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Abstract. Model assessment and model mining are two key processes
which are crucial in software design and engineering, service-oriented
architectures and business process management. Model assessment eval-
uates the compliance of a model towards its specification before or after
implementation. Model mining allows the extraction of the implemented
model from its activity logs and without prior knowledge on the model
itself. This paper presents DOBS, a model evaluation and data gener-
ation tool for the improvement and testing of model compliance and
correctness and for assisting the process of mining state diagrams or
flowcharts, such as business processes, web services etc. DOBS is a con-
tinuous time/discrete event simulator that allows the design, simulation
and testing of a behavioral model before its expensive implementation,
or to check and evaluate an existing real-world model such as a business
process or web service for compliance requirements towards specifica-
tions. The data generation feature allows to analyze the output as well as
to test mining methods on large amounts of realistic high-quality data.
Experimental results show the efficiency and effectiveness of DOBS in
modeling and analyzing diagram behavior, as well as the huge produc-
tion capacity of realistic configurable data.
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1 Introduction

Model assessment (also referred to as model compliance) addresses the issue
of conformance towards a policy, standard, law or technical specification that
has been clearly defined [30]. This also includes but is not limited to conform-
ing towards business regulations and stated user service requirements [22]. As
the authors in [32] point out in their survey, compliance toward regulations is
finding more and more attention in the eyes of the research community. Ap-
plications of model assessment include workflow checking, protocol verification,



and constraint validation [15]. Factors that motivate model compliance utility
are: cost of the implementation prototype just for assessing the model, cost of
re-implementing once that assessment results are negative, risk of testing on
real-world already deployed systems, complexity of designed systems which pro-
hibits exhaustive static verification and validation. There are critical flaws which
obviously appear only during execution behavior analysis, be it on real imple-
mentation or simulation.

Model mining from activity logs is an extended research domain with impor-
tant industrial applications and consequences. Its theoretical roots are automata
learning and grammar inference [4,2,20]. More concrete and oriented applica-
tions are mining of workflows, business processes and software specifications,
business protocol discovery and web application behavior extraction. Applica-
tions include: post-mortem monitoring, checking the equivalence between the
specification and implementation (this particular application is mandatory for
critical systems before deploying them online or in business platforms.), obtain-
ing the specification if it does not exist, checking for security flaws, verifying that
constraints in the execution flows are satisfied, checking if the designed model is
correct, complete and finite (i.e. no deadlocks, infinite loops, bottlenecks), ver-
ify performance parameters on given parts of a model. Yet data for mining is
extremely hard to get mainly for confidentiality reasons, or because the data is
used for commercial purposes.

Model assessment and model mining merge together in synergy, especially re-
garding the tasks on (i) checking the equivalence between the specification and
implementation and (ii) obtaining the specification if it does not exist. In this
double-sided context we present DOBS (Dynamic Model Behavior Simulator),
a modeling-and-testing generator tool which allows the expert of business pro-
cesses,web services, or any other dynamic behavior-based systems, to design, test
and simulate a behavioral model such as a business process or a web service /
application. It also allows to generate activity data, of both low and high level of
abstraction, from the simulation execution and testing. DOBS can thus be used
as a testing or data generation tool, or both. It can improve model compliance
while helping decision support during all stages of model assessment evaluation
life-cycle. DOBS utility for compliance analysis may vary depending on the con-
text of its usage since critical systems require both pre/post assessment, whereas
nominal systems should in principle require only pre-implementation assessment.

Let us introduce an example scenario that illustrates the current need for
a model simulator and data generator like DOBS. A banking institution wants
to develop a new online service for its clients. Before starting the implementa-
tion work, which is resource and time consuming, the developing team needs
to undergo several steps of design and model improvement, without having to
go through the development of prototypes for each modification brought into
the platform. Thus, the team models several versions of the protocol using the
graphical interface of DOBS. Simulations are run in order to assess which ver-
sion best fits the specified needs, as well as to detect potential flaws such as
bottlenecks, security breaches, incorrect execution sequences of messages and



events. This includes drawbacks from poor design, or simply missing features
that are not accounted for. Performance evaluation can take place during this
step in order to determine which configuration of the protocol model is the most
efficient and ergonomic. Meanwhile the team also wants to test its mining tech-
niques for assessing the compliance of the prototype towards the initial model.
This is a common practice in critical applications since it provides further proof
that the traces of the simulated model do confirm the expected behavior or not.
Therefore, the data output from simulations can be utilized in order to assess
the model itself, as well as to check the mining techniques in case their efficiency
needs to be confirmed.

