification, planning, verification and moni-
toring. One relatively unexplored formal issue is the
analysis of a conflicting set of temporal compliance
rules. For instance, the figure 1 gives a toy set
of compliance rules. It will be used as a running
example in the paper. All these rules except the
last one originates from an ongoing supply contract.
Let us assume that the last one (r3.c) originates
from another internal requirement from the supplier.
It comes out that this new requirement entails a

conflict with rules (3.a) and rules (3.b). Precisely,
(r3.a) and (r3.b) state that the insurance must occur
once the payment have occured. However, if a
payment occurs, it is forbidden to subscript to any
insurrance by rule (r3.c). Thus, the addition of (r3.c)
leads to an inconsistency.

A conflict in rules means that no concrete busi-
ness process can satisfy the declarative specifica-
tion. This example shows the interest of automatic
detection of conflicting subsets of compliance rules.
This problem is critical for debugging declarative
specification [4], [5], [6], [7], handling conflicting
contract [8], or tackling unrealizable service com-
position [9].

• Order
(r1) The process begins by an Order

• Good and Payment
(r2) The occurrence of an order will lead to a
good delivery and a payment.

• Insurrance
– (r3.a) The purchaser will subscribe an

insurrance for protection of goods during
the transport.

– (r3.b) The purchaser must have payed
before any insurrance subscription.

– (r3.c) An insurrance subscription is for-
bidden After payment (new requirement).

Figure 1: Purchaser-supplier compliances rules

The sample contract is depicted using the
graphical formalism DecSerFlow [7] in Figure 2.
DecSerFlow is a declarative specification of
business process based on temporal logic as a
trade-off between compliance and flexibility. The
conflicting part of the specification is the relation

between Insurance and the Payment processes. It
is highlighted in Figure 2 (in yellow).
Due to the dynamic flavor of the web-based
modern economy, there is a need to express
dynamic pattern or complex temporal pattern, such
as reaction , number of occurrences, repetition,
fairness, absence, (periodic) deadline or cyclic
contract. There is need for efficient techniques able
to handle hundreds of temporal compliance rules.

Payment

Order

Good

Insurance

response

precedence

response

 1...N

 1...N

neg-response

 1...N

Figure 2: Conflicting DecSerFlow specification

There exist several formalisms to deal with time
such as LTL, MSO [10], TLTL , MTL [11]. These
logics underpine many of modern compliance lan-
guages and their associated theories and tools are
used to address problems related to verification [12],
[13], [14], service composition [9], goal oriented re-
quirement analysis [4], graphical design of property
patterns [15], [14], [7], [16].
We investigate the problem of efficiently extract-
ing temporal logic unsatisfiable core for debugging
compliance rules. Intuitively, an unsatisfiable core
is a conflicting subset of rules. We restrict ourselves
to LTL for which many results and efficient model
checking methods exist. However, the problem of

accurately detecting the conflicting LTL formulas
has not been solved yet [17]. Conflict driven meth-
ods exist for SAT-solver algorithms. They provide
quite efficient extraction of conflicting rules written
in propositional logic but have not been extended
to deal with the more expressive LTL.
In this paper, we propose a new temporal conflict
driven solver inspired by SAT-based ones. The proof
of unsatisfiability computed by the solver leads
to small unsatisfiable cores, enabling debugging.
Section 2 introduces some preliminaries and dis-
cusses the gap in model checking methods. Section
3 describes our design of a solver. Section 4 is
devoted to the extraction of unsatisfiable cores.
Section 5 provides a richer example with deadline.
We conclude in Section 6.

II. TECHNICAL BACKGROUND

A. Preliminaries

Definition (Syntax of LTL)
Let P be a non empty finite set of propositional

variables, and p ∈ P . A temporal logic formula is
built by means of the following rules:

p |A ∧B |A ∨B |¬A|X(A)
|G(A) |F (A) |AUB |AWB

Definition (Semantics of LTL) A linear time struc-
ture is an element M in (2P)N . ∀i ∈ N,
• (M, i) � A with A in P iff A ∈M(i)
• (M, i) � ¬A iff (M, i) 2 A
• (M, i) � A∧B iff (M, i) � A and (M, i) � B
• (M, i) � A ∨B iff (M, i) � A or (M, i) � B
• (M, i) � X(A) iff (M, i+ 1) � A
• (M, i) � G(A) iff ∀j ≥ i, (M, j) � A
• (M, i) � F (A) iff ∃j ≥ i, (M, j) � A
• (M, i) � AUB iff ∃j ≥ i, (M, j) � B and
∀k, i ≤ k < j, (M,k) � A

