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Abstract. Current approaches to fragmentation of services are not business-
oriented. They are not based on a real temporal query language, and in general, 
they return execution traces instead of parts of the process. We propose in this 
work an approach for fragmentation based on model checking and slicing 
techniques. Fragmentation is based on business rules expressed in LTL. In our 
work the fragmentation does not consist in splitting a web service composition 
in a set of fragments. It is defined as the seeking of a single fragment that 
contributes to the verification of a business rule. 
Keywords: process fragmentation, web services, model checking, business 
processes, temporal logics 

A Service-Based Application (SBA) is made of a number of possibly independent 
services, available on the network. The services perform the desired functionalities of 
the architecture. Such services could be provided by third parties, not necessarily by 
the owner of the service-based application. A service-based application displays a 
difference with respect to a component-based application: while the owner of the 
component-based application also owns and controls its components, the owner of a 
service-based application does not own, in general, the component services, nor it can 
control their execution [35]. 

Let us consider an example of a process of online purchase. The system is 
implemented as a complex composition of web services. The process is composed by 
a subset of features: payment, bidding, ordering …. We want to secure the payment 
process without affecting other functionalities. It is interesting to determine the part of 
the payment that work on the whole process which can be very difficult when the 
process is complex. This can be seen as a fragmentation process by answering a 
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question like "what is the part who manage the payment?". Benefits of fragmentation, 
among others, are analysis and reusing. 

The goal of this work is the fragmentation of a business process by using business 
rules expressed in linear temporal logic. Given a BPEL composition of web services, 
we want to determine the part of a process that contributes and ensure the verification 
of the business rules. 

A fragment is a subset of activities of a composition of web services. 
Fragmentation [34] is the act of creating fragments out of one service composition by 
applying a fragmentation technique. A fragmentation technique is a method to 
perform fragmentation according to some fragmentation criteria. The fragmentation 
criteria may be described in natural language, e.g. “the resulting fragments group the 
activities according to who executes them”. Fragmentation techniques combine the 
following two steps [34]: 

─ Fragment Identification identifies which elements belong to which fragment. 
─ Fragment Severing removes the elements comprised in a fragment from the 

service composition, possibly substituting them in the service composition with 
other elements that were not initially included. 

Current techniques of fragmentation can be divided into two classes: query 
languages for fragmentation and fragmentation for migration, optimization, 
transaction and performance. A Query language for fragmentation groups slicing [37], 
LTL [13], BPQL [3] and goal oriented fragmentation [31]. One unexplored problem 
is temporal slicing. Current approaches are not business oriented. They are not based 
on real temporal query languages. Fragmentation is generally used for migration and 
performance, the fragment is not determined regarding business rules and in general, 
they return execution traces instead of part of the process. To address these 
limitations, we propose an approach to produce fragments using business queries, this 
query is based on a temporal logic. Our approach is based on model checking. We try 
to make a mix of slicing and LTL query language. 

Our work is an attempt to define fragment model compositions of web services, the 
two contributions are: 

─ Proposal of an approach of fragmentation based on business rules. 
─ Refinement of a fragment to differentiate between two types of statements in a 

fragment. 
The rest of the paper is organized as follows. We will give definitions to introduce 

some concepts in the next section. We discuss previous work in section 3. Section 4 is 
the core of our work. We will define a model of fragmentation and distinguish 
between two constructs of a fragment. In section 5, we will summarize our approach 
and present future work. 
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2 Preliminaries 

2.1 Temporal logics 

Temporal logics [13] were originally developed to study patterns of truth that 
depend on the evolution of the world. It provides a formal system for qualitative 
description and reasoning about how the truth values change over time. 

The temporal logic is well suited to describe programs that don’t have a final 
statement as operating systems, which cannot be described using the classical logic. It 
is used in virtually all aspects of design of concurrent programs. 

The basic temporal operators are: Fp (sometime p) Gp (always p), Xp (next time p) 
and pUq (p until q). Several types of temporal logics have been proposed, the most 
used ones are the linear temporal logic [13] and branching temporal logic [13]. 

2.1.1 Linear Temporal Logic (LTL) 

In this type of logic, the system is modeled as a sequence of states, the evolution of 
time is linear, it is considered as discrete. To simplify the clock starts at the initial 
state which has no predecessor and infinite in the future. 