One should also note that by combining the DOBS enhanced finite-state
machine(FSM) representation with the source blocks generating data that be-
have according to user-defined statistical parameters, it is possible to obtain
with DOBS more than just the corresponding automata of a given model, but
also other richer and semantically equivalent representations such as Petri nets,
probabilistic FSMs or Markov Models, that may be more suitable to the model
context or expert expectations.

2 Evaluation criteria and data issues

In this section we give a particular attention to data-related hot spots. First of
all, we define the elementary units of what we call data from activity logs or
traces. We assume throughout this paper that the terms log and trace describe
more or less the same concept despite technical considerations (which go beyond
the scope of this paper). Data inside logs is considered in this paper to originate
from very diverse models, for example business processes, medical workflows, web
service (WS) business protocols, service-oriented architectures (SOA) etc. Thus,
we can explicit units that represent the data which is logged into activity traces
into the following set: Tasks, Operations, Messages, Activities, and Events. In
the following, all these interaction units will be referred to as a TOMAE. We
also underline the difference between an event in the context of DOBS and the
definition of an event in the context of business processes. An event in DOBS
is a generic concept associated to the activation of any TOMAE associated to
an a transition of an automaton: the notion of event encountered in business
processes and workflows is a particular case of the definition of an event in
DOBS. Therefore, in the following when we mention an event we refer to the
more generic DOBS definition of it. Now let us pursue with our analysis.

Next, we explicit the concept of a model. A model in this report refers to
the conceptual model of the behavior of a system, and/or the semantics of the
TOMAE flow associated with this system. The model is thus an abstract repre-
sentation of the control flow of charts, workflows, and business protocols, that
employs the state diagram notation.

Data that is to be used for mining purposes is subject to numerous issues and
difficulties that jeopardize the whole mining process and even its implementation.
The first problem is how to obtain the raw data itself. For example, during QDB



2009 [24] participants pointed out that authentic data sets are extremely hard to
obtain for a researcher. Indeed, only researchers employed in R&D departments,
or those participating in particular collaborations involving partners from data-
generating fields (or which are in possession of these data sets) such as medical
centers, large businesses, government agencies, service providers etc. can make
usage of such datasets. All the other researchers are faced with a continuous and
disturbing lack of data. This concerns not only real-world data but also synthetic
sources such as generators, simulators, etc.

The problem itself is not the mere existence of real data sources. The real
problem is the extremely limited access to those sources. The limited access
to data unavoidably leads to a very negative consequence. Since the results
of model mining heavily rely on characteristics which are inherent to data, this
implies that the discovered model will be influenced by the input data considered.
Specific patterns in models appear because of the underlying hidden properties
and correlations which also exist in data. As it is clearly shown in [31,9], data
has a huge impact on the mining itself. Without proper information, which
characterizes "well-grown" logs and their very large size, mining methods will
fail to test some of their most important characteristics such as completeness,
quality, soundness of the results as well as scalability and performance issues.
This concerns both existing methods and yet-to-come approaches and mining
algorithms.

A straightforward solution to scarce datasets is to generate them. Despite
being an apparently easy solution, yet generating data requires particular cri-
terias to be met, in order to comply with what would be expected from real
datasets. Indeed, generated data has in general much lower volumes compared
to real world sets. Moreover, these synthetic datasets do not have the charac-
teristics of real ones, for example statistical distribution, noise nature and level,
content diversity, and so on. Consequently, we can summarize the following main
criteria (among many others) :

1. Quality of the model behavior
The completeness criterion requires the model execution to cover all exist-

ing transitions, in other words every component of the behavior model is to
be explored. Completeness of the data contained into the logs is a factor that
heavily influences the analysis and mining results. The completeness criterion
requires the model execution to cover all existing transitions, in other words
every component of the behavior model is to be explored. For example, it is
obvious that if particular TOMAEs are missing from the traces, simply because
they are not considered by the logging application, then entire sequences that
are followed during the diagram execution will be severely damaged or even lost
because of incoherences due to missing TOMAEs in those sequences. Using its
user-specified simulation speed or by analyzing output activity traces, the ac-
tual activation of all existing paths that can be followed for that given model can
be immediately verified, either by direct observation of the running simulation
model (see Figure 3), or by a very simple and fast analysis of activity traces,
which uses high-performance code. This avoids design or verification scenarios



in which the control flow and the constraints inside the model contain design
errors that might prevent particular model execution instances from executing
correctly. Finding such flaws in a model using conventional techniques is ex-
tremely costly in terms of temporal and financial ressources, as underlined by
the authors in [3].