• (M, i) � AWB iff ∀j ≥ i, (M, j) � A or
(∃j ≥ i, (M, j) � B and ∀k, i ≤ k <
j, (M,k) � A)

The result of the translation of our running example
given figure 1 into LTL formulas is shown figure
3. It rests on the DecSerFlow translation. This
language is similar to the well known property
patterns [15]. For instance ¬iWp (rule r3.b) means

Rules LTL
r1 F (o)
r2 G(o⇒ (F (p) ∧ F (g)))
r3.a F (i)
r3.b (¬i)Wp
r3.c G(p⇒ G(¬i))

Figure 3: From rules to LTL

that either the payment will not happen and the
insurance subscription will never happen, either the
payment happens but the insurance subscription
does not occur until it occurs.

Definition (LTL SAT problem) A LTL formula φ
is satisfiable iff there exists a linear model M such
that (M, 0) � φ. Conversely, a LTL formula φ is
unsatisfiable iff there is no linear model M such
that (M, 0) � φ.

Definition (unsatisfiable core) An unsatisfiable
core1 of an unsatisfiable formula φ is a formula φ′

resulting from the substitution of some subformulae
of φ by TRUE and such that φ′ still remains
unsatisfiable.

Intuitively, a specification is satisfiable if a con-
crete business process can realize the specification.
For instance the formula of our running example
r1 ∧ r2 ∧ r3.a ∧ r3.b ∧ r3.c is not satisfiable. One
possible unsatisfiable core is TRUE ∧ TRUE ∧
r3.a ∧ r3.b ∧ r3.c. The remaining rules highlight
a conflict. It is critical to find a small (or ideally
a minimal) unsatisfiable core in order to detect the
cause of a conflict.
Traditional techniques for satisfiability of temporal
logic (e.g., [18], [19]) use tableau or Büchi automata
(eg. Figure 4). A state (fullstate) is built from
a prestate. A prestate is either the starting state
containing only the starting formula to study either
a state containing only formulas derived from the
precedent state. On figure 4, the top state is a
prestate, the others are fullstates. A fullstate is
computed by unwinding a formula and making a
choice for the disjunctive one. For instance, the
formula F (i) standing for the future occurrence
of the insurance subscription is unwound by i ∨

1We assume that any formula is in Negative Normal Form.

XF (i). Similarly the occurrence of G(¬i) implies
the occurrence of ¬i. Moreover, each disjunction
leads to a choice. In Figure 4, the second state
corresponds to the choice of p for the disjunction
p ∨ (¬i ∧X(¬iWp)).

Theorem 1: A formula is satisfied iff there ex-
ists a path (finite or infinite) such that any occur-
rence of Future and Until modal operator fullfils its
corresponding promise later (in the future) in the
path.

In Figure 4, the part of the automata shows only
unsatisfiable paths (infinite in this case) since each
possible path contains a Future F (i) but does not
realize the promise i. The argument is that a path
will reach a Strongly Connected Component (SCC).
When reaching a SCC a path will remain in forever.

F (i), ¬iWp
G(p⇒ G(¬i))

F (i), i ∨X(F (i)), X(F (i))
¬iWp, p ∨ (¬i ∧X(¬iWp)), p
G(p⇒ G(¬i)), ¬p ∨G(¬i)
G(¬i), ¬i, XG(¬i) ,XG(p⇒ G(¬i))

F (i), i ∨X(F (i)), X(F (i))
G(¬i),¬i , XG(¬i),
G(p⇒ G(i)), ¬p ∨G(¬i),
XG(p⇒ G(¬i))

F (i), i ∨X(F (i)), X(F (i))
G(¬i),¬i , XG(¬i),
G(p⇒ G(i)), ¬p ∨G(¬i),
¬p , XG(p⇒ G(¬i))

Figure 4: Deep first search model checking

B. A gap in current model checking tools

Basic local techniques use on the fly deep first
search of fair loop or of strongly connected compo-
nent checking the promise fulfillment. Basic global
techniques use fixpoint computation over all the
states of the automata [20]. Recently the use of
BDD [21] and SAT-solver for Bounded Model
Checking (BMC) [22] as implicit method have
improved performance.

