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Abstract—Visual content description is a key issue for 
machine-based image analysis and understanding. A good 
visual descriptor should be both discriminative enough and 
computationally efficient while possessing some properties of 
robustness to viewpoint changes and lighting condition 
variations. In this paper, we propose several new local 
descriptors based on color orthogonal local binary patterns 
combination (OLBPC) for image region description. The aim is 
to increase both discriminative power and photometric 
invariance properties of the original LBP while keeping its 
computational efficiency. The experiments in three different 
applications show that the proposed descriptors outperform 
the popular SIFT and CS-LBP, and get comparable or even 
slightly better performances than the state-of-the-art color 
SIFT descriptors. Meanwhile, they could provide 
complementary information to the color SIFT, because a 
fusion of these two kinds of descriptors is found to perform 
clearly better than either of the two separately. Moreover, the 
proposed descriptors are more computationally efficient than 
the color SIFT (about 2 times faster). 

Keywords- Local descriptor; Region description; Orthogonal 
local binary patterns combination; Color LBP descriptor; CS-
LBP; SIFT; Image matching; Object recognition; Scene 
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1. Introduction 
 

One of the most challenging problems in computer vision 
is content-based high-level image analysis and understanding, 
such as object recognition or scene classification, mainly due 
to intra-class variations and inter-class similarities. Therefore, 
a key issue for such tasks is to generate effective visual 
content descriptions, which could ideally be discriminative 
enough, computationally efficient, and possessing some 
properties of robustness to changes in viewpoint, scale and 
lighting conditions. 

Earlier work in this domain has mainly utilized global 
features as image descriptions, including color histogram [1], 
color moments [2], edge histogram [3], texture co-
occurrence matrix [4], and so on. These features are 
extracted directly from the whole image, thus encoding the 
global visual content of an image. While quite efficient to 
compute, the downside of these global features is their great 
sensitivity to clutter, occlusion, viewpoint changes and 
illumination variations. 

For this reason, global features have gradually given way 
later on to local image descriptors, which have received a lot 

of attention in recent years, and have already gained the 
popularity and dominance in image content analysis related 
tasks nowadays. Instead of from the whole image, the idea of 
local image descriptors is to extract features from local 
image regions centered either on some sparse keypoints with 
certain invariance properties, for instance with respect to 
scale and viewpoint change, or simply on a dense sampling 
grid. By this way, local image descriptors could be more 
powerful in discrimination and be more robust to image 
variations, compared with the global ones. 

Many different local image descriptors have been 
proposed in the literature, and the most popular ones are 
distribution-based descriptors, represented by the SIFT [5], 
which is a 3D histogram of gradient locations and 
orientations. The location is quantized into a 4 by 4 location 
grid and the gradient angle is quantized into 8 orientations, 
resulting in a 128-dimensional descriptor. The contributions 
to the gradient orientations are weighted by the gradient 
magnitudes and a Gaussian window overlaid over the region, 
indicating that more emphases are put on the gradients near 
the region center. Other widely used distribution-based local 
descriptors include PCA-SIFT [6], GLOH [7], SURF [8] and 
HOG [9]. They are all related to the SIFT, and can be 
considered as the extension or refinement of the original 
SIFT. 

Several comprehensive studies on local image descriptors 
[7,10,11] have shown that distribution-based descriptors 
perform significantly better than other features, and achieve 
the best results in tasks as diverse as image region matching, 
texture classification, object recognition and scene 
classification. Among them, the SIFT has been proven to be 
the most powerful and successful, and has been widely 
applied as the dominant feature in the state-of-the-art 
recognition/classification systems [12]. Moreover, since the 
SIFT is an intensity based descriptor without color 
information, several color SIFT descriptors have been 
proposed [13,14,15,16] to increase its discriminative power. 
In [17], the authors evaluated different color descriptors in a 
structured way, and recommended to use color SIFT 
descriptors for object and scene recognition because they 
outperform the SIFT. However, the downside of the color 
SIFT descriptors is their high computational cost, especially 
when the size of image or the scale of dataset increases 
significantly. Therefore, a new local descriptor would be 
preferred if it could be more computationally efficient, and 
keep high discriminative power at the same time. 



The local binary pattern (LBP) operator [18] is well 
known as a good texture feature, and has been successfully 
applied for many applications, such as texture classification 
[19,20,21], texture segmentation [22], face recognition [23], 
and facial expression recognition [24]. Its advantage of 
computational simplicity and good power for texture 
structure description makes it a good candidate for 
describing local image regions. The bottleneck lies in the 
high dimensional feature vectors produced by the LBP, 
especially when more neighboring pixels are taken into 
consideration. The so-called “curse of dimensionality” will 
be caused if they are used directly to build a local region 
descriptor. In [25], the authors proposed center-symmetric 
local binary pattern (CS-LBP) to reduce the size of the 
original LBP histogram and use it for local region 
description. Another way to reduce the LBP dimension is to 
use the “uniform patterns” [19]. In this paper, we propose a 
new dimensionality reduction method for the LBP, denoted 
as orthogonal local binary patterns combination (OLBPC), 
which is more suitable for local descriptor construction. The 
basic idea is firstly splitting the neighboring pixels of the 
original LBP into several non-overlapped orthogonal groups, 
then computing the LBP separately for each group, and 
finally concatenating them together. The experimental results 
show that our method is more efficient than both CS-LBP 
and “uniform patterns” for the LBP dimensionality reduction, 
because it could keep high discriminative power with the 
smallest histogram size. 