Scalability expresses the capacity of DOBS in performing in both a rapid
and reliable way when simulating large, complex, and multiple-instance models.
This measure also concerns the data generation and processing capabilities of
DOBS. Consistency on the other hand, assures that the designed model behaves
according to the specification, and does not show unexpected, undefined, or
non-deterministic behaviors. This is obtained through default runtime rules on
transition selection that avoid any ambiguity inside the automata. Nevertheless,
default runtime rules can be translated into partially simulated models, dead-
locks, and generation of incomplete sequences of TOMAE. This is the reason
why the completeness criterion is mandatory to be tested, along with scalability,
as opposed to consistency, that is automatically avoided by default deterministic
rules. We also include temporal consistency, that ensures for temporal data to
correctly follow the time logic specified in the model.

Correctness of the model is an additional property to be verified. The same
debugging GUI and functionalities make it possible to easily identify event se-
quences that occur in disregard of constraints defined over control sequences
(>=, <> etc.), security and privacy constraints etc. This avoids implementing
(or not identifying in existing models) faulty or non-existing constraints with
disastrous consequences because of security threats or other fallout issues fol-
lowing the non-compliance toward the specified execution logic.

2. Properties and quality of generated data
Sheer size is an obvious property of activity logs and traces, since in realistic

scenarios logging takes place during extended periods of time (months, years).
Temporal constraints ensure for temporal data to correctly follow the time

logic specified in the model. For example, timestamps are supposedly processed
and logged in the required order without undesired value alteration and over-
lapping. This should allow nevertheless for desired noise introduction using pre-
determined techniques. That is why the inclusion of imperfections is also to be
considered, since all implemented logging tools will be responsible for flaws dur-
ing data recording. These imperfections include noise (in a broad sense), errors,
uncertainty on the data values itself, and any other data alteration process that
implies potential errors or undesired data modification.

Statistical properties characterizing real activity data are also a key parame-
ter. Traces output from different systems will exhibit different statistical behav-
ior, following different distributions each one having its own parameter values.
Thus, mimicking these stochastic models during data generation is mandatory
for using these traces in a useful and profitable manner. Moreover, these prop-
erties are also to be verified in order to check that generated data values do



conform to expectations, therefore increasing the probability of a positive data
and behavior assessment.

We also include the requirement that generated data must reflect in the
most realistic manner (to the maximal extent possible) the actual behavior of
a real world implementation of the model, even if the latter might not even
exist, thus its real behavior being yet unknown. This feature calls for the design
of a generator of a high level of abstraction, but which must also provide the
capability of being configured at a very low level when it comes to its internal
parameters, so that it can model virtually every model in the range, while at the
same time offering a fine-tuning that allows the incorporation of particularities
of the real model into the generator. This would provide a good mimicking of
what would be considered satisfactory data.

The core of DOBS is a discrete event simulator that allows for the repro-
duction of the behavior of dynamic models. DOBS makes it possible through its
graphical user-interface to model very complex structures in an extremely short
time compared to the amount of time required for implementing source-code-
based mock-ups or prototypes. In the case of an existing running model, DOBS
allows to check the conformance between the specification model using its GUI,
and the real system. Moreover this can be used to play what-if scenarios in case
of a future update, allowing experts to assess problematic points, and the impact
of every modification on the evaluation criteria. while avoiding the expensive and
time-consuming of implementing changes on the software/real application level.
In particular, DOBS allows users to assess several criteria of the studied model
behavior.

At its basic level, DOBS implements an accurate, but also generic represen-
tation of a dynamic model. Modeling business processes, web service protocols,
or software systems is a tricky and heavy-duty task where the slightest error
can lead to many problems which are too numerous to be exhaustively enu-
merated. The correct simulation and data generation for a realistic model faces
two main difficulties: (i) the very complex behavior of such systems and (ii)
the extremely large quantities of data they are supposed to generate. Moreover,
realistic simulation of processes and web services requires accounting for simulta-
neous multiple instances execution (up to millions of instances), employing time
clocks that may feature asynchrony or not, and guaranteeing data constraints,
type and other attribute-value restrictions. All these features combined together
lead to restrictive requirements in terms of computational complexity. DOBS
modeling interface offers the necessary complexity for designing very rich mod-
els with enough high expressive power to capture the dynamics of a real system,
yet simple enough to allow for rapid design, simulation and data analysis and
a user-friendly graphical interface for design, configuration, debugging and test-
ing. DOBS models a dynamic workflow as a finite-state machine. The simulated
model behavior is provided by the interaction of its states and super-states via
labeled transitions, which constitute the basic elements of the DOBS behavior
controller. The choice of employing the automata representation was motivated
by their ability of efficiently modeling and computing a dynamic model’s behav-