Let AP be an underlying set of atomic proposition symbols. We can then formalize 
the notion of a timeline as a linear time structure M = (S, x, L) [13] where: 

─ S: is a set of states. 
─ x (N->S) : is an infinite sequence of states. 
─ L (S->PowerSet(AP)) : is a labelling of each state with the set of atomic 

propositions in AP true at the state. 
This type of temporal logic is mainly used in concurrent programming, the 

formulas are defined by induction [13]: 
─ Each atomic proposition p is a formula. 
─ If p and q are formulae then p ∧ q and ¬p are formulae. 
─ If p and q are formulae then p ∪ q and Xp

Let x
 are formulae. 

i be the path suffix si, si+1, si+2

─ M, x ╞ p: in structure M formula p is true in timeline x. 

… The semantics of LTL can be summarized 
as: 

─ x ╞ p if p ∈ L(s0
─ x ╞ p ∧ q if x ╞ p and x ╞ q 

), for atomic proposition p. 

─ x ╞ ¬p if it is not the case that x ╞ p 
─ x ╞ p U q, read as "p until q" asserts that q does eventually hold and that p will 

hold everywhere prior to q : if ∃j(xj ╞ q and ∀k<j (xk ╞ p)) x ╞ Xp if x1

─ X
 ╞ p  

p
─ F

, read as "next time p" holds now if p holds at the next moment. 
q, read as "sometimes q" or "eventually q" and meaning that at some future 

moment q is true : x ╞ Fq si ∃j (xj

─ G
 ╞ q) 

q, read as "always q" or "henceforth q" and meaning that at all future moments 
q is true : x ╞ Gq si ∀j (xj ╞ q). 
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We say that a formula p is satisfiable if there exists a linear time M = (S, x, L) such 
that: x ╞ p. M is a model for p. 

LTL is used to prove that System (structure M) satisfies (is a model) for a period a 
set of properties (a set of formulae). 

2.1.2 Branching temporal logic 

The structure of time in this type of logic corresponds to an infinite tree, from a 
given state, we can have several possible future states. Two temporal operators have 
been added: Ap (for all future) which means that for all possible paths p is true and Ep

The temporal structure is formalized as M = (S, R, L) where: 

 
(For Some future) which means that there is at least one path p which is true. 

─ S: is the set of states. 
─ R: is a total binary relation ⊆ S × S. 
─ L (S->PowerSet(AP)) : is a labelling which associate with each state s an 

interpretation L(s) of all atomic proposition symbols at state s. 
M is viewed as a labeled graph (Kripke structure), with S as a set of nodes, all arcs 

R and L of the labeled nodes. 

2.1.3 Formalization of business rules with LTL  

A business rule [4] is an assertion that defines an aspect of business. We are 
interested in this work to a subset of business rules, the rules expressible in LTL [29, 
33]. The advantage of using LTL is that much of business rules are based on time 
which is taken in consideration by the temporal logic. One can for example express 
business rules of type "delivery of the product should not exceed two days" by 
"¬period_exceedU(product_delivery∧¬period_exceed)". 

2.2 Model Checking 

The problem of model checking [7] is to check if a temporal structure M defines a 
model for a temporal formula p. The model checking can create interesting 
applications for automated verification of concurrent systems. 

Model checkers typically have three main components: (1) a specification 
language, based on propositional TL, (2) a way of encoding a state machine 
representing the system to be verified, and (3) a verification procedure, that uses an 
intelligent exhaustive search of the state space to determine if the specification is true 
or not. If the specification is not satisfied, then most model checkers will produce a 
counterexample execution trace that shows why the specification does not hold. It is 
impossible to overestimate the importance of this feature. The counterexamples are 
invaluable in debugging complex systems [6]. 
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There are three main families of model checking algorithm: Symbolic Model 
Checking with ordered binary decision diagrams (OBDDs), Partial Order Reduction 
and Bounded Model Checking with SAT. Details can be found in [6]. 

Several model checkers has been developed. Examples are: NuSMV which is a 
symbolic model checker, and SPIN which is a partial order reduction model checker. 
In this work, we will use the Spin model checker [20] which is more appropriate for 
concurrent systems [23]. Spin [36] is in the family of Partial Order Reduction model 
checker. 