We then adopt the OLBPC operator in a SIFT-like 
approach to build a new descriptor, denoted as OLBPC 
descriptor, for local image regions. Generally speaking, the 
building process consists of the following steps: given local 
regions of an image, dividing each region into small cells for 
spatial information; in each cell, computing the OLBPC 
feature for each pixel and then building a histogram; 
concatenating all the histograms from each cell as the final 
descriptor for the region. 

Derived from the LBP, the OLBPC descriptor is also an 
intensity-based descriptor without any color information of 
the image, while color plays an important role for distinction 
between objects, especially in natural scenes. Also, there can 
be various changes in lighting and viewing conditions in 
real-world scenes, leading to large variations of objects in 
surface illumination, and making recognition tasks more 
complicated and challenging. According to its definition, the 
OLBPC descriptor is only invariant to monotonic light 
changes in gray-level, and is deficient in power for dealing 
with these variations which mostly occur in natural scenes. 
Therefore, inspired by the color SIFT descriptors, we extend 
the OLBPC descriptor to different color space and propose 
several color OLBPC descriptors in this paper to increase its 
photometric invariance property and discriminative power. 
The experimental results in three different applications show 
that the color OLBPC descriptors outperform the popular 
SIFT and CS-LBP, and get comparable or even slightly 
better performances than the state-of-the-art color SIFT 
descriptors. Meanwhile, they could provide complementary 
information to the color SIFT, because a fusion of these two 
kinds of descriptors is found to perform clearly better than 

either of the two separately. Moreover, the proposed 
descriptors are more computationally efficient than the color 
SIFT (about 2 times faster). 

The remaining sections are organized as follows. Section 
2 introduces the proposed orthogonal local binary patterns 
combination (OLBPC) operator in detail, and compares it 
with other two popular LBP dimensionality reduction 
methods –– “uniform patterns” and CS-LBP. The 
construction of the OLBPC descriptor for local image 
regions is described in section 3. We then give details of the 
proposed color OLBPC descriptors in section 4, including 
illumination change modeling and invariance property 
analysis for each descriptor. Section 5 presents the 
experimental evaluation of the proposed descriptors in three 
different applications. Finally, we conclude the paper in 
section 6. 
 
2. Dimensionality reduction for the LBP 
 
2.1. Original LBP operator 
 

 
Fig. 1 Calculation of the original LBP operator 

 
The original LBP operator can be seen as a unified 

approach to statistical and structural texture analysis. Fig. 1 
gives an example. For one pixel in a gray image, its eight 
neighboring pixels are considered –– their values are 
operated by the value of the central pixel as threshold. 
Precisely, for each neighboring pixel, the result will be set to 
one if its value is no less than the value of the central pixel, 
otherwise the result will be set to zero. The LBP code of the 
central pixel is then obtained by multiplying the results with 
weights given by powers of two, and summing them up 
together. Then, the LBP operator is extended to use a circular 
neighborhood with variant radius and variant number of 
neighboring pixels. Accordingly, the LBP code of the pixel 
at (xc, yc) is calculated by the following equation: 
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where gp is the value of the neighboring pixel, gc is the value 
of the central pixel, and P is the total number of the 
neighboring pixels. 

For each pixel in an image, the same process is followed 
to get its LBP code, and the final LBP feature is obtained by 
building a histogram based on these codes. It can be seen that 
the LBP is very fast to calculate, and is invariant to 
monotonic illumination changes. Thus it is a good candidate 
for local image region description. 



 

 
Fig. 2 Calculation of the LBP and OLBPC with 8 neighboring pixels 

 
2.2. Orthogonal local binary patterns combination 
(OLBPC) 
 

As introduced in the previous section, the LBP operator 
has its own advantages to be used for local region description. 
But the bottleneck lies in the high dimensional histograms 
produced by it. Let P be the total number of the neighboring 
pixels, then the LBP operator will have 2P distinct values, 
resulting in a 2P-dimensional histogram. For example, the 
size of the LBP histogram will be 256/65536 if 8/16 
neighboring pixels are considered, and will increase rapidly 
to a huge number if more neighboring pixels are taken into 
consideration. 

Thus, a dimensionality reduction method for the LBP is 
needed to address this problem. A straightforward way is to 
only use small number of the neighboring pixels. For 
example, the LBP with 8 neighboring pixels is the mostly 
used one in the applications, and it produces a rather long 
(256-dimensional) histogram, see the left column of Fig. 2 
for an illustration. The size of the LBP histogram will 
significantly reduce to 16 if only 4 neighboring pixels are 
taken into account, as illustrated in the middle column of Fig. 
2. However, doing this also decreases the discriminative 
power of the LBP because compared with 8 neighbors, only 
horizontal and vertical neighbors are considered, and the 
information of diagonal neighborhood is discarded. 
Therefore, we use another LBP operator with 4 neighbors to 
encode the diagonal information, and then combine it with 
the first one, as shown in Fig. 2. This leads to a final LBP 
histogram of 32 dimensions, which is much more compact 
than the original one (256 dimensions). Meanwhile, this 
combination could keep the discriminative power of the 
original LBP because it reserves the same number of distinct 
binary patterns (24×24) as before (28). 