Modern model checking (eg. (BMC) [22], par-
allel model checking [23]) techniques efficiently
provide shortest counter-examples for debugging.
However, they fail to debug hundreds compliance
rules containing inconsistent ones [17]. For in-
stance, if a counter-example is found while a new
rule is introduced, the business process may be
modified, but there is no warranty that remaining
rules would be satisfied. This is even impossible in
the case of a set of inconsistent rules.

In some logics, it is usual to produce an un-
satisfiable core for debugging (eg. [24], [25]). In
fact, albeit it is possible to efficiently compute an
unsatisfiable core for propositional logic [26], [27],
or minimal inconsistent constraints for Constraint
Solving Problem [28], for Sat Modulo Theory [29],
or for Description Logic [30], it has been shown that
efficient computation of small unsatisfiable core of
a temporal logics formula is still an open problem
[17]. Moreover, no modern method is devised to
quickly decide if hundreds of clauses are satisfiable
[31]. This lack of efficient method for computing
small unsatisfiable core is mainly due to two points:
(1) an explicit method suffers from an exponential
blow up of automata size [31], and (2) the ad-
hoc usage of boolean sat-solver for Unbounded
Model Checking (UMC)[22],[32],[33] completely
disregard reachability search algorithm in tableau
or Büchi automata. The use of Büchi automata
information for UMC is proposed in [34] to shrink
the size of the input problem from a syntactic to a
semantic form. Other authors (e.g., [35]) provided a
similar idea but applied it only to finitely falsifiable
formula. Note that boolean UMC solvers always
enable revisiting a state until exploring all loop
paths of a length to be determined using the size
of the Buchi automata.

Only a few techniques (e.g., [32]) try to avoid
revisiting states as using induction for safety and
Craig interpolant (e.g., [33]). However, these last
techniques assume the translation of a LTL formula
to a safety problem, which is in general not effi-
cient for big size formula [36]. In the case of the
interpolant technique, the use of resolution induces
the use of large memory space, which contradicts
the cause for introducing DPLL [37] rather than DP

solver [38].
A particular case of unsatisfiable core is vacuity

checking [39]. Vacuity checking provides a Model-
valid strengthened specification formula by substi-
tuting positive polarity subformula by FALSE (resp.
negative subformula by TRUE) but usually needs
several model checking tests. Some approaches
(e.g., [40]) use Bounded Model Checking (BMC)
and reuse a boolean SAT-solver method to extract
cores but get only a partial result. Other approaches
(e.g., [41]) extract from model checker (like Büchi
automata like) a proof to detect vacuity result.

Finally, to the best of our knowledge, the author
in [17] is the only one who investigated the ex-
traction of unsatisfiable core without model. How-
ever, the provided algorithms use selector variable
methods, BMC or expensive unwinding of tableau.
Those methods suffer from the above mentioned
drawbacks.

To summarize, explicit techniques are not effi-
cient and implicit SAT-based techniques are ad-
hoc and usually not efficient to prove properties or
to reveal conflicts. However, works in the nineties
[42], [43] about resolution for temporal logic pro-
vide quite good candidate method to prove unsat-
isfiability and extract cores. It is well known that
resolution underpins classical SAT-solvers and it
is considered as a mean to compute unsatisfiable
cores. The main drawback of this resolution for
temporal logic is that it is space consuming and the
state search is backward style. However, it provides
a temporal conflict analysis which is missing in
modern methods and would provide a pruning state
space method and a way to compute the core.
Thus, a first step is to design a temporal conflict
driven solver. We then efficiently derive a small
unsatisfiable core.

III. A TEMPORAL CONFLICT DRIVEN SOLVER

The temporal conflict driven solver is a combi-
nation of deep first search of SCC in automata [44]
and of boolean SAT-solver. It uses unit rule prop-
agation method, watcher techniques and classical
conflict learning [45]. It also uses a new temporal
conflict driven method.

