
Data Min Knowl Disc (2012) 24:247–287
DOI 10.1007/s10618-011-0229-7

An inductive database system based on virtual mining
views

Hendrik Blockeel · Toon Calders ·
Élisa Fromont · Bart Goethals · Adriana Prado ·
Céline Robardet

Received: 26 May 2010 / Accepted: 27 June 2011 / Published online: 13 July 2011
© The Author(s) 2011

Abstract Inductive databases integrate database querying with database mining.
In this article, we present an inductive database system that does not rely on a new
data mining query language, but on plain SQL. We propose an intuitive and elegant
framework based on virtual mining views, which are relational tables that virtually
contain the complete output of data mining algorithms executed over a given data

Responsible editor: M. J. Zaki.

H. Blockeel
Katholieke Universiteit Leuven, Leuven, Belgium
e-mail: hendrik.blockeel@cs.kuleuven.be

H. Blockeel
Leiden Institute of Advanced Computer Science, Universiteit Leiden, Leiden, The Netherlands

T. Calders
Technische Universiteit Eindhoven, Eindhoven, The Netherlands
e-mail: t.calders@tue.nl

É. Fromont · A. Prado (B)
CNRS, Laboratoire Hubert Curien, UMR5516, Université de Lyon (Université Jean Monnet),
42023 Saint-Etienne, France
e-mail: adriana.bechara.prado@univ-st-etienne.fr

É. Fromont
e-mail: elisa.fromont@univ-st-etienne.fr

B. Goethals
Universiteit Antwerpen, Antwerp, Belgium
e-mail: bart.goethals@ua.ac.be

C. Robardet
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, 69621 Lyon, France
e-mail: celine.robardet@insa-lyon.fr

123



248 H. Blockeel et al.

table. We show that several types of patterns and models that are implicitly present in
the data, such as itemsets, association rules, and decision trees, can be represented and
queried with SQL using a unifying framework. As a proof of concept, we illustrate
a complete data mining scenario with SQL queries over the mining views, which is
executed in our system.

Keywords Inductive databases · Query languages · Query processing

1 Introduction

Data mining is an interactive process in which different tasks may be performed
sequentially and the output of these tasks may be combined to be used as input for
subsequent ones. In order to effectively support this knowledge discovery process, the
integration of data mining into database management systems has become necessary.
By integrating data mining more closely into a database system, separate steps such
as data pre-processing, data mining, and post-processing of the results, can all be han-
dled using one query language. The concept of inductive database systems has been
proposed so as to achieve such integration (Imielinski and Mannila 1996).

In order to tackle the ambitious task of building an inductive database system, one
has to (i) choose a query language that can be general enough to cover most of the data
mining and machine learning toolkit while providing enough flexibility to the users
in terms of constraints, (ii) ensure a closure property to be able to reuse intermediate
results, and (iii) provide an intuitive way to interpret the results.

Although SQL is the language of choice for database querying, it is generally
acknowledged that it does not provide enough features for data mining processes.
Indeed, SQL offers no true data mining facilities for, e.g., the discovery of frequent
itemsets. Therefore, several researchers have proposed new query languages, which
are extensions of SQL, as a natural way to provide an inductive database system (Han
et al. 1996; Meo et al. 1998; Imielinski and Virmani 1999; Wang and Zaniolo 2001,
2003; Tang and MacLennan 2005; Wicker et al. 2008; Nijssen and Raedt 2007; Bonchi
et al. 2009). As we show in Blockeel et al. (2010a,b), however, these languages have
some limitations: For example, (i) there is little attention to the closure principle;
the output of a mining query cannot or can only very difficultly be used as the input
of another query, (ii) if the user wants to express a constraint that was not explic-
itly foreseen by the developer of the language, he or she will have to do so with a
post-processing query, if possible at all, and (iii) data mining results are often offered
as static objects that can only be browsed or in a way that does not allow for easy
post-processing.

With these limitations in mind, we describe in this article an inductive database
system that is implemented by extending the structure of the database itself, which
can be queried using standard SQL, rather than relying on a new query language for
data mining. More precisely, we propose a system in which the user can query the
collection of all possible patterns as if they were stored in traditional relational tables.
Since the number of all possible patterns can be extremely high and impractical to
store, the main challenge here is how this storage can be implemented efficiently. For

123



An inductive database system based on virtual mining views 249

example, in the concrete case of itemsets, an exponential number of itemsets would
need to be stored. To solve this problem, we introduced the so-called virtual mining
views, as presented in Blockeel et al. (2010b, 2008a,b), Calders et al. (2006a), Fromont
et al. (2007). The mining views are relational tables that virtually contain the complete
output of data mining tasks executed over a given data table. For example, for itemset
mining, there is a table called Sets virtually storing all frequent patterns. Whenever the
user queries such a table, or virtual mining view, an efficient data mining algorithm
(e.g., Apriori Agrawal and Srikant 1994) is triggered by the database system, which
materializes, that is, stores in this table at least those tuples needed to answer the query.
Afterwards, the query can be executed as if the patterns were there all the time.