Since the neighboring pixels used in each unit LBP 
operator are orthogonal in position, we denote this method as 
orthogonal local binary patterns combination (OLBPC). It 
could be generalized to the LBP operators with more 
neighboring pixels, and the general process is as follows. 
The neighboring pixels of the original LBP is firstly split into 
several non-overlapped orthogonal groups, then the LBP 
code is computed separately for each group, and finally these 
codes are concatenated together as the new LBP code. 
 
2.3. Comparison with other popular LBP dimensionality 
reduction methods 
 

We compare our method here with other two popular 
LBP dimensionality reduction methods –– the “uniform 
patterns” [19] and the CS-LBP [25] on operator level, in 
terms of discriminative power and feature dimension. The 
comparisons in the context of local region descriptor will be 
presented in section 5. In [25], the authors proposed center-
symmetric local binary pattern (CS-LBP) for dimensionality 
reduction. They modified the scheme of how to compare the 
pixels in the neighborhood. Instead of comparing each pixel 
with the central pixel, they compare center-symmetric pairs 
of pixels. This could halve the number of comparisons 
compared with the original LBP. In [19], the authors 
proposed the concept of “uniform patterns”, which are 
certain parts of the original LBP, and are considered to be the 
fundamental properties of texture. These patterns are called 
“uniform” because they have one thing in common: no more 
than two spatial transitions (one-to-zero or zero-to-one) in 
the circular binary code. For P neighboring pixels, they lead 
to a histogram of P × (P-1) + 3 dimensions. The “uniform 
patterns” have been proven to be an effective way for LBP 
dimensionality reduction [26]. 

 



Table 1 Comparison of different dimensionality reduction methods for the LBP 
(P,R –– P neighboring pixels equally located on a circle of radius R) 

LBP Uniform patterns CS-LBP OLBPC 
P,R 

Bins Result Bins Result Bins Result Bins Result 

4,1 16 58.5% 15 58.8% 4 27.8% 16 58.5% 

8,1 256 61.4% 59 66.1% 16 50.2% 32 65.4% 

12,2 4096 68.7% 135 72.4% 64 61.8% 48 72.7% 

16,2 65536 67.6% 243 73.4% 256 54.7% 64 73.2% 

20,3 1048576 – 383 74.0% 1024 55.7% 80 74.6% 

 
Since the LBP operator is originally designed as a texture 

feature, a standard texture classification dataset [27] is 
chosen to carry out the comparisons. This dataset, namely 
Outex_TC_00014, contains images of 68 different textures, 
such as canvas, carpet, granite, tile, sandpaper, wood, and so 
on. Each kind of texture produces three images of size 
746×538 pixels under three different illuminants: 2856K 
incandescent CIE A light source (Inca), 2300K horizon 
sunlight (Horizon) and 4000K fluorescent TL84 (TL84). 
Then each image is equally divided into 20 non-overlapping 
sub-images of size 128×128 pixels, resulting in 1360 images 
for each illuminant. The training set is constituted by half of 
the images under the Inca illuminant, and the test set is 
constituted by half of the images under the two other 
illuminants (Horizon and TL84). Therefore, the total 
numbers of training and test images are 680 and 1360 
respectively. 

For texture classification, we follow the same process for 
all the operators –– the original LBP, “uniform patterns”, 
CS-LBP, and our OLBPC. For each image in the training/test 
set, the operator is applied on all the pixels of the image to 
get their binary pattern values, and the histogram computed 
throughout the image is then used as its texture feature. The 
support vector machine (SVM) algorithm is applied for 
classification. We compute the χ2 distance as equation (2) to 
measure the similarity between each pair of the feature 
vectors F and F’ (n is the size of both feature vectors): 
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Then, the kernel based on this distance as equation (3) is 
used for SVM: 
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where D is the parameter for normalizing the distances. Here 
D is set to the average value of distance between each pair of 
images in the training set. Finally, each test image is 
classified into texture category with maximum SVM output 

decision value. We tune the parameters of the classifier on 
the training set via cross-validation, and get classification 
results on the test set. 

The classification results and comparisons are presented 
in Table 1. It can be seen that the classification accuracy 
generally keeps improving when the number of the 
neighboring pixels increases, indicating that more neighbors 
indeed benefit the operator’s performance. However, the 
increment speed of histogram size for the original LBP is 
devastating. For example, the histogram size of the LBP with 
20 neighboring pixels is so enormous that it is impractical to 
be used directly. This shows the importance of 
dimensionality reduction for the LBP. The CS-LBP operator 
reduces the histogram size of the LBP to its square root, but 
it also decreases the classification performance. One possible 
reason is that it discards the information of central pixel in 
comparison. The “uniform patterns” show good 
performances, because it significantly reduces the histogram 
size of the LBP, while still keeping high discriminative 
power. Actually, it performs even a little better than the 
original LBP, because it only keeps the most important part 
of the LBP and removes the other disturbances. Compared 
with above two methods, our OLBPC operator is more 
efficient, because it outperforms the CS-LBP and gets almost 
the same high performance as the “uniform patterns” with 
the smallest histogram size among them. So it is more 
suitable for local image region description. 
 