ior. Despite the FSM theoretical considerations in modeling certain models such
as Petri nets or Markov chains, yet this is valid only for FSM in its original form
[10]. These limitations do not concern DOBS, which uses an enhanced and more
abstract form of a FSM with an expressive power equalling that of Petri nets
and Markov chains. More specifically, each model has a set of input blocks, a
set of controllers (the automata modeling the dynamic behavior) and the group
of output blocks. When a model is run, events trigger the transition from one
state to another, provided that the corresponding transition conditions and con-
straints are met. Once a transition is selected, all the associated statements in
its label are executed.

3 Architecture of DOBS

The architecture of the DOBS tool is given in Figure 1 which depicts the con-
ceptual schema of its main components: the Graphical User Interface (GUI), the
Block Library (BL), the Simulator Controller(s) (SC), the Data Generator(s)
(DG), the Log Pre-processing Library (LPL), and the Model Explorer (ME).

Fig. 1. Conceptual model of DOBS



- The GUI component is ubiquitous and the starting point for every simula-
tion step. It mainly allows users to load a simulation model from a file and save
it, to design and run a model from scratch by means of Block Library(BL) and
Model Explorer(ME) modules, to modify simulation parameters or to update dif-
ferent model blocks including the controller behavior, and finally to start/stop
simulations. The GUI can also be launched via a non-interactive command-line
interface.
- The Model Explorer (ME) is responsible for defining and configuring all
the data variables that the model is going to employ as of input, output or in-
ternal type, as well as events which are going to be triggered during runtime
of the model simulation. This component includes also an editor for configuring
the properties of each block in the model; this concerns also the controller(s)
existing in the designed instance and the associated data and events.
- The Simulator Controller (SC) component implements the behavior spe-
cific to the targeted model. SC has six main sub-components which are described
as follows:

1. The Input Data (ID) receives all incoming data from outside the SC and
eventually initializes and/or prepares them for further usage.

2. The Basic Components (BC) block provides the elementary modules that
will compose the automata whose execution represents the model’s behavior.
These modules include states, transitions, super-states, junction points, user-
written functions, etc.

3. The Internal Logic Statements (ILS) is composed of single and optional
statements such as variable instantiation, arithmetics and so on. These state-
ments are edited and inserted directly into the transition labels of the automata,
and executed if and only if the event identifying the transition is triggered and
the associated condition returns the boolean true value. Despite being optional
and their relative simplicity, ILSs are a key element that radically improves the
features which can be obtained during a simulation in terms of data diversity
and behavioral complexity. For an illustration of ILS, see Figure 3.

4. The TOMAE Flow/Order Control represents the core of SC. It implements
the user-specified behavior by means of transition connections between states,
enforcing transition constraints over determined values, probabilistic transition
selection employing the input random user-defined distribution generated by
DG. It can also define a more specific runtime behavior of the simulator, such
as the verbose or silent output on the console, which can be used in real-time
monitoring applications, state-bound triggering of events or data operations that
are of great interest and usefulness in the case of business process simulation.

5. The Debugging Interface (DI) offers functionalities that allow a quick de-
tection of human errors made during the modeling phase in DOBS. If an error
is detected, for example an incorrect ILS on a transition, state inconsistency,
transition conflict, or data range, DI highlights the part(s) of the model pre-
senting the conflict and provides semantically rich information that allows users
to quickly identify both the location and the source/cause of bugs. This inter-
face also allows (a) to define breakpoints at chart entry, event broadcasts and



other points, (b) to enable/disable the graphical animation during the simulation
and (c) to define a simulation delay. The simulation delay makes it possible to
run the simulation at different speeds. This feature is very useful when visually
monitoring the execution, or for demonstration purposes.

6. The Simulation Data (SD) is in charge of all data that is of interest to
the model from the designer point of view. This does not include meta-data,
internal variables or generated values from sources in Block Library (BL), all of
which are employed solely for satisfying the requirements of the DOBS’ inner
mechanisms in order for the model to be simulated correctly and output data to
be handled according to the users’ expectations. The content which is output by
the SD module contains everything that will be entered as input for the Data
Logging (DL) module.