The specification language underlying SPIN is called PROMELA. The name SPIN 
was originally chosen as an acronym for Simple PROMELA Interpreter. PROMELA 
is a specification language for parallel asynchronous systems. It allows describing 
concurrent systems, especially communication protocols. 

2.2.1 Verification of web services 

The general principle of the work done in the verification of compositions of Web 
services is the abstraction of the latter in a formal model, then from such an 
abstraction to the language of the chosen model checker. The well known model 
checkers are SPIN and NuSMV. 

Among the projects undertaken in the field, we can cite the work of Zhao et al. 
[42], who proposed a formal model for verification of choreography of web services. 
They translate choreography to orchestration then to PROMELA for using SPIN 
model checker. Fisteus et al. [14] propose VERBUS, a framework consisting of three 
layers: layer process definition, common formal model layer which is based on a 
transition system, and a layer of verification. The advantage is that the verification is 
independent of the used model checker and process definition. 

In [25] the authors propose a model based on multi-agent systems for verifying 
temporal and epistemic properties in a composition of web services. They use a 
special language of description system (ISPL), with a symbolic model checker 
(MCMAS) dedicated to Multi Agent Systems. They propose an approach to 
verification of the behavior of a service and knowledge gained during the 
composition, in contrast to model checkers NuSMV and SPIN which are limited to 
the verification of temporal modality. 

Fu et al. [16] propose a model for the analysis of a BPEL composition of web 
services. Composition of web services is seen as a pattern of conversations between a 
set of peers. They define a set of rules to move from BPEL composition to their 
automata model then from their model to a PROMELA specification. They use SPIN 
for verification. The authors also introduce the concept of synchronizability as a 
transformation of an asynchronous communication to a synchronous communication 
to facilitate verification. They propose a series of conditions that must be met to 
enable synchronizability. The authors have developed a tool that was used, it allows 
for the passage of a BPEL composition of web services to PROMELA specification. 
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2.3 Theorem proving 

Theorem provers [15, 21, 26, 27] exists for linear temporal logic. However, since 
deciding satisfiability is P-space complete, this is in general not tractable. Temporal 
Theorem prover [11, 15] are less efficient than Model checker. Model checking 
technics is theoretically also P-space complete, however efficient model checking 
tools as SPIN or NUSMV have been developed. 

 Spin is more convenient for concurrent system and is based on automata theory. 
At a first glance it appears that theorem proving is not convenient for our goal of 
explanation or fragmentation because of tractability issue. However recently, theorem 
proving gets new research interest because theorem proving tackles infinite state 
space system, and is more and more used for producing counterexample [28] and 
provides a real explanation [17]. Since performance problems still remain in the area 
of Unbounded Model Checking (to prove property), we let theorem proving for future 
research. And particularly focus on automata-based model checking techniques. 

2.4 Slicing 

A program slice consists of the parts of a program that (potentially) affects the 
values computed at some point of interest [37]. Such a point of interest is referred to 
as a slicing criterion, and is typically specified by a location in the program in 
combination with a subset of the program’s variables. The task of computing program 
slices is called program slicing. 

A program slice S can be defined as a reduced, executable program obtained from 
a program P by removing statements, such that S replicates part of the behavior of P. 
Another common definition of a slice is a subset of the statements and control 
predicates of the program that directly or indirectly affect the values computed at the 
criterion, but that do not necessarily constitute an executable program. An important 
distinction is that between a static and a dynamic slice. The former is computed 
without making assumptions’ regarding a program’s input, whereas the latter relies on 
some specific test case [37]. 

Nanda et al. [30] formally defined the slicing in concurrent systems and propose an 
algorithm for slicing a concurrent program. They extend the classical models of 
representation to address new emerging types of dependence in parallelism. The 
authors propose optimizations to be done to prevent the complexity since it becomes 
exponential if the number of processes is large. 

3 Fragmentation: state of the art and problem 

3.1 Definition 

A fragment is a subset of the elements of a service composition. Unless specified 
otherwise, no assumptions are taken on the elements included in a fragment (e.g. on 
how they relate each other), except there is at least one. Fragmentation is the act of 
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creating a set of fragments from one service composition. Fragmentation techniques 
are procedure, algorithm or methodology to perform fragmentation according to 
predefined criteria in order to achieve a certain goal [34]. 