3. Local region description with OLBPC 
 

We construct a new local region descriptor based on the 
OLBPC operator by following the way similar to the SIFT 
and CS-LBP descriptors. Fig. 3 depicts the construction 
process. The input of the descriptor is a normalized local 
image region around the keypoint, which is either detected 
by certain interest point detector such as Harris-Laplace, or 
located on a dense sampling grid. The OLBPC operator is 
then applied on all the pixels in the region to get their binary 



 
Fig. 3 Construction of local image descriptor with OLBPC 

 
pattern values. In order to include coarse spatial information, 
the region is equally divided into several small cells, within 
which a histogram is built based on the binary pattern values 
of all the pixels. The final descriptor is constructed by 
concatenating all the histograms from each cell. We adopt 
the uniform strategy for pixel weighting, as CS-LBP 
descriptor, and a SIFT-like approach for descriptor 
normalization. The descriptor is firstly normalized to unit 
length, each value is then restricted to be no larger than 0.2 
(threshold) so that the influence of very large values is 
reduced, and finally the descriptor is renormalized to unit 
length. 
 
4. Color OLBPC descriptors 
 

In order to incorporate color information into the OLBPC 
descriptor to increase its discriminative power, as well as to 
increase its photometric invariance properties of dealing with 
different kinds of illumination changes (as described in 
section 4.1), we extend the OLBPC descriptor to different 
color space and propose several color OLBPC descriptors in 
this paper. 
 
4.1. Model analysis for illumination changes 
 

Changes in illumination can be expressed by the diagonal 
model as equation (4) and the diagonal-offset model as 
equation (5), where u and c represent respectively the values 
before and after illumination transformation: 
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Based on these two models, different kinds of 
illumination changes can be expressed as follows [17]: 

Light intensity change Image values change by a 
constant factor in all channels (a = b = c): 
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Light intensity shift Image values change by an equal 
offset in all channels (a = b = c = 1, O1 = O2 = O3): 
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Light intensity change and shift Image values change 
by combining two kinds of change above: 
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Light color change Image values change in all channels 
independently (a ≠ b ≠ c), as equation (4). 

Light color change and shift Image values change in all 
channels independently with arbitrary offsets (a ≠ b ≠ c and 
O1 ≠ O2 ≠ O3), as equation (5). 
 
4.2. Color OLBPC descriptors and their properties 
 

Six color OLBPC descriptors are proposed in this paper. 
The main idea is calculating the OLBPC descriptor 
independently over all the channels of certain color space, 
and then concatenating them to get the final color OLBPC 
descriptor, as shown in Fig. 4. 

The RGB, HSV, and OPPONENT color spaces are 
chosen for calculating the color OLBPC descriptors because 
of their own characteristics. RGB is the most popular color 
space used in electronic systems for sensing, representation 
and display of images. It uses additive color mixing with 
primary colors of red, green and blue to reproduce a broad 
array of colors. HSV color space rearranges the geometry of 
RGB so that it could be more relevant to human perception, 
because it is more natural to think about a color in terms of 
hue and saturation than in terms of additive color 
components. OPPONENT color space is constructed to be 



consistent with human visual system, because it is proven 
more efficient for human visual system to record differences 
between responses of cones, rather than each type of cone's 
individual response. Details of the proposed color OLBPC 
descriptors and their properties are as follows: 
 

 
Fig. 4 Calculation of the color OLBPC descriptor 

 
RGB-OLBPC This color descriptor is obtained by 

computing the OLBPC descriptor over all three channels of 
the RGB color space. It is invariant to monotonic light 
intensity change due to the property of the original OLBPC 
descriptor. 

NRGB-OLBPC This color descriptor is obtained by 
computing the OLBPC descriptor over both r and g channels 
of the normalized RGB color space as equation (9) (b 
channel is redundant because r + g + b = 1): 
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Due to the normalization, the change factors can be 
cancelled out if they are constant in all channels. This is 
proven as equation (10) (Let a be the constant factor): 
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Therefore, r and g channels are scale-invariant, which 
make this descriptor invariant to light intensity change as 
equation (6). 

OPPONENT-OLBPC This color descriptor is obtained 
by computing the OLBPC descriptor over all three channels 
of the OPPONENT color space as equation (11): 
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Due to the subtraction in O1 and O2, the change offsets 
can be cancelled out if they are equal in all channels. This is 
proven as equation (12) (Let a be the equal offset): 
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Therefore, O1 and O2 channels are invariant to light 
intensity shift as equation (7). O3 channel represents the 
intensity information, and has no invariance properties. 

NOPPONENT-OLBPC This color descriptor is 
obtained by computing the OLBPC descriptor over two 
channels of the normalized OPPONENT color space as 
equation (13): 
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Due to the normalization by intensity channel O3, O1’ and 
O2’ channels are scale-invariant, which make this descriptor 
invariant to light intensity change as equation (6). 

Hue-OLBPC This color descriptor is obtained by 
computing the OLBPC descriptor over the Hue channel of 
the HSV color space as equation (14): 
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Due to the subtraction and the division, Hue channel is 
scale-invariant and shift-invariant, therefore this descriptor is 
invariant to light intensity change and shift as equation (8). 