- The Data Generators (DG) module, as its name clearly indicates, has the
task of grouping all blocks whose function is to generate all the necessary data
that will be used and processed during a simulation on DOBS. The data issued
by DG can be divided into two main categories: (i) data for the "visible" part of
the model, i.e. that will constitute the basis for the model’s activity output, (ii)
data employed for model parameters’ configuration, debugging, decision-making
during simulation runtime, but yet without interest for the activity traces. DG
is composed of three sub-components:

1. The Temporal Data (TD) provides realistic time values that are associated
to TOMAE occurrences or state and transition activations in any given point of
the model flowchart. DOBS uses continuous time values and the time interval can
be defined by the user as finite (fixed-duration simulation) or infinite (very long
duration of the simulation). Since users can specify both the minimal time unit
and fixed-length delays, employing the infinite time interval has experimentally
proven to be extremely useful for simulating models and generating activity
data volumes that would require months, and even years, to collect in a real
working platform [21]. The continuous time values are obtained by a digital
clock of double-type precision. Nevertheless, DOBS also offers the feature of
using discrete time values through integer-based counters (long format integer
type) as well as limited intervals. Multiple independent clocks and counters can
be integrated in the same model. They can be synchronized or not, and their
respective parameters are configured separately, all these criteria being decided
by the user during design time.

2. The Model Attribute Values (MAV) constitute the set of data that will
be associated to every attribute of an existing TOMAE in the flowchart. The
interval values for a given attribute can be of any type: enumerated sets used for
generating TOMAE names and labels; (un)limited discrete-value sets useful for
generating values that can represent any string of characters, for example URLs,
identifiers, keys or any other desired usage.

3. The Decision-making Variables (DV) are part of a particular, yet extremely
important group of DG. These variables bear the decision of TOMAE selection



in multiple-choice scenarios. In other words, when several transitions exit the
same state, or when more than one TOMAE can be executed following the
precedent one, it will be the task of a DV to generate the value that will be
used to discriminate the selected transition or TOMAE to be followed on the
next simulation step. The values for a DV are generated using uniform (LIST
OTHERS) statistical distribution. The distribution type for these values is also
user-specified. Note that the distribution type defined here will deeply affect the
output data of the simulation, since the percentages of selected model paths will
influence the occurrence rate of all attributes associated to all the transitions
and states (in other words of the TOMAEs) included in their respective paths.
This allows for simulating models representing Petri nets and Markov models
and is therefore a feature that greatly enhances the generic capability of DOBS.

- The Block Library Module (BL) provides all the elementary blocks
that will compose every model. Three sub-components constitute this module.
They are categorized based on their functionalities:

1. The Source module includes all blocks that are responsible for data, value
and noise generation. Among these we can mention: the Band-limited White
Noise for generating normally distributed random numbers that are suitable for
use in continuous or hybrid systems; the Digital Clock for producing current
simulation time at the specified rate; the Counter Limited that wraps back to
zero after it has delivered the specified upper limit; the Random Number that
provides a normally (Gaussian) distributed random set of values with a non-
repeatable output if the seed is modified; the Uniform Random number that
provides a uniformly distributed random signal for the same seed conditions as
the Random Number.

2. The Sinks module constitutes the set of blocks acting as the output in-
terface. Among the existing ones, the most relevant are the Display for numeric
display of input values, and the To Workspace block that writes the input to a
specified array or structure in the main workspace. However, it is necessary to
underline that for consistency reasons, data is not available until the simulation
is stopped.

3. The Functions module is the most flexible part. It is composed of both
pre-defined and new user-written functions that enhance the capabilities existing
library blocks in BL. An editor allows to enter the function code or to modify
it.

4. The Routing module is composed of block that channel the data and other
values between the model components. The most important blocks of this mod-
ule are (i) the Demultiplexer that splits either (a) vector signals into scalars
or smaller vectors, or (b) bus signals produced by the Mux block into their
constituent scalar, vector, or matrix signals (ii) the Multiplexer used for multi-
plexing scalar, vector, or matrix signals into a bus and (iii) the Manual Switch
whose output toggles between two inputs by double-clicking on the block. These
blocks allow users to design lighter models which are not visually overloaded
with simple connections that quickly overload the GUI.