3.2 Type of fragmentation 

Fragmentation techniques greatly differ in which types of process-based service 
compositions they are applicable to, why they are applied, how they define the 
fragments, etc. The state of the art lacks consistent terminology and definitions for the 
properties of the fragments of process-based service compositions and the criteria for 
classifying the different fragmentation techniques [34]. 

Mancioppi et al present in [34] criteria for classification techniques of 
fragmentation process based on web service composition. They are divided 
hierarchically in main and subcriteria, e.g. the main criterion What input is further 
specialized in Composition paradigm, Modeling language, Abstraction level, Well-
formedness, and Self-containment. The classification is summarized in fig.1. 

 
Fig. 1. The classification criteria for fragmentation techniques [34] 

Fragmentation techniques are important tools for changing service compositions in 
response to evolving requirements. However, the lack of a consistent taxonomy for 
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classifying the different fragmentation techniques and the properties of the fragments 
they produce has hindered their comparison and reuse [34]. 

3.3 Current techniques 

Current techniques of fragmentation can be divided into two broad classes: query 
languages for fragmenting and fragment for migration, optimization, transaction and 
performance. Query languages for fragmentation groups slicing, LTL, BPQL and goal 
oriented fragmentation. 

In [34] the authors studied classification techniques of fragmentation They 
summarized the different approaches in four papers: 

Optimal Stratification of Transactions [9]: they treat how to fragment a service 
composition with transactional properties in order to optimize its costs and non-
functional quality aspects. The idea is to divide the service composition into many 
“connected” global transactions called strata. Strata are fragments of the service 
composition, each one coordinated by a 2PC protocol. The strata communicate with 
each other for coordination purposes using persistent message queues. 

Towards Identification of Fragmentation Opportunities for Service Workflows 
with Sharing-Based Independence [22]: they present a fragment identification that 
can be applied for different purposes such as reuse, optimization of resource 
utilization and optimization of the non-functional properties of a service orchestration. 
Sharing-based independence analysis is a general technique that can be applied to 
both upper and lower layers of software architecture, and consequently, to various 
parts of the service stack. On the service composition layer, one model different 
entities used within a workflow as data structures subject to sharing analysis. 

Towards Runtime Migration of WS-BPEL Processes [40]: they propose an 
approach for fragmentation of the process instances that enables the decentralized 
execution of the process instance by several parties. The decentralized execution of 
business process instances is a promising approach for enabling flexible reactions to 
contextual changes at runtime. To do this, the work focuses on the runtime 
fragmentation of process instances, allowing several (potentially pre-selected) parties 
to execute a given process instance in a decentralized way. The main goal here is to 
enable a flexible adaptation of the responsibilities for the execution of the process (in 
whole or in part) to dynamically changing situations at runtime. 

Executing Parallel Tasks in Distributed Mobile Processes [41]: they present an 
approach that supports the distributed parallel process execution with multiple mobile 
process participants. In case of a sequential execution of process fragments, the 
efforts of coordination can often be reduced to a (relatively simple) delegation resp. 
migration protocol. However, advanced synchronization and coordination 
mechanisms are required, if parallel process fragments have been distributed to 
several different parties. If, in addition, shared data objects are used in more than one 
of these parallel fragments, a separate execution could lead to undesired or wrong 
results. This contribution considers the concurrent execution of several parallel paths 
of the process instance by replication of the process description and respective 
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execution of the parallel section of the process by different participants, including 
synchronization of control flow and data variables. 

Among the works done in the area, Khalaf [24] has presented an automatic and 
operational semantic-preserving decomposition of business processes, in the presence 
of shared variables, loops, compensation, and fault handling. Their approach has been 
shown to be interoperable through the use of open standards, as well as transparent. It 
has also met the goal of not requiring new middleware unless loops and scopes are 
split, in which case, it requires extensions to existing middleware (i.e. BPEL engine 
and WS-Coordination framework). 

Vanhatalo et al. [38] proposed a technique to focus and speed up control-flow 
analysis of business process models that is based on decomposition into single-entry-
single-exit (SESE) fragments. The SESE decomposition could also be used for other 
purposes such as browsing and constructing large processes, discovery of reusable 
subprocesses, code generation, and others. They also proposed a partition of the 
fragments into various categories, which can be computed fast. 