TC-OLBPC This color descriptor is obtained by 
computing the OLBPC descriptor over all three channels of 
the transformed color space as equation (15) (µ is the mean 
and σ is the standard deviation of each channel): 
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Due to the subtraction and the normalization, all three 
channels are scale-invariant and shift-invariant, which make 
this descriptor invariant to light intensity change and shift as 
equation (8). Furthermore, because each channel is operated 
independently, this descriptor is also invariant to light color 
change and shift as equation (5). 

It should be noticed that this descriptor has equal values 
to the RGB-OLBPC descriptor. Because the LBP is 
computed by taking the subtraction of the neighboring pixels 
and the central one, the subtraction of the means in this color 
space is redundant, as this offset is already cancelled out 
when computing the LBP. And since the descriptor 
normalization for each channel is done separately, the 
division of the standard deviation is also redundant. 
Therefore, the RGB-OLBPC descriptor is used in this paper 
to represent both descriptors. 



 
Fig. 5 Example image pairs of the Oxford dataset 

 
5. Experimental evaluation 
 

We evaluate the proposed color OLBPC descriptors in 
three different applications –– image matching, object 
recognition and scene classification. The proposed 
descriptors are compared with the state-of-the-art descriptors 
including CS-LBP [25], SIFT [5] and color SIFT [17]. 
 
5.1. Experiments on image matching 
 

We adopt the standard dataset available on the Oxford 
University website [28] to evaluate the proposed descriptors 
in the application of image matching. The dataset contains 
image pairs with different geometric and photometric 
transformations (image blur, viewpoint change, etc.) and for 
different scene types (structured and textured). The example 
image pairs are shown in Fig. 5. 

The performances of the descriptors are evaluated by the 
matching criterion, which is based on the number of 
correctly and falsely matched regions between a pair of 
images. Two image regions are considered to be matched if 
the Euclidean distance between their descriptors is below a 
threshold. The number of correct matches is determined by 
the “overlap error” [29]. A match is assumed to be correct if 
this error value is smaller than 0.5. The results are presented 
by recall versus 1-presicion curve: 

matches  all#
matches  false#precision1    ,

encescorrespond#
matchescorrect  #recall =−=  (16) 

where #correspondences is the ground truth number of 
matches between the images. By changing the distance 
threshold, we can obtain the recall versus 1-precision curve. 
 
5.1.1. Experimental setup 
 

To compute the descriptors, an interest region detector is 
required at first to detect the interest regions in each image. 
We apply the Harris-Affine detector to detect the corner-like 
structures in images. It originally outputs the elliptic regions 
of varying scales, and all the regions are then normalized and 
mapped to a circular region with fixed radius to obtain scale 
and affine invariance. The normalized regions are also 

rotated to the direction of their dominant gradient 
orientations to obtain the rotation invariance. 

We implement the CS-LBP descriptor according to [25]. 
For interest region detection, region normalization, and the 
SIFT descriptor computation, we use the software package 
available on the same website as the dataset [28]. We use the 
“Color Descriptors” software [30] to extract the color SIFT 
descriptors. 
 
5.1.2. Parameter selection 
 

There are three parameters need to be selected for the 
proposed color OLBPC descriptors, including the number of 
the neighboring pixels for the OLBPC operator (P), the 
radius of the neighboring circle for the OLBPC operator (R), 
and the number of the cells for each region (M×M). For 
simplicity, the parameters P and R are evaluated in pairs, 
such as (4, 1), (8, 1), (12, 2), (16, 2), (20, 3), etc. Also, we 
select the parameters based on the OLBPC descriptor, and 
apply the best settings on all the color OLBPC descriptors. 

We evaluate the parameters using the image pair named 
“Graf” (see Fig. 5). Interest regions are detected from each 
image respectively, and then matched by applying nearest 
neighbor strategy. A matching score is obtained by 
measuring the percentage of the correct matches. 
 
Table 2 Parameter selection results (matching score) for the 

OLBPC descriptor 
Cells
P,R 1×1 2×2 3×3 4×4 5×5 

4,1 2.84 19.11 25.43 25.77 25.48

8,1 8.76 26.79 34.07 32.88 31.23

12,2 13.77 33.56 39.31 36.75 34.64

16,2 11.43 32.48 38.74 35.67 33.56

20,3 13.03 34.47 38.91 37.26 34.41

 



 
Fig. 6 Image matching results on the Oxford dataset 

 



From the results shown in Table 2, It can be seen that the 
best performance is obtained when the value of (P, R) pair is 
set to (12, 2) and the number of the cells is set to 3×3. We 
apply this parameter setting for the OLBPC descriptor and 
all the color OLBPC descriptors in the following 
experiments. 
 
5.1.3. Experimental results 
 

The image matching results on the Oxford dataset are 
shown in Fig. 6. The figures in the left column show the 
comparisons of the proposed color OLBPC descriptors with 
the popular CS-LBP and SIFT descriptors. The figures in the 
right column show the comparisons of the best three color 
OLBPC descriptors with the state-of-the-art color SIFT 
descriptors. 

We can see from the results in the left column that: (1) 
most of the proposed color OLBPC descriptors perform 
clearly better than the popular CS-LBP and SIFT descriptors; 
(2) the color OLBPC descriptors outperform the intensity-
based OLBPC descriptor in most of the cases, proving the 
usefulness of introducing color information and additional 
photometric invariance properties; (3) among the proposed 
color OLBPC descriptors, Hue-OLBPC, RGB-OLBPC and 
NOPPONENT-OLBPC descriptors have the best overall 
performance. 