- The objective of the Data Output Module (DOM) is to ensure the ap-
propriate handling of the output incoming from the SC module. More precisely,
its two components Data Logging (DL) and Data Visualization (DV) deal re-
spectively with (i) recording the SC simulation data by utilizing the correct data
type storage format which comes in the form of arrays, matrixes, cell arrays, and
symbolic values, and (ii) provide the appropriate data visualization interfaces by
using either numerical displays for direct value reading, or plotting functions for
observation of patterns or statistical study. Examples are depicted in Figure 4
and 5 that are described in detail in Section 5.
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Fig. 2. Main window view of DOBS

- The Log Pre-processing Library (LPL) constitutes the final stage of
the DOBS usage flow, and deals with the crucial task of (i) cleaning logs from
redundant and other irrelevant data c.f. Log Cleaner (LC) sub-component and
(ii) reorganizing data structures and manipulating data content in order to make
it fit for further usage, as well as testing its properties in order to ensure that
the output corresponds to the users’ expectations before feeding the output to
furthermore processing and analysis steps; this is carried out by the Data Pre-
processing and Testing Library (DPTL) sub-component. Testing also includes
visualization techniques, an example of which is illustrated in Fig.5. When we
speak of data redundancy, we refer to the fact that the DL sub-component is



capable of logging data at a higher speed rate that the SC running simulation
clock itself, thus recording multiple occurrences of the same event. Even if this
phenomenon can be avoided by setting a lower logging speed rate for DL, ex-
periments show that this is a useful feature that ensures that eventually no data
loss can occur. Moreover, since the LC sub-component shows an extremely high
performance, applying the LC with redundant logs provides both no-loss logs
in a very short time, therefore combining both positive requirements without
presenting data inconsistency risks.

Fig. 3. Behavior designer interface - SC component



Figure 2 depicts the main interface of DOBS. The rectangle blocks in light
blue are the numerical displays, the square ones in yellow are the numerical
random value generators, the square blocks in light blue stand for constants and
logical operators for execution control, and finally the rectangle grey block in
the center is the SC module. By double-clicking the SC block, the SC design
interface opens, an illustration of which is given in Figure 3. One should observe
that DOBS has the very strong capability of being deterministic (yet allowing the
implementation of the parallelism encountered in many workflows) thus avoiding
inconsistencies and is capable of going through every transition thus providing
a solid guarantee for exhaustive execution completion and completeness of data,
as we will see in Section 4.

DOBS is implemented in the Matlab Simulink environment [16], and the LPL
module is written in the Matlab programming language. The Matlab Simulink
environment was selected mainly because it has the required features for an effi-
cient implementation of DOBS. Among these features we can mention the set of
existing blocksets and toolboxes. The choice was also influenced by the oppor-
tunity to graphically design dynamic models using the Simulink environment.
This software package is well known for modeling, simulating, and analyzing dy-
namic systems. The final reason for this choice is the existence of very numerous
libraries that are made freely available from many academic researchers. Nev-
ertheless, since Matlab is not free software we also explored other candidates.
Indeed, Scilab [27] offers a quite interesting option, with its Scicos code gener-
ator whose functionalities are unfortunately quite limited compared to those of
Simulink, notably regarding the dynamic simulation capabilities. Octave [8] on
the other hand is even more limited since it only offers a command-line interface
thus allowing only for the LPL library to be tested upon it.
The implementation of DOBS is composed of two distinctive parts. The first one
is composed of all the modules that appear in the GUI, and that are provided by
the Simulink tool itself. More precisely, it consists of the definition of adequate
parameters for these modules, as well as choosing the required set of modules.
Another component of the implementation consists of the source code in which
are written functions, and the TFOC, ILS, and DV modules. In conclusion,
this section of DOBS is implemented using the graphical programming language
(GPL) of Simulink. The second part of the implementation consists of Matlab
functions written specifically for DOBS in the Matlab dataflow programming
language (DPL). Virtually every component in the conceptual schema in Figure
1 exploits the capabilities of the Simulink GPL, except the LPL component. The
latter, including Functions and DV sub-components are implemented using only
the Matlab DPL. Since systems can also be defined to be multirate, i.e., have
different parts that are sampled or updated at different rates, this allows for
simultaneously simulating several models at a time which is a useful feature.



4 Experiments and testing

This section presents an experimental evaluation of DOBS based on several key
criteria. The main objectives of the experiments were to check that DOBS meets
its objectives provided in Section 2. We briefly recall them: (i) the quality of the
model behavior in terms of completeness, scalability, and consistency, and (ii)
the properties and quality of generated data in terms of temporal consistency,
pattern coherence, and statistical properties.

DOBS was used to generate data for (i) the WatchMe scenario [22] (see Fig-
ure ??) in order, to assess compliance restrictions (ii) the Drug Dispensation
process [23] (see Figure ??) for process mining based on uncertain data, and (iii)
the fictitious commercial web service TradingWS (illustrated in Figure ??) for
client service behavior simulation. The WatchMe scenario describes the business
process of an online multimedia delivery system. The Drug dispensation process
describes the business process followed during the delivery of drugs in the med-
ical domain. The TradingWS web service describes the business protocol of an
online shopping service very similar to eBay. For all three scenarios transition
selections are randomly chosen following a uniform distribution at generation
time. TOMAE inter-arrival times were independently configured in order to as-
sure that no correlation occurred during the simulation. This is in fact a required
condition for a realistic simulation.