3.4 Problem 

The problem of current approaches is that they are not business oriented, they are 
not based on a real temporal query language. Fragmentation is generally used for 
migration and performance. The fragment is not determined regarding business rules 
and in general, the approaches return execution traces instead of part of the process. 

4 A business rule base approach to fragmentation 

4.1 Preliminaries 

Given a web service composition expressed in BPEL, this composition can be an 
orchestration or choreography, our problem is to break down a web service 
composition based on a business rule expressed in LTL. That is to say, to find in the 
service composition a portion that contributes to the verification of the business rule. 

The part of the program that helps verify a given property is the cause of non-
verification of the negation of the property. The idea is then to prove the non-
verification of the negation of a business rule by the generation of a counterexample, 
then look for the causes of non-verification of the negation of the business rule from 
this counterexample. 

It is easier to prove the non-satisfaction of a property (by the generation of a 
counterexample), than to prove the satisfaction of a property. Another advantage is 
the availability of tools for checking an LTL formula. The LTL formulas are well 
suited to the formalization of some business rules because they treat the concept of 
time which is the foundation of most business rules. 

We define our problem as a problem of causality that was introduced first by 
Halpern and Pearl [18]. We consider the problem of finding parts that contribute to 
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the verification of a business rule as the one that causes the denial of falsifying 
business rules. 

The formal definition of the concept of causality used in this work is built on the 
work of Beer et al. [2]. The authors proposed an algorithm to determine from a 
counterexample such major causes of a malfunction of a system. Halpern et al. [18] 
have proposed a new definition of causality using structural equations. Eiter et al. [12] 
investigated the complexity of determining all causes in a binary causal model and 
Chockler [5] defined the notion of responsibility for verification of a specification. 
Our work rests on the following two definitions: 

Definition of Critical variable [2, 5]: Let M be a model, V is a finite set of variables, 𝑢𝑢�⃗  
the current context, and η a Boolean formula. Let (M, 𝑢𝑢�⃗ ) |= η, and X a Boolean 
variable in M that has the value x in the context 𝑢𝑢�⃗ , and 𝑥𝑥 the other possible value (0 or 
1). We say that (X = x) is critical for η in (M, 𝑢𝑢�⃗ ) if (M, 𝑢𝑢�⃗ ) |= (X ←￢x)￢η. That is, 
changing the value of X to ￢x falsifies η in (M, 𝑢𝑢�⃗ ). 

Definition of Cause [2, 12, 18]: We say that X = x is a cause of η in (M, 𝑢𝑢�⃗ ) if the 
following conditions hold: 

─ AC1. (M, 𝑢𝑢�⃗ ) |= (X = x) ∧ η. 
─ AC2. There exists a subset 𝑊𝑊���⃗  of V with X ∉ 𝑊𝑊���⃗  and some setting 𝑤𝑤��⃗ ′  of the 

variables in 𝑊𝑊���⃗  such that setting the variables in 𝑊𝑊���⃗  to the values 𝑤𝑤��⃗ ′  makes (X = 
x) critical for the satisfaction of η. 

In our case, the execution trace (counterexample) can be seen as a binary model. 
Binary variables of the model are all binary variables of the linear temporal structure 
representing the trace taken in each state. The concept of time will be taken into 
consideration. A binary variable p to a state s1 is distinct from p to a state s2

 

. The total 
number of binary variables in the model will be equal to the multiplication of binary 
variable in each state by the number of states of the trace. 

Fig. 2. Example of an execution trace 

Let us consider the example of fig.2 showing a linear temporal structure built from 
an execution trace of a counterexample. Each statement in the trace represents a 
transition between a state and another. Binary variables on the state of system 
variables (price>200 for example) are associated with each state. The structure 
consists of 5 states and 15 variables. Let a formula θ = G(¬r), ¬r is critical for θ at s1 
, because if we reverse r in s1, θ becomes valid, so (r,s1) is a cause of non verification 
of θ. Let now the formula Ω = G(q ∧ ¬r), ¬r in s1 is not critical for Ω but if we 
inverse ¬q in s4

Based on the foregoing definition of cause, the determination of all possible causes 
of malfunction in a system modeled by a binary model [18] is NP-complete [12], the 

 it will become critical, so we can say that (r, s1) is a cause for Ω. 
This illustrates the difference between a critical variable and a cause. 
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number of possible cases is exponential. One might also note that in real systems the 
number of states may be infinite, which complicates the problem. 