A. Propagation

Unit rule propagation (DPLL) [37] is a enhance-
ment of resolution method DP [38]. In order to
reuse the unit rule propagation method (we describe
later) of SAT-solver, we slightly change the unwind-
ing of formulas in state of automata (see figure 5).
The goal is to get a set of disjunctive formulas. For
instance G(¬i) that stands for the absence of the
insurance subscription is unwound by G(¬i)⇒ ¬i.
We assume, for simplicity (but w.l.g), that any ¬
symbol of any subformulae has been pushed until
reaching propositional variables (Negative Normal
Form). Let Set be a set of formulas to unwind.
The algorithm begins by putting the formulas of
the prestate in Set. Furthermore, each formula ψ in
Set is unwound following the rules of figure 5.

• If ψ = ψ1∧..∧ψs and ψj is not a conjunction,
then add ∀j the formulae ψ ⇒ ψj to the state
and add ψj to Set

• If ψ = ψ1 ∨ ψ2... ∨ ψr and ψj is not a
disjunction, then add ψ ⇒ (ψ1 ∨ ... ∨ ψr) to
the state and add ψj to Set

• If ψ = F (ψ′) then add ψ ⇒ ψ′ ∨X(ψ) to the
state and add ψ′ to Set

• If ψ = G(ψ′) then add ψ ⇒ ψ′ and ψ ⇒
X(ψ) to the state and add ψ′ to Set

• If ψ = (ψ′)Uψ′′ then add ψ ⇒ (ψ′′ ∨ (ψ′ ∧
X(ψ))) to state and ψ′′ and ψ′∧X(ψ) to Set

• If ψ = (ψ′)Wψ′′ then add ψ ⇒ (ψ′′ ∨ (ψ′ ∧
X(ψ))) to state and ψ′′ and ψ′∧X(ψ) to Set

Figure 5: Unwinding into disjunctions

Intuitively, among the resulting formulas of the
unwound state, the unit rule propagation consists in
taking a non disjunctive formula f and trying to find
its negation in one of the operand of a disjunctive
formula. If it is found, this negation is then unsat-
isfiable, and temporarily ‘erased’. For instance in
figure 8 the occurrence of G(¬i) ‘erase’ the operand
¬G(¬i) in the unwound formula G(¬i) ⇒ ¬i.
While it remains only one operand in the disjunc-
tion, this ‘unit’ formula can be propagated and so
on. Then the necessary occurrence of XF (i) is
entailed by the occurrence of both ‘unit’ formulas

F (i) and ¬i applied to the disjunction F (i) ⇒
(i ∨XF (i)). Watcher technique uses a lazy access
to formulas to boost the unit rule propagation. The
principle is just to watch only two operands per
disjunction.

B. Classical conflict handling

It may also happen that a path ends in a state
with a formula and its negation as for instance an
occurrence of an order o and the absence of it ¬o.
In this case, the algorithm analyses the cause of the
conflict as in boolean SAT-solver by backtracking
along the recorded propagation of occurrences. We
refer to [45] for more details about backtracking in
SAT-solver. We now present the main method.

C. Basic Solver

Figure 6 shows the main method of the algorithm
called Solver. We encode the nature of the state
(nstate) of the automata (unwound state (= 0),
prestate (= 1), prestate to unwind (= 2)). The
solver will be, in the case (= 2), populated by
new formulas by unwinding. In the other cases, a
unit rule and classical conflict detection is launched.
A classical backtrack is triggered in case of a
conflict, otherwise if it is possible, a choice of
formula following a heuristic is done. Once all the
choices have been made (fullstate) then a SCC-
search function is called. Otherwise the Solver
is recursively called. The SCC-search function is
similar to the computation of strongly connected
components and uses deep first search numbers
(see, for more details, [44]). If a SCC is found to
not fulfill one promise then the function triggers an
analysis of temporal conflict.