We then compare the best three color OLBPC descriptors 
with their counterparts –– the state-of-the-art color SIFT 
descriptors. The best three color SIFT descriptors are chosen 
according to [17]. The results in the right column show that 
the color OLBPC descriptors also get somewhat better 
performances than the color SIFT. 
 
5.2. Experiments on object recognition 
 

In order to evaluate the proposed color OLBPC 
descriptors in the application of object recognition, two 
standard image datasets are used –– the SIMPLIcity database 
[31] and the PASCAL VOC 2007 benchmark [32]. 

The SIMPLIcity database is a subset of COREL image 
database. It contains totally 1,000 images, which are equally 
divided into 10 different categories: African people, beach, 
building, bus, dinosaur, elephant, flower, horse, mountain 
and food. We randomly choose half of the images for 
training and the other half for test. The recognition accuracy 
is used as the evaluation criterion. Some example images are 
shown in Fig. 7. 

The PASCAL VOC 2007 benchmark contains nearly 
10,000 images of 20 different object classes, such as bike, 
car, cat, table, person, sofa, train, etc. Each object class 
contains different number of images, from hundreds to 
thousands. The dataset is divided into a predefined training 
set (2501 images), validation set (2510 images) and test set 
(4952 images). The mean average precision (MAP) is used 
as the evaluation criterion. Some example images are shown 
in Fig. 8. 

These two datasets have different characteristics. In the 
SIMPLIcity database, most images have little or no clutter. 
The objects tend to be centered in each image. Most objects 

are presented in a stereotypical pose. In the PASCAL VOC 
2007 benchmark, all the images are taken from the real-
world scenes, with background clutter, occlusions, various 
viewpoint changes, pose changes, and lighting condition 
changes, which increase the difficulties of object recognition 
in this dataset. 
 
5.2.1. Our approach for object recognition 
 

The block diagram of our approach for visual object 
recognition is depicted in Fig. 9. 
 

 
Fig. 9 Flow chart of our approach for object recognition 

 
5.2.2. Feature extraction 
 

We firstly detect the interest points in images by applying 
the Harris-Laplace salient point detector, which uses a Harris 
corner detector and subsequently the Laplacian for scale 
selection. Then a set of local features, including the proposed 
OLBPC and three best color OLBPC descriptors, CS-LBP, 
SIFT and three best color SIFT descriptors, are extracted 
from the local region around each interest point. Unlike the 
settings in the application of image matching, the descriptors 
are not rotated to their dominant orientations, because this 
rotation invariance is useful for image matching, but reduces 
the accuracy for object recognition. 
 
5.2.3. Bag-of-Features modeling 
 

After the step of feature extraction, each image is 
represented by a set of local descriptors. The dimensions of 
these descriptors are still very high because of the large 
number of the interest points (normally around thousands). 
Thus, an efficient modeling method is required to transform 
these high dimensional descriptors to more compact and 
informative representations. 

We apply the popular Bag-of-Features (BoF) method [33] 
here because of its great success in object recognition tasks. 
The main idea of the BoF is to represent an image as an 
orderless collection of local descriptors. More precisely, a 
visual vocabulary is constructed at first by applying a 
clustering algorithm on the training data, and each cluster 
center is considered as a “visual word” in the vocabulary. All 
the descriptors extracted from an image are then quantized to 
their closest “visual word” in an appropriate metric space. 
The number of the descriptors assigned to each “visual 
word” is accounted into a histogram as the final BoF 
representation. 

 



 
Fig. 7 Example images of the SIMPLIcity database 

 

 
Fig. 8 Example images of the PASCAL VOC 2007 benchmark 

 
Particularly, we build a vocabulary of 1000 “visual 

words” (for the SIMPLIcity database) or 4000 “visual 
words” (for the PASCAL VOC 2007 benchmark) for each 
kind of local feature respectively by applying the k-means 
clustering algorithm on a subset of the descriptors which are 
randomly selected from the training data. 
 
5.2.4. Classification 
 

The support vector machine (SVM) algorithm is applied 
for object classification. Here the LibSVM implementation 
[34] is used. Once all the local descriptors are transformed to 
fixed-length feature vectors by the BoF modeling, the χ2 
distance is computed as equation (2) to measure the 
similarity between each pair of feature vectors. Then, the 
kernel function based on this distance as equation (3) is used 
for SVM training and prediction. 

For the SIMPLIcity database, each image is classified 
into the category with maximum SVM output decision value. 
We tune the parameters of the classifier on the training set 
via cross-validation, and get the classification results on the 
test set. For the PASCAL VOC 2007 benchmark, the 
precision-recall curve is plotted according to the output 
decision values of SVM classifier, and the MAP is computed 
based on the proportion of the area under this curve. We train 
the classifier on the training set, then tune the parameters on 
the validation set, and get the classification results on the test 
set. 