4.2 Approach 

The goal of our work is the fragmentation of the compositions of web services 
from a business rule expressible in LTL. In other words, given a business rule that can 
be expressed in LTL, we want to determine the part of a composition of web services 
that contributes to the verification of the business rule. One major advantage of the 
fragmentation of the compositions of web services is that it allows a grouping 
according to the feature on a web service composition. We can also cite other 
advantages such as simplicity and reuse both in the update and the query. 

 
Fig. 3. General principle of fragmentation 

The general principle of our approach is illustrated in fig.3, the fragmentation of a 
web service composition is mainly done through three steps: verification, explanation 
of the trace and the construction of the fragment. The verification is to show that the 
negation of the business rule is not checked, this is done by generating a 
counterexample using the SPIN model checker. The explanation of the trace is to seek 
the causes of the falsification of the negation of the business rule. The construction of 
the fragment is to select the statements that contribute to the achievement of the 
causes identified by the previous step. We will detail each step in the following. 
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4.3 Verification 

The first step of fragmentation is to produce a counterexample to show that the 
negation of the business rule is not checked. To generate a counterexample we use 
verification techniques of web services. We use SPIN as a model checker because it is 
more appropriate to concurrent systems [23]. SPIN takes as input an LTL formula and 
a model of the system to check expressed in PROMELA.  

We consider web service compositions expressed in BPEL, but the entry of SPIN 
must be specified in PROMELA which is a language for specifying concurrent 
systems, so we must translate a specification from BPEL to PROMELA in order to 
use SPIN. We use WSAT (Web Service Analysis Tool) [39] proposed by Fu et al. 
[16] for the translation from a BPEL to PROMELA.  

4.4 Explanation 

After generating the counterexample, we must explain and seek the causes of a non 
verification rule. We explain the causes of the non verification of the negation of the 
business rule in order to explain the audit of the business rule, that is to say that 
fragmentation will be on the negation of the formula from which we generated the 
counterexample. The explanation of the track is the most important step in the 
process, the quality of fragmentation depends on this step.  

In this step, we build a temporal linear structure from a counterexample generated 
by the model checker. Each statement in the trace represents a transition in the linear 
structure between a state and another. A same set of binary variables is associated 
with each state, these variables focus on the state of system variables (for example, 
price <200), a binary variable p to a state s1 is distinct from p to a state s2

 

. The total 
number of binary variables in the structure will be equal to the product of number of 
binary variable in each state by the number of states of the structure. The 
determination of the part that contributes to the falsification of property, like looking 
for all causes of non verification of property, that is to say, the variables that become 
critical in changing the context. We use an approximation algorithm proposed by Beer 
et al. [2] to determine from a counterexample the leading causes of non verification of 
property. 

Fig. 4. Example of explanation of traces 

Fig.4 shows example of explanation of traces by using the algorithm of Beer. The 
trace consists of 5 states π[1..5]. We explain counter example of the formula 
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(¬rU(p∧q)). Set of causes of the failure of ¬r in π[1..5] is empty, and set of causes of 
the failure of p∧q in π[1..5] is not empty. The explanation of the formula will be 
C(π[1..5],(p∧q))∪C(π[2..5],(¬rU(p∧q))) We proceed in the same way, an 
explanation of (¬rU(p∧q)) in π[2..5] is C(π[2..5],(p∧q))∪C(π[3..5],(¬rU(p∧q))), for 
sub trace π[3..5], the two sets of causes of the failure of ¬r and of p∧q is not empty, 
C(π[3..5],(¬rU(p∧q))) will be C(π[3..5],(p∧q))∪ C(π[3..5],¬r), so the set of causes 
of the failure of (¬rU(p∧q)) in π[1..5] is {(S0,p),(S1,p),(S1,q),(S2,q),(S2

In the case of compound formulas, the explanation is done by composition of basic 
explanation operators. It starts first by putting the formula in a negation normal form 
then we apply the explanation rules of the basic operators, and by composition find 
the explanation of the formula. For example, let us consider the formula 
¬(G(p)∧(¬rUq)). We start by pushing the negation, we obtain the following form 
F(¬p)∨G(r)∨(¬q∧(X(¬q)Ur)) Then we compose the explanation of basic operators 
and we obtain C(π[i..k],F(¬p)∨G(r)∨(¬q∧(X(¬q)Ur))) which is equal to 
C(π[i..k],F(¬p))∪C(π[i..k],G(r))∪ C(π[i..k],¬q∧(X(¬q)Ur)). 