D. Temporal conflict handling

In order to avoid to revisiting the same conflict
in other states the so called conflict learning [45]
method is drastically used in boolean SAT-solvers.
However, such analysis does not hold in SCC,
since the flavor or the conflict is temporal. We
propose to add a temporal conflict detection and
learning (see Figure 8). While infinite unsatisfiable
path is found reaching a SCC -in the figure 4
it corresponds to the both below states- the path
necessarily does not fullfil a promise. Then an

Solver ::
if nstate=2 then

unwind
else

unit-rule and classical-conflict-detection
if conflict then

backtrack
end if
if nstate = 0 then

if no conflict then
make a choice of literal

end if
if fullstate then

SCC-search
else

Solver
end if

else
SCC-search

end if
end if

Figure 6: LTL-solver

analysis of the cause of the non fullfilment of the
promise is done into the SCC. Figure 7 shows the
detection algorithm of the temporal conflict and
figure 8 shows the SCC2 with the cause (depicted in
color blue) of the non fullfillement of the promise
of the insurance subscription i. In the SCC, the
algorithm computes a backward fixpoint from the
negation of the promise ¬i for any states along the
recorded propagations. After reaching the fixpoint
containing relevant formulae (in figure 8 the mul-
tiset of {G(¬i),¬i,XG(¬i), G(¬i),¬i,XG(¬i)}
) we can find G(¬i) as the ‘cause’ of the non
fullfilment at the root state of the SCC. Then, the
method erases the states of this SCC. Trigger of a
classical backtracking at precedent state (the second
state Figure 4) starting from the conflicting for-
mulae F (i) and G(¬i). We also learn the formula
¬F (i) ∨ ¬G(¬i).

E. Heuristics

Our algorithm is compatible with many heuristic
of SAT-solver [45]. The early choice of formula af-
fecting many disjunctive ones is of course possible.

2For convenience the left-right neighbouring is now switched
to a above-below one

Cause ::
INI: Vector= ¬Promise
while ∃e ∈ scc ∧ e not marked do

mark e ; v = e.parents ∩ scc
while l ∈ v ∧ l not marked do

Vector.push(l)
end while

end while
learn(Vector, promise)
erase SCC
Backtrack

Figure 7: Analysis of the temporal conflict

Classical disjunctive subsumption is possible and
purging of learned disjunction is also allowed while
space problem happens. To quickly find a temporal
conflict (eg. on F (i)), we first choose the promise
i rather than postponing it to a strict future XF (i).

F. Correctness and completeness of the algorithm

Theorem 2: The algorithm terminates, it is cor-
rect and complete.
sketch of the proof:
Our algorithm is similar to a deep first search of
satisfiable SCC in a LTL tableau as in [19]. The
main difference is that we prune the state space
by learning boolean and temporal conflict. Another
important issue is the use of globally learned dis-
junction (holding at any state of the tableau or any
time). On the contrary to boolean learned formula 3

which holds only in the presence of original clauses,
the learned formula of the algorithm records all the
necessarily formulas to hold globally.

IV. EXTRACTION OF UNSATISFIABLE CORE

In order to compute unsatisfiable core from the
algorithm we reuse the idea of [46]. The method
is based on the following notifications: (1) the
existence of a learned formula which is learned
from boolean conflict is the set of formulas involved
while backtracking and learning, (2) the existence
of learned formula which is learned from temporal
conflict is, for each state of the corresponding SCC,
the set of formulas in the state computed while

3These formulas are disjunction of literals and called clauses

F (i) G(¬i) ¬p G(p⇒ G(¬i))

XF (i) ¬i XG(¬i) XG(p⇒ G(¬i))

F (i) ¬i G(¬i) G(p⇒ G(¬i))

XF (i) XG(¬i) XG(p⇒ G(¬i))

Figure 8: Detection of conflicting subformulae

the backward fixpoint computation. Recording the
history of all these implications as in [46], we
can later efficiently extract, by backwarding from
the terminal conflict4, original formulas that are
involved in the unsatisfiability (see Figure 9). If φ

F (i) i G(¬i) ¬i

¬i ¬iWp p ¬G(¬i) ∨ ¬F (i)

¬p G(¬i) G(p⇒ G(¬i))

F (i) i p⇒ G(¬i))

FALSE

learning

Figure 9: Conflicting subformulae

is an unsatisifiable formula, S the set of involved
formulae5, the subformulae f of φ occuring in S or
being an operand of a disjunction of S are exactly
those subformulae involved in the conflict. We
return the corresponding unsatisfiable core formula.