Table 1 illustrates the evolution of processing time required by DOBS to
generate a fixed number of instances during the simulation of the Trading Web
service. The outcome of the experimental results in this Table, given in the
second and third column, are based upon the variation of the parameter given
by the number of completed instances in the first column. One can notice the
linear progression of the time required for simulation and generation versus both
the number of messages and instances. A more visible form of this result is given
in Figure 6.

Table 1. Performance metrics of simulated messages from TradingWS web service

# Instances Time (sec.) # Generated events
500 69 7485

1000 135 14778
2500 331 36080
5000 652 71207

10000 1473 132562
25000 3409 353549

We show in Table 2 the experimental results on the selection rate of multiple
transitions. This corresponds to the criteria of completeness and consistency.
The results aim at showing that all of the considered messages were executed
according to the specified behavior in Figure 3. This behavior relates to the
selection conditions defined in the TFOC sub-module. As the third column of



this Table shows, the divergence between the expected selection rate and the
experimental rate is significantly low. This non-zero divergence corresponds to
what is expected from a real execution of the model. In addition, messages
d, r, g, and f have the highest level of divergence. This is due to their loop-
based behavior and this provides the expected proof that the pattern coherence
criterion is respected during simulation.

Table 2. Statistical metrics of simulated messages from TradingWS web service

Message type (abbreviation) Selection rate in mutiple-
choice transitions (%)

Estimated difference
with expected rate

loginOK (b) 0.50556 +5.561 × 10−3

loginFail (c) 0.49443 −5.561 × 10−3

browseProducts (d) 0.22849 +28.49 × 10−3

addToList (e) 0.20552 +5.527 × 10−3

order (r) 0.55121 +51.21 × 10−3

viewDetails (g) 0.17361 −26.39 × 10−3

deleteFromList (f) 0.16776 −31.27 × 10−3

confirmProductList (t) 0.20236 −2.361 × 10−3

Figure 4 provides the temporal distribution of several events of the WatchMe
process workflow, when using a relative timeline, i.e. a clock reset to zero at
the beginning of each model instance simulation. One should expect from the
execution of the model that: (i) events are executed in the correct order, (ii)
timestamps are included in the defined interval, and (iii) for a given event ID,
its occurrences are distributed along the defined interval. This Figure inidicates
that these expectations are eventually met, when the three previously mentioned
conditions are studied from the view of the BPMN model defining the process.
For example, the TOMAE having the ID = 1 (value on the y axis) is the first
TOMAE to be executed, thus its temporal interval (measured on the x axis) is
the narrowest and it also has a very high occurrence density on that interval.
The TOMAE having the ID = 12 is the last TOMAE to be executed, and thus
its interval right limit is the highest, and its occurrence density considerably
lower.

Figure 5 shows that TOMAEs are correlated during the simulation as ex-
pected. On the right hand of the chart one sees that the dynamics of the two
considered messages are indeed correlated. This derives from the structure of
the WatchMe protocol that connects these messages. If we take a closer look
at this Figure, we see that an abrupt change in the number of occurrences of
the event type LoginSuccess (in blue), is followed by a proportionally drastic
drop in the same number for the event type SearchMedia (in green). The visual
pattern on the right provides further proof that the temporal constraints are not
violated during log generation and transformation, since the events are ordered
in a sequential fashion from the temporal perspective. Both plots were obtained



using the LPL module for data cleansing and visualization.
Figure 6 depicts the temporal performance of DOBS during generation of in-
creasing quantities of data, with the impact of both instance and event numbers.
From this Figure it can be deduced that the two variables, namely the numbers
of instances and events, have a very similar impact upon the performance of
DOBS. Figure 7 demonstrates that the statistical properties of data (blue plot)
fit the theoretical estimation of the statistical distribution (in red), that in this
case is the Exponential distribution. The extensive analysis of these Figures al-
lows to deduce more information than what we mention up to this point, yet
this analysis is beyond the scope of the present work.

Fig. 4. Timeline sequencing of simulated TOMAEs from the WatchMe scenario [22]

Additional evidence of the advantage of using DOBS for simulation and data
generation purposes was provided by internal surveys in our team which showed
that while the development of a BPMN model took in average 3-5 man days,
it took on the other side several man weeks to complete the same development
task on the same model by implementing solely the data generation capabilities
in the Java programming language.