,r)}. 

Given a counterexample π[0..k] of a formula F(p), such as p is an atomic formula. 
The explanation of the error will be composed by the entire track (according to the 
Beer algorithm

The objective of Beer et al. was the determination of the leading causes of non 
verification of a property. They explain the failure of a type formula G (p) by the first 
state in which p is not verified and not search other states. In terms of fragmentation, 
the fragment will be built only from the first state, the other possible states are 
ignored. This result may be acceptable, but it will be interesting to capture most 
possible states which contribute to ¬p. 

), thus the fragmentation of the operator G selects all states of the 
trace. This may not be effective in some cases (when the process is bigger and 
complex). The problem arises in the definition of fragment itself. The question that 
arises is how to measure the quality of fragmentation? We will see later the definition 
of a fragment from two different points of view. 

4.5 Construction of fragments 

The last phase of the process of fragmentation is the construction phase of the 
fragment. The objective of this step is to find statements that contribute to changes 
impacting the state of variables involved in the explanation of the trace (previous 
step). For this, we use techniques of slicing concurrent programs, Nanda et al. [30]. 

A fragment will include a portion of the fragmented process statements. As 
temporal logic is based on the concept of time, if we eliminate a set of statements, we 
will eliminate a set of states, that is to say we will adjust the chronology. This may 
affect the validity of the property on a slicing particularly in the case of a formula 
with a "Next" operator. To solve this problem we replace each eliminated statement 
by a statement that does nothing (skip). The fragment has the same structure as the 
fragmented process. The correct erasing of such skip is still possible for stuttering 
LTL formula. 

Any statement involved in the change of state variables is considered as being part 
of the fragment. The idea is to seek any statements with which the selected variables 
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in explanation step depend. We will perform a slicing for all causes selected by the 
previous step, and then we construct the fragment by the union of all found program 
slice. A slicing requires two inputs: a variable and a point in the program. In our 
work, a cause will be considered as an input slicing knowing that: 

─ The slicing variable is the boolean variable of cause. 
─ The slicing criterion is the transition that precedes the state of the cause. 
Linear structure transitions represent program statements.  

 
Fig. 5. Construction of a fragment 

Fig.5 reuses the example of fig.4. It summarizes the construction phase of the 
fragment. We perform a slicing for each case determined by explanation step, and 
then we will make the union of all the resulting slice programs to build the fragment. 
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In the slicing of a variable x we replace each statement eliminated by skipx which 
can be any statement that does not change the value of x. We define the intersection of 
two program slices by another program slice constructed by the intersection line by 
lines of the two program slices such as skipx∪skipy=skipx,y and 
skipx

4.5.1 Refinement of a fragment 

∪statement=statement. 

Let us consider an example of a process of online purchase. We assume that the 
bank would not accept a negative account, so for a purchase transaction to be 
validated, the client must have an account greater than or equal to the product price. 
We can say that throughout the buying process the customer's account is greater than 
or equal to zero, therefore the property (account >= 0) is checked every time, 
therefore p = G(account >= 0) is valid. Looking now the fragmentation according p. 
It must exist in the process a test "if(account >= price) account = account – price ;". 
It is clear that if we remove the test "if(account >= price)", the property could be 
violated. This test is necessary for the preservation of property (account >= 0). 
Returning to our fragmentation, how to define the fragment? Is it just that the test 
constitute a fragment since it is the only statement necessary for the preservation of 
property? From another point of view, we can say that the other statements also 
contribute to verification of the property because they do not violate the property. The 
problem is that a formula of "G" is checked through the whole process, so is it 
possible to isolate in the case of the operator "G" a part of the process? To try to 
answer this question, we propose an extension of our approach based on another 
definition of a fragment. 

Because of these characteristics, the treatment of the "G" operator is special. The 
question is philosophical: how to define a fragment based on rules verified in all 
statements of a process? 