φ′ = φ(f ← TRUE, f /∈ S ∪ op∨(S))

In Figure 9, a rectangle represents a conflict and
contains the involved subformulae and learned for-
mulae. The arrow shows learning link between
conflict and formulae. Each line between subfor-
mulae of φ shows a relation of subformulae. i

4the algorithm terminates on a conflict iff the formula is
unsatisfiable

5S may contain unwound formulae

Conflicting Rules LTL core
T
T

r3.a F (i)
r3.b (¬i)Wp
r3.c G(p⇒ G(¬i))

Figure 10: Conflicting rules and LTL core

occurs because it is a subformula of F (i) and
because it is an operand of the unwound formula
F (i) ⇒ i ∨ XF (i) involved in the temporal con-
flict. The above rectangle represents the involved
subformulae in the first temporal conflict of our
running example figure 8. The second rectangle
shows a second temporal conflict (not shown in
our running example). This last conflict uses the
learned formula ¬G(¬i) ∨ ¬F (i) required by the
first conflict. The second conflict leads finally to
a contradiction. By backwarding from FALSE, we
can extract all the subformulae involved in the
conflict of the specification. Our method provides
an unsatifiable core of the running example figure
10. The algorithm can also deal with deadline and
provide fine unsatisfiable core as shown in the
following section.

V. COMPLEX EXAMPLE

We now present an example of debugging a
complex contract with deadline. The contract Figure
11 specifies a composite business process. Some un-
derpining temporal patterns are classical as reaction
or deadline.

However the rule (c9) is not usually found in
current property pattern. This a so called weak
fairness. Intuitively, It means that until an event, it
is possible to trigger infinitely event. Such pattern
can be found in [3]. We obtain the translation in
LTL figure 12.

Running our solver on this example allows to
extract the following unsatisfiable core figure 13.
Even if additional clauses are added, the result
remains the same.

The unsatisfiable core explains that inconsistency
is involved by rule (c1), (c2), (c4), (c5), (c7).
Further, only assuming the occurrence of a payment
without information about the non-repudiation is

• (c0) An order must occur
• (c1) A payment with non-repudiation must

occcur
• (c2) An insurance submitting must occur
• (c3) A good delivery must occur.
• (c4) Insurance before payment is forbidden.
• (c5) If a payment occurs, it must occur only

after the third day from the order.
• (c6) Delivery before Payment is forbidden .
• (c7) After two days from the order the Insur-

ance subscription is forbidden
• (c8) A Golden customer must receive items

before three days from the time the payment
is accomplished.

• (c9) From the order, customer can change
multiple times its order until good delivery

Figure 11: Complex contract

Rule LTL translation
c0 F (o)
c1 F (p ∧ nr)
c2 F (i)
c3 F (g)
c4 (¬i)W (p)
c5 (¬p)W (o ∧ ¬p ∧X(¬p) ∧XX(¬p))
c6 (¬g)W (p)
c7 G(o⇒ XX(G(¬i))
c8 gold⇒ (G(p⇒ (Xg ∨XX(g)))
c9 G(o⇒ ((ch?⇒ F (o))Ug))

Figure 12: Complex LTL rules

sufficient to imply a conflict. Thus, the algorithm
enables to extract precise subconstraint into a rule.

VI. CONCLUSION

In order to detect which compliance rules are
conflicting, we have provided a temporal conflict
driven solver for LTL. We have shown how to
extract unsatisfiable core from it. We apply our
method to debug a DecSerFlow example and
also to debug a contract with deadline. Detecting
conflicts in rules is critical for human interactive
contract management systems. Moreover, our
method pinpoints temporal issues in any automatic
tool which is sensitive to the consistency of many

C-Rule LTL core
T

c1 F (p ∧ T)
c2 F (i)

T
c4 (¬i)W (p)
c5 (¬p)W (o ∧ ¬p ∧X(¬p) ∧XX(¬p))

T
c7 G(o⇒ XX(G(¬i))

T
T

Figure 13: Conflicting rules

evolving heterogeneous policies such as regulatory
laws, internal business rules, security or privacy.
Part of our future work is to use the method in
order to highlight which part (eg. task, logical
constraints...) of an ongoing business process
(given in language such as BPEL or BPMN) is
conflicting with a given rule. This is actually not
provided by getting a counter example, as it is
done in current compliance checking.