 
5.2.5. Experimental results 
 

The object recognition results of the proposed descriptors 
on the PASCAL VOC 2007 benchmark are shown in Table 3. 
The comparisons with other state-of-the-art descriptors are 
also included. It can be seen that: (1) the proposed OLBPC 
descriptor gets the performance of MAP 38.7%, which is 
comparable and somewhat better than the popular CS-LBP 
and SIFT descriptors; (2) the best three color OLBPC 
descriptors (Hue-OLBPC, NOPPONENT-OLBPC and RGB-
OLBPC) get the results of 40.3%, 40.9% and 40.9% 
respectively, which outperform the intensity-based OLBPC, 
as well as the CS-LBP and SIFT descriptors for about 2% ~ 
3%, indicating that they truly benefit from the additional 
color information and illumination invariance properties; (3) 
compared with the state-of-the-art color SIFT descriptors, the 
best three color OLBPC descriptors get comparable or even 
slightly better results. 

After analyzing the detailed results in Table 3 by each 
object category, we could observe that the LBP-based 
descriptors usually perform better on the non-rigid object 
categories such as bird, cat, dog, horse, person, plant and 
sofa, while the SIFT-based descriptors are usually better for 
the rigid object categories such as bicycle, bottle, chair, table, 
motor, train and monitor. Also, the color descriptors with 
different photometric invariance properties perform 
differently   on   the   same   object   category.  Therefore, we 



Table 3 Object recognition results on the PASCAL VOC 2007 benchmark 
 

AP (%) OLBPC Hue- 
OLBPC 

NOPPO
NENT-
OLBPC

RGB- 
OLBPC

CS- 
LBP SIFT

OPPON
ENT- 
SIFT 

C- 
SIFT 

RGB-
SIFT

airplane 62.2 64.3 64.2 61.9 59.2 56.0 59.9 58.7 57.8 
bicycle 38.6 35.4 39.1 42.0 44.8 44.9 43.8 38.9 44.6 

bird 25.9 32.9 34.8 32.1 27.4 28.2 27.7 32.1 22.5 
boat 56.4 56.0 60.8 59.5 53.0 45.7 49.1 51.8 46.6 

bottle 15.0 20.4 20.0 20.3 19.5 19.6 21.2 21.4 21.0 
bus 37.8 35.5 35.0 41.1 33.2 37.7 38.0 32.5 37.7 
car 62.6 60.5 61.4 65.1 63.1 55.0 57.4 53.2 56.1 
cat 38.9 39.3 39.7 42.9 40.2 36.5 37.7 34.1 37.3 

chair 39.0 40.5 41.3 39.3 38.7 44.5 42.4 45.9 43.5 
cow 20.6 21.5 14.6 24.9 18.3 25.9 17.0 16.6 27.8 
table 35.0 36.1 37.0 32.0 33.1 29.6 36.7 38.7 29.1 
dog 32.8 35.3 29.4 33.4 31.7 26.5 29.8 29.1 28.8 

horse 57.6 64.6 63.6 58.3 55.2 57.0 59.1 61.9 54.8 
motor 36.9 39.2 41.7 37.3 34.1 30.2 33.9 44.4 32.1 
person 74.1 77.2 75.5 74.7 73.0 73.1 74.5 76.6 72.7 
plant 21.3 22.7 26.7 20.1 17.5 11.5 19.9 27.1 11.5 
sheep 12.3 23.5 26.0 19.9 16.9 27.4 31.2 30.9 19.4 
sofa 25.8 27.8 27.5 25.0 19.0 23.6 22.9 23.2 24.6 
train 56.1 44.2 51.7 55.5 56.8 53.4 54.5 58.5 51.1 

monitor 25.6 29.2 27.9 31.8 31.7 33.7 35.0 27.3 35.6 
Mean 38.7 40.3 40.9 40.9 38.3 38.0 39.6 40.1 37.7 

 
Table 4 Fusion results of the color OLBPC and the color SIFT on PASCAL VOC 2007 

 

AP (%) FUSION 
(3 Color OLBPC)

FUSION 
(3 Color SIFT) 

FUSION 
(3 Color OLBPC 
+ 3 Color SIFT) 

airplane 67.0 61.8 67.8 
bicycle 48.0 49.8 56.4 

bird 36.7 35.0 43.4 
boat 62.2 52.9 60.9 

bottle 17.6 23.6 26.2 
bus 46.4 44.4 51.3 
car 67.8 61.7 68.6 
cat 45.8 41.7 46.2 

chair 43.6 48.2 48.6 
cow 26.9 29.1 29.2 
table 43.2 41.8 48.2 
dog 35.8 32.9 39.3 

horse 64.9 64.8 69.6 
motor 46.1 48.3 53.3 
person 77.8 77.3 79.2 
plant 27.3 26.5 31.3 
sheep 24.3 33.8 31.7 
sofa 32.4 30.6 37.5 
train 60.1 62.9 68.3 

monitor 35.1 38.1 39.5 
Mean 45.5 45.3 49.8 

 
further combine different color descriptors, as well as the 
color OLBPC and the color SIFT by late fusion to check if 
they could provide complementary information to each other. 
The fusion results are shown in Table 4. 

It can be observed that: (1) a great performance 
improvement (about 5%) can be obtained by fusing different 
color descriptors, both for the OLBPC and the SIFT, proving 
that different color descriptors are not entirely redundant; (2) 



 
Fig. 10 Object recognition results on the SIMPLIcity database 

 
the color OLBPC descriptors still get comparable or slightly 
better results than the color SIFT after fusion; (3) the 
performance can be further improved (more than 4%) by 
fusing the color OLBPC and the color SIFT descriptors, 
indicating that these two kinds of descriptors could provide 
complementary information to each other. 