The proposed system can potentially support as many virtual mining views as types
of patterns of interest. To make the framework more general, however, such patterns
should be represented by an intuitive common set of mining views. One possible
instantiation of the proposed framework is presented in Sect. 2. We show how such
special tables can be developed for three popular data mining tasks, namely frequent
itemset mining, association rule discovery and decision tree learning. Such frame-
work, initially discussed in the European project IQ (“Inductive Queries for Mining
Patterns and Models”, IST FET FP6-516169, 2005–2008) (Blockeel et al. 2010b), is
a reevaluation of the works proposed in Calders et al. (2006a), Fromont et al. (2007),
leading to a unified framework that is more elegant and simpler than the originally
proposed frameworks.

Note that this querying approach assumes the user uses certain constraints in his or
her query, asking for only a subset of all possible patterns. As an example, the user may
query from the mining view Sets all itemsets with a certain frequency. Therefore, the
entire set of patterns does not always need to be stored in the mining views, but only
those that satisfy the constraints imposed by the user. In Sect. 3, we fully describe for the
first time an algorithm to extract constraints from SQL queries over the mining views.

Once the constraints are detected and extracted by the system, they are exploited by
data mining algorithms, the results of which are stored in the required mining views
just before the actual execution of the query. There are often several possible strategies
to fill the required mining views based on the extracted constraints, an issue discussed
in Sect. 4.

All ideas presented in this article, from querying the mining views and extract-
ing constraints from the queries to the actual execution of the data mining process
itself and the materialization of the mining views, have been implemented into the
well-known open source database system PostgreSQL.1 The complete model as was
implemented is illustrated in Fig. 1 and the implementation is available upon request.2

In our inductive database system, a user can use the mining views in his or her query
as if they were regular database tables. Given a query, the parser is then invoked by the
database system, creating an equivalent relational algebra expression. At this point,
the expression is processed by the Mining Extension which extracts from the query
the constraints to be pushed into the data mining algorithms. The output of these

1 http://www.postgresl.org/.
2 E-mail to Adriana Prado (adriana.bechara.prado@gmail.com).

123

http://www.postgresl.org/
adriana.bechara.prado@gmail.com


250 H. Blockeel et al.

Fig. 1 An inductive database system based on virtual mining views

Fig. 2 The entity-relationship model which is eventually translated into the mining views described in this
article

algorithms is then materialized in the mining views. After the materialization, the
work flow of the system continues as usual and, as a result, the query is executed as if
all patterns and models were always stored in the database.

In the remainder of this article, we illustrate the interactive and iterative capabilities
of our system with a data mining scenario in Sect. 5 (for other example scenarios we
refer the reader to Blockeel et al. (2008a,b, 2010b)). Section 6 makes an overview of
related work, Sect. 7 presents a discussion on the limitations of the system as well as
on how to extend it, and the article is concluded in Sect. 8.

2 The mining views framework

In this section, we present the mining views framework in detail. This framework
consists of a set of relational tables, called mining views, which virtually represent the
complete output of data mining tasks executed over a given data table. In reality, the
mining views are empty and the database system finds the required tuples only when
they are queried by the user.

2.1 The entity-relationship model

Figure 2 presents the entity-relationship model (ER model) (Chen 1976) which
is eventually translated into the relational tables (or mining views) presented in
this article. The entities and relationships of the ER model are described in the
following.

123



An inductive database system based on virtual mining views 251

Fig. 3 The data table Playtennis

2.1.1 Concepts

We begin by describing the entity Concepts. We assume to be working on a database
that contains the table T (A1, . . . , An), having only categorical attributes. In our pro-
posed framework, the output of data mining tasks executed over table T are generically
represented by what we call concepts. We denote a concept as a conjunction of attri-
bute-value pairs that is definable over T . Therefore, the entity Concepts represents
all such concepts that are definable over T . We assume that these concepts can be
sorted in lexicographic order and that an identifier, represented here by the attribute
cid, can unambiguously be given to each concept. In addition, the attribute supp (from
“support”) gives the number of tuples in T satisfied by the concept and sz is its size,
in number of attribute-value pairs.