Temporal logics may be mixed with deontic
logics for contract formalization [47], [48], [8].
The extension of our method to deontic modality
used in contracts appears straightforward, and we
are now focusing on this issue. Although LTL
express deadline properties, it lacks succinteness.
On the contrary real time temporal logic use region
abstraction to get efficient result. Future work will
tackle the problem of unsatisfiable core for real time
logic. Another interesting issue is to enhance the
performance by using parallel processing.

REFERENCES

[1] R. G. Ross, “Expressing business rules,” in SIGMOD
Conference, 2000, pp. 515–516.

[2] Z. Milosevic, S. W. Sadiq, and M. E. Orlowska, “Towards
a methodology for deriving contract-compliant business
processes,” in Business Process Management, 2006, pp.
395–400.

[3] United States Code, “Sarbanes-oxley act of 2002, pl 107-
204, 116 stat 745,” Codified in Sections 11, 15, 18, 28, and
29 USC, July 2002.

[4] A. Fuxman, J. Mylopoulos, M. Pistore, and P. Traverso,
“Model checking early requirements specifications in tro-
pos,” in RE, 2001, pp. 174–181.

[5] M. P. Papazoglou and B. Kratz, “A business-aware web
services transaction model,” in ICSOC, 2006, pp. 352–364.

[6]

[7] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani,
P. Mello, and S. Storari, “Declarative specification and
verification of service choreographiess,” TWEB, vol. 4,
no. 1, 2010.

[8] S. Fenech, G. J. Pace, and G. Schneider, “Automatic
conflict detection on contracts,” in ICTAC, 2009, pp. 200–
214.

[9] A. Marconi and M. Pistore, “Synthesis and composition of
web services,” in SFM, 2009, pp. 89–157.

[10] E. A. Emerson., “Temporal and modal logic,” Handbook of
theoretical computer science, vol. B : formal models and
semantics, 1990.

[11] R. Alur and T. A. Henzinger, “Logics and models of real
time: A survey,” in REX Workshop, 1991, pp. 74–106.

[12] A. Awad, G. Decker, and M. Weske, “Efficient compliance
checking using bpmn-q and temporal logic,” in BPM, 2008,
pp. 326–341.

[13] A. Ghose and G. Koliadis, “Auditing business process
compliance,” in ICSOC, 2007, pp. 169–180.

[14] K. Xu, Y. Liu, and C. Wu, “Bpsl modeler - visual notation
language for intuitive business property reasoning,” Electr.
Notes Theor. Comput. Sci., vol. 211, pp. 211–220, 2008.

[15] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns
in property specifications for finite-state verification,” in
ICSE, 1999, pp. 411–420.

[16] C. Giblin, A. Y. Liu, S. Müller, B. Pfitzmann, and X. Zhou,
“Regulations expressed as logical models (realm),” in JU-
RIX, 2005, pp. 37–48.

[17] V. Schuppan, “Towards a notion of unsatisfiable cores for
ltl,” in FSEN, 2009, pp. 129–145.

[18] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple
on-the-fly automatic verification of linear temporal logic,”
in PSTV, 1995, pp. 3–18.

[19] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli, “A
decision algorithm for full propositional temporal logic,”
in CAV, 1993, pp. 97–109.

[20] O. G. Edmunds Clarke and D. A. Peled, “Model checking,”
MIT Press, 1999.

[21] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang, “Symbolic model checking:1020 states and
beyond,” Inf. Comput., vol. 98, no. 2, pp. 142–170, 1992.

[22] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu,
“Symbolic model checking using sat procedures instead
of bdds,” in Proceedings of the 36th annual ACM/IEEE
Design Automation Conference, ser. DAC ’99. New York,
NY, USA: ACM, 1999, pp. 317–320. [Online]. Available:
http://doi.acm.org/10.1145/309847.309942

[23] J. Barnat, L. Brim, and P. Rockai, “Scalable multi-core ltl
model-checking,” in SPIN, 2007, pp. 187–203.