We define a fragment as the necessary part which contributes to the verification 
and preservation of property that is the part such that if one removes the property it 
will not be verified. 

Fig.6 illustrates this definition. We see that in the first case the property remains 
true despite the elimination of a statement but it becomes false in the second case, 
therefore it is clear that there are differences between the statements of a fragment. To 
study this, we proposed a refinement of the fragment to try to produce more relevant 
fragments. The question is then what are the criteria of the quality of a fragment? 
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Fig. 6. Difference between the statements of a fragment 

Consider a program P, P satisfies a LTL formula Q. We say that a subset of 
instructions H of P is necessary for verification of Q, if the elimination of this set will 
result the falsification of Q. The set H is minimal if there does not exist a subset 
which is necessary for the verification of Q. Our goal is to determine all sets of 
minimal set of necessary instructions for the verification of Q (the fragment may be 
built by the union of these sets). It is obvious that this property (non-existence of a 
minimum set of necessary instructions for the verification of Q) is an anti-monotony 
property, because it is clear that, if a set of instructions violates the constraint, all sets 
constructed from him violate also the constraint. 

The refinement of a fragment is based on the idea of the apriori algorithm [1]. We 
construct a lattice from combinations of statements of fragment (without using the 
skip), the objective is to seek the smallest combinations of statements needed by 
browsing through the lattice level, if a necessary node is found then all combinations 
including the node will be eliminated. The idea is to minimize the size of the 
fragment, to minimize his complexity

The notion of refinement of a fragment introduced may appear similar to the notion 
of p-slice introduced in [8]. However a P-slice would only highlight relevant 
instruction regarding changes about predicate. This is a kind of abstraction. Our slice 
would rather explain which instructions contribute to a given property. Further 
investigations are needed to compare the technics. 

. 

5 Discussion 

In our work, traces are finite. In some systems the use of infinite traces is 
necessary. For example, a fragmentation regarding a formula that includes a "G" 
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operator in a system without a final state requires infinite traces. The extension of our 
approach will be necessary for this type of systems. 

In an explanation step we used the algorithm of Beer et al. This algorithm provides 
an approximate set of causes and does not provide additional information on the 
causes, all provided causes are not necessarily minimum (for example in figure 4 the 
binary variable p in state s0

In the refinement of the fragment, our goal is to focus on the difference between 
two types of statements in a fragment, statements necessary for the preservation of 
property and statements that are not required. The problem of finding the combination 
of statements that we presented is NP-complete. It is obvious that if the fragment is 
large and pruning is low, the algorithm will not perform. Our main objective is to 
raise the issue. We want to see the benefits brought by a fragment if we change the 
program. It will be interesting to investigate this issue. 

 is critical, the inversion of this variable is sufficient for 
the formula to become true in the trace). Searching all possible causes is NP-
complete. It is then necessary to improve this step because the quality of 
fragmentation depends directly on the quality of the explanation. 

6 Conclusion and perspective 

In this paper, we investigated how model checking and slicing techniques can be 
combined to perform fragmentation of a web service composition. 

We start by proving that the negation of a business rule is not checked, by 
generating a counterexample using a model checker. We modeled a counterexample 
as a linear time structure, and then we search the states of the structure responsible for 
the failure. From these statements we determine the set of statements that form the 
fragment. The advantage of our approach is the possibility of fragmenting according 
to temporal properties, the fragment is oriented business but it remains to validate the 
approach by testing to discover the performance of the method and feasibility in terms 
of complexity. 

One lack of our approach is the ad-hoc combination of techniques to tackle the 
problem of fragmentation. A uniform theory is still needed and temporal theorem 
proving seems to be a good candidate. 

In our work, we fragmented business processes according to business rules 
specified in LTL. It will be interesting to extend the fragmentation rules expressible in 
branching temporal logic (CTL). It is also interesting to extend our model to work 
with infinite traces which cannot be avoided in some systems for a fragmentation 
regarding the “G” operator. Among our future work, implementation of the approach 
to test and study the feasibility and performance of the model on real applications. We 
intend to design and implement a framework which does not depend on the format of 
the definition of web service composition, whether a BPEL code or other things. We 
also plan to improve the refinement of a fragment to explore this issue and investigate 
whether the refinement of a fragment is necessary. 
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