Example 1 Consider T the classical relational table Playtennis(Day, Outlook,
Temperature, Humidity,Wind, Play) (Mitchell 1997), which is illustrated in Fig. 3.
The concept below is an example concept that is defined over this table:

(Outlook = ‘Sunny’ ∧ Humidity = ‘High’ ∧ Play = ‘No’)

Since it is satisfied by three different tuples in table Playtennis (highlighted in
Fig. 3), its support is 3. Its size is also 3, as it is composed by 3 attribute-value pairs.

Next, we explain how itemsets, association rules and decision trees extracted from
table T are represented in our ER model by the concepts in entity Concepts.

2.1.2 Itemsets

As itemsets in a relational database are conjunctions of attribute-value pairs, they are
represented here as concepts. Note that the absolute frequency and size of the itemsets
are given by the attributes supp and sz, respectively.

123



252 H. Blockeel et al.

2.1.3 Association rules

The entity Rules represents the entire collection of association rules that can be
extracted from T . Since association rules are built on top of itemsets and itemsets are in
fact concepts in the ER model, rules are represented here as a triplet of concepts. More
specifically, the entity Rules has three relationships with the entity Concepts, namely
“ante” (from “antecedent”), “cons” (from “consequent”) and the union of these two,
referred to here as “rule”. The relationship “rule” associates each rule with the concept
from which the rule itself is generated, while “ante” and “cons” associate each rule
with the concepts representing its antecedent and consequent, respectively. We assume
that a unique identifier, attribute rid, can be given to each rule, and the attribute conf
is its confidence.

2.1.4 Decision trees

A decision tree learner typically learns a single decision tree from a dataset. This
setting strongly contrasts with discovery of itemsets and association rules, which is
set-oriented: given certain constraints, the system finds all itemsets or association rules
that fit the constraints. In decision tree learning, given a set of (sometimes implicit)
constraints, one tries to find one tree that fulfills the constraints and, besides that,
optimizes some other criteria, which are again not specified explicitly but are a con-
sequence of the algorithm used.

In the inductive databases context, we treat decision tree learning in a somewhat
different way, which is more in line with the set-oriented approach. Here, a user would
typically write a query asking for all trees that fulfill a certain set of constraints, or
optimizes a particular condition. For example, the user might ask for the tree with the
highest training set accuracy among all trees of size of at most 5. This leads to a much
more declarative way of mining for decision trees, which can easily be integrated into
the mining views framework.

In a decision tree, each path from the root to a leaf node can be regarded as a con-
junction of attribute-value pairs. Thus, a decision tree is represented in our ER model
by a set of concepts, where each concept represents one path from the root to a leaf of
the tree.

Example 2 The tree in Fig. 4 can be seen as the following set of concepts (paths):

Fig. 4 An example decision tree

123



An inductive database system based on virtual mining views 253

(Outlook = ‘Sunny’ ∧ Humidity = ‘High’ ∧ Play = ‘No’)

(Outlook = ‘Sunny’ ∧ Humidity = ‘Normal’ ∧ Play = ‘Yes’)

(Outlook = ‘Overcast’ ∧ Play = ‘Yes’)

(Outlook = ‘Rain’ ∧ Wind = ‘Strong’ ∧ Play = ‘No’)

(Outlook = ‘Rain’ ∧ Wind = ‘Weak’ ∧ Play = ‘Yes’)

The collection of all decision trees predicting a particular target attribute A is there-
fore represented by the entity Trees_A. This entity has attributes treeid (identifier of
the trees), acc (accuracy of the tree), and sz (size of the tree in number of nodes). In
addition, it has a relationship, called “path” with the entity Concepts, which represents
the fact that all of its instances have at least one concept as a path.

Note that the entity Trees_A represents the decision trees semantically, not syntac-
tically. That is: the predictive semantics of a decision tree is determined entirely by
describing its leaves (using the conjunction of attribute-value pairs from root to leaf),
which is exactly what is represented by this entity. The structure of a tree, however, is
not determined uniquely by its leaves: sometimes different trees may have exactly the
same set of leaves. Such trees always represent exactly the same predictive function,
though.

2.2 The relational model

We now define the virtual mining views themselves, which are a particular translation
of the ER model above into relational tables.