5 Related work

The work presented in this paper is positioned in a domain crossroad connect-
ing model assessment (including process compliance) [26,13,14], model mining
[25,7,28,1,6,11,18,29], grammar inference [5,4,2,20], and diagram behavior sim-
ulation [3]. To the extent of our research results on preceeding tools, all the
existing attempts to design and build tools that might achieve similar goals to
those of DOBS present limitations since they are designed to deal with partic-
ular situations, hence suffering from non-generic functionalities which severely



Fig. 5. Temporal distribution of simulated messages from the WatchMe scenario [22]

Fig. 6. Scalability measures versus number of instances and events generated for Trad-
ingWS.

restricted their extensive usage. Several tools address the issue of simulation and
data generation of state-diagrams.

In [3] the authors present SYMIAN, a decision support tool for the improve-
ment of incident management performance. This tool tests corrective measures
for the IT support organization by improving performance measures. Since this
simulation tool is targeting the performance optimization of IT management



Fig. 7. Cumulative distribution function of simulated messages (blue) of TradingWS
and theoretical fitting function (red)

processes in a very precise manner, it is thus not possible to employ it for more
generic goals such as the ones of DOBS. The main difference between DOBS
and SYMIAN is the target objective: the former addresses assessment analy-
sis and data generation, while the latter considers only performance issues. In
that sense, SYMIAN can be seen as a potential application case of the more
universal DOBS. The Sage-Combinat toolbox [19] also offers interesting capabil-
ities in exploring weighted automatons, which corresponds indeed to one of the
many features of DOBS. This toolbox runs on the former MuPad application,
which no longer exists since it was actually acquired by The Mathworks and
incorporated into the Symbolic Math Toolbox for Matlab [16]. Yet, exploring
finite-state machines is a very narrow application of Sage-Combinat, which, as
an algebraic combinatorics tool, has objectives that extremely diverge from the
scope of the domains considered in this paper. Nevertheless, this toolset has the
important property of guaranteeing that all the transitions of a given automata
are explored. We showed in the precedent section that this property is indeed
fundamental, this is why a particular attention was given to the fact that DOBS
could offer the same guarantee. Also, since the application which served as a run-
ning platform for Sage-Combinat is no longer officially available, this severely
limits any future usage.

The authors in [5] provided a command line utility for generating sequences
of words belonging to a user-specified regular grammar associated to a prob-
abilistic automata. The capabilities of this generator are quite limited since it
can provide only data for testing grammar inference algorithms, and it did not
aim at providing any generic and more complete logs. Thus, this application is
not of any interest in the mining domain. However, this tool might have been
of use in order to check that sequences of events generated from DOBS actually



complied with the probabilities associated to a transition in the designed model.
Yet, since this verification functionality is already included in DOBS, this usage
case is no longer needed.

With acknowledgment to all these works, DOBS incorporates a new and in-
novative approach that provides for the first time a proposal and implementation
framework for modeling the inner mechanisms of state diagrams in the context
of processes, web services and software, thus supporting behavior analysis and
data generation for these systems.

6 Conclusions and future work

Simulation of business processes, web service business protocols, and other struc-
tures based on state diagrams for assessment analysis and data generation for
mining applications is a complex task. Nevertheless achieving these objectives
is very helpful for assisting and allowing these analysis and mining applications
to be tested. This paper described and detailed the DOBS tool for for the im-
provement and testing of model compliance and correctness and for assisting the
process of mining state diagrams or flowcharts.

In the future, DOBS will be enhanced with the incorporation of more ex-
plicit compliance concerns, in order to test, for high-level semantic constraints,
for example security, privacy, protocol specified actions etc. An on-going effort
is addressing the future improvement that will be the automatic synthesis of
state diagrams based on the traces of their behavior. This will allow users not
only to design a model from scratch using the GUI interface, but also to have an
automatically built model which will extract all the model structure and the cor-
responding parameters directly from the activity logs, if the user is in possession
of the latter.

A particular interest will be accorded to incorporating other statistical mod-
els as a basis for model design. For example, statistical distributions for the
inter-arrival time between TOMAEs in a model will include the exponential and
Erlang distributions which can be very helpful in designing telecommunication-
based systems, extending therefore the potential applications for DOBS. Another
important feature that will be added is to provide DOBS as a service which will
be accessible over the web.

Finally, DOBS will be completed with adapter modules in order to link its
input entry point with BPEL or other object models, such as for example the
BPMN Modeler for Eclipse [12]. Metrics for assessing the similarity and diver-
gence between models are also part of future capabilities that will be integrated
into DOBS.
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