[24] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler,
“Using unsatisfiable cores to debug multiple design
errors,” in Proceedings of the 18th ACM Great Lakes
symposium on VLSI, ser. GLSVLSI ’08. New York,
NY, USA: ACM, 2008, pp. 77–82. [Online]. Available:
http://doi.acm.org/10.1145/1366110.1366131

[25] E. Torlak, F. S.-H. Chang, and D. Jackson, “Finding
minimal unsatisfiable cores of declarative specifications,”
in FM, 2008, pp. 326–341.

[26] L. Zhang and S. Malik, “Extracting small unsatisfiable
cores from unsatisfiable boolean formula.” in In Prelim.

Proc. Sixth Intl. Conf. on Theory and Applications of
Satisfiability Testing (SAT’03), 2003.

[27] I. Lynce and J. P. M. Silva, “On computing minimum
unsatisfiable cores,” in SAT, 2004.

[28] É. Grégoire, B. Mazure, and C. Piette, “On finding min-
imally unsatisfiable cores of csps,” International Journal
on Artificial Intelligence Tools, vol. 17, no. 4, pp. 745–
763, 2008.

[29] A. Cimatti, A. Griggio, and R. Sebastiani, “A simple and
flexible way of computing small unsatisfiable cores in sat
modulo theories,” in SAT, 2007, pp. 334–339.

[30] S. Schlobach and R. Cornet, “Non-standard reasoning ser-
vices for the debugging of description logic terminologies,”
in IJCAI, 2003, pp. 355–362.

[31] K. Y. Rozier and M. Y. Vardi, “Ltl satisfiability checking,”
STTT, vol. 12, no. 2, pp. 123–137, 2010.

[32] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety
properties using induction and a sat-solver,” in FMCAD,
2000, pp. 108–125.

[33] K. L. McMillan, “Interpolation and sat-based model check-
ing,” in CAV, 2003, pp. 1–13.

[34] E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman,
“Computational challenges in bounded model checking,”
STTT, vol. 7, no. 2, pp. 174–183, 2005.

[35] R. Armoni, S. Egorov, R. Fraer, D. Korchemny, and
M. Y. Vardi, “Efficient ltl compilation for sat-based model
checking,” in ICCAD, 2005, pp. 877–884.

[36] A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, and
V. Schuppan, “Linear encodings of bounded ltl model
checking,” CoRR, vol. abs/cs/0611029, 2006.

[37] M. Davis, G. Logemann, and D. Loveland, “A
machine program for theorem-proving,” Commun. ACM,
vol. 5, pp. 394–397, July 1962. [Online]. Available:
http://doi.acm.org/10.1145/368273.368557

[38] M. Davis and H. Putnam, “A computing procedure
for quantification theory,” J. ACM, vol. 7,
pp. 201–215, July 1960. [Online]. Available:
http://doi.acm.org/10.1145/321033.321034

[39] O. Kupferman and M. Y. Vardi, “Vacuity detection in
temporal model checking,” STTT, vol. 4, no. 2, pp. 224–
233, 2003.

[40] J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik,
“Exploiting resolution proofs to speed up ltl vacuity detec-
tion for bmc,” in FMCAD, 2007, pp. 3–12.

[41] K. S. Namjoshi, “An efficiently checkable, proof-based
formulation of vacuity in model checking,” in CAV, 2004,
pp. 57–69.

[42] M. Fisher, “A resolution method for temporal logic,” in
IJCAI, 1991, pp. 99–104.

[43] C. Dixon, M. Fisher, and H. Barringer, “A graph-based
approach to resolution in temporal logic,” in ICTL, 1994,
pp. 415–429.

[44] R. E. Tarjan, “Depth-first search and linear graph algo-
rithms,” SIAM J. Comput., vol. 1, no. 2, pp. 146–160, 1972.

[45] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik, “Chaff: Engineering an efficient sat solver,” in
DAC, 2001, pp. 530–535.

[46] L. Zhang and S. Malik, “Validating sat solvers using an
independent resolution-based checker: Practical implemen-
tations and other applications,” in DATE, 2003, pp. 10 880–
10 885.

[47] J. Broersen, F. Dignum, V. Dignum, and J.-J. C. Meyer,
“Designing a deontic logic of deadlines,” in DEON, 2004,
pp. 43–56.

[48] F. Dignum and R. Kuiper, “Combining dynamic deontic
logic and temporal logic for the specification of deadlines,”
in HICSS (5), 1997, pp. 336–346.