The object recognition results on the SIMPLIcity 
database are shown in Fig. 10. The similar observations to 
that on the PASCAL VOC benchmark can be noticed. The 
color OLBPC descriptors outperform the CS-LBP, SIFT, as 
well as the intensity-based OLBPC descriptor by about 3% ~ 
5% on average, and get comparable results with the color 
SIFT descriptors. Further improvement (nearly another 5%) 
can be obtained by fusing three color OLBPC and three color 
SIFT descriptors, since they provide complementary 
information to each other. 
 
5.3. Experiments on scene classification 
 

We also evaluate the proposed descriptors in the 
application of scene classification. The dataset from Oliva 
and Torralba [35] is used, and denoted as OT scene dataset. 
It consists of 2688 color images from 8 scene categories: 
coast (360 samples), forest (328 samples), mountain (374 
samples), open country (410 samples), highway (260 
samples), inside city (308 samples), tall buildings (356 
samples) and streets (292 samples). Fig. 11 shows the 
example images of each category. 
 
5.3.1. Experimental setup 
 

We mainly follow the same approach described in 
section 5.2.1 for scene classification. The differences are as 
follows. Instead of detecting the interest points in images 
using the Harris-Laplace detectors, we apply the dense 
sampling strategy to locate the keypoints for local descriptor 
computation. This is because we prefer to focus on the 
contents of the whole image, rather than the “object” part 

only, for scene classification. Particularly, the sampling 
spacing is set to 6 pixels, resulting in around 1700 keypoints 
per image. A visual vocabulary of 2000 “visual words” is 
constructed for each kind of local descriptor to build their 
Bag-of-Features representations. 

We randomly choose half of the images from each scene 
category for training, and the other half for test. The 
recognition accuracy is used as the evaluation criterion. We 
tune the parameters of the classifier on the training set via 
cross-validation, and get the classification results on the test 
set. 
 

 
 

Fig. 11 Example images of the OT scene dataset 
 
5.3.2. Experimental results 
 

The classification results on the OT scene dataset are 
shown in Fig. 12. The observations are consistent with that in 
the application of object recognition. The effectiveness of the 
proposed color OLBPC descriptors are proven by their 
superior performances to the CS-LBP and SIFT descriptors, 
and also by their ability of being complementary to the state-
of-the-art color SIFT descriptors. It is worthy to be noticed 
that the NOPPONENT-OLBPC descriptor does not perform 
well in this case, while its performance   is  quite good  in the 



 
Fig. 12 Classification results on the OT scene dataset 

 
application of object recognition. We believe the main 
reason is that the OT scene dataset contains more varieties of 
the illumination changes than the object recognition datasets, 
and the NOPPONENT-OLBPC descriptor is deficient in 
power of dealing with these variations, because it is only 
invariant to light intensity change. This also explains why the 
RGB-OLBPC and the RGB-SIFT perform the best among 
the color descriptors, since they possess the strongest 
invariance properties (invariant to light color change and 
shift). 
 
5.4. Comparison of the computational cost 
 

As we state in the introduction, a good local descriptor 
should be both discriminative enough and computationally 
efficient. The discriminative power of the proposed color 
OLBPC descriptors has been demonstrated by the previous 
experiments and applications, and they get comparable or 
even slightly better performances than the state-of-the-art 
color SIFT descriptors. Here we show their computational 
efficiency by comparing them with the color SIFT. 
 
Table 5 Comparison of the computational cost between the 

color OLBPC and the color SIFT 
 

 Computation 
Time (s) 

MAP 
(%) 

Color OLBPC 1.12 40.9 

Color SIFT 2.39 40.1 

 
The comparisons are conducted on the PASCAL VOC 

2007 benchmark, and on an Intel Core 2 Duo CPU @ 3.16 
GHz with 3GB RAM. We implement the color OLBPC 
descriptors in C, and use “Color Descriptors” software [30] 
to compute the color SIFT descriptors. We record the 

average computation time required for extracting the color 
OLBPC and color SIFT per image (about size of 500×300) 
respectively in Table 5. It can be seen that the color OLBPC 
is about 2 times faster than the color SIFT, and thus is more 
suitable for large scale problems. 
 
6. Conclusions 
 

In this paper, we firstly proposed a new method namely 
orthogonal local binary patterns combination (OLBPC) for 
the dimensionality reduction of the original LBP operator, 
and then proposed several new local descriptors based on the 
OLBPC, namely the color OLBPC descriptors, for image 
region description. The proposed descriptors could 
incorporate color information to increase their discriminative 
power, and also to increase their photometric invariance 
properties of dealing with different illumination changes. 
The experiments in three different applications showed the 
effectiveness of the proposed descriptors. They outperform 
the popular SIFT and CS-LBP descriptors, and get 
comparable or even slightly better performances than the 
state-of-the-art color SIFT descriptors. Meanwhile, they 
could provide complementary information to the color SIFT, 
since further improvement can be obtained by fusing them. 
Moreover, the proposed descriptors are about 2 times faster 
to compute than the color SIFT descriptors. Therefore, they 
are more promising for large scale problems. 
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