2.2.1 The mining view T_Concepts

Consider again table T (A1, . . . , An) with only categorical attributes. The domain of
Ai is denoted by dom(Ai ), for all i = 1 . . . n. A tuple of T is therefore an element of
dom(Ai ) × · · · × dom(An). The active domain of Ai of T , denoted by adom(Ai , T ),
is defined as the set of values that are currently assigned to Ai , that is, adom(Ai , T )

:= {t.Ai |t ∈ T }. In order to represent each concept as a database tuple, we use the
symbol ‘?’ as the wildcard value and assume it does not exist in the active domain of
any attribute of T .

Definition 1 A concept over table T is a tuple (c1, . . . , cn) with ci ∈ adom(Ai ) ∪
{‘?’}, for all i = 1 . . . n.

Following Definition 1, the concept in Example 1, which is defined over table
Playtennis in Fig. 3, is represented by the tuple:

(‘?’, ‘Sunny’, ‘?’, ‘?’, ‘High’, ‘?’, ‘No’).

We are now ready to define the mining view T _Concepts(cid, A1, . . . , An). This
view virtually contains all concepts that are definable over table T and it is a translation
of the entity Concepts with attributes cid, A1,…, An .

123



254 H. Blockeel et al.

Fig. 5 The mining view Playtennis_Concepts

Fig. 6 The data cube that represents the contents of the mining view T _Concepts

Definition 2 The mining view T _Concepts(cid, A1, . . . , An) contains one tuple
(cid, c1, . . . , cn) for every concept defined over table T . The attribute cid uniquely
identifies the concepts.

Figure 5 shows a sample of the mining view Playtennis_Concepts, which virtu-
ally contains all concepts definable over table Playtennis. In fact, the mining view
T _Concepts represents exactly a data cube (Gray et al. 1997) built from table T ,
with the difference that the wildcard value “ALL” introduced in Gray et al. (1997) is
replaced by the value ‘?’. By following the syntax introduced in Gray et al. (1997),
the mining view T _Concepts would be created with the SQL query shown in Fig. 6
(consider adding the identifier cid after its creation).

In the remainder of this section, we consider T the table Playtennis and use the
concepts in Fig. 7 for the illustrative examples (where an identifier has been given to
each of the concepts).

2.2.2 The mining views T_Sets and T_Rules

All itemsets extracted from table T are represented in our framework by the min-
ing view T _Sets(cid, supp, sz), which is a translation of the entity Concepts with
attributes cid, supp, and sz. This view is defined as follows:

123



An inductive database system based on virtual mining views 255

Fig. 7 A sample of the mining view Playtennis_Concepts, which is used for the illustrative examples in
Sects. 2.2.2 and 2.2.3

Fig. 8 Mining views for representing itemsets and association rules. The attributes cida, cidc, and cid
refer to concepts given in Fig. 7

Definition 3 The mining view T _Sets(cid, supp, sz) contains a tuple for each item-
set, where cid is the identifier of the itemset (concept), supp is its support (the number
of tuples satisfied by the concept), and sz is its size (the number of attribute-value pairs
in which there are no wildcards).

Similarly, association rules are represented by the mining view T _Rules(rid, cida,

cidc, cid, conf ). This view is the translation of the entity Rules along with its rela-
tionships “ante”, “cons”, and “rule”, and is described by the definition below:

Definition 4 The mining view T _Rules(rid,cida,cidc,cid,conf ) contains a tuple for
each association rule that can be extracted from table T . The attribute rid is the rule
identifier, cida is the identifier of the concept representing its antecedent, cidc is the
identifier of the concept representing its consequent, cid is the identifier of the union
of those two concepts, and conf is the confidence of the rule.

Figure 8 shows the mining views T _Sets and T _Rules and illustrates how the rule
“if outlook is sunny and humidity is high, you should not play tennis” is represented in
these views by using three of the concepts given in Fig. 7. The rule has identification
number 1.

Note that the choice of the schema for representing itemsets and association rules
also implicitly determines the complexity of the queries a user needs to write. For exam-
ple, one of the three concept identifiers for an association rule, cid, cida, or cidc, is
redundant as it can be determined from the other two. Also, in the given representation

123



256 H. Blockeel et al.

(A)

(B)

Fig. 9 Example queries over itemsets with (query (A)) and without (query (B)) the mining views
T _Concepts and T _Sets

one could even express the itemset mining task without the view T _Concepts, as it
can also be expressed in SQL. Nevertheless, it would imply that the user would have
to write more complicated queries, as shown in Example 3.

Example 3 Consider the task of extracting from table T all itemsets (and their sup-
ports) with size equal to 5 and support of at least 3. Query (A) in Fig. 9 shows how this
task is performed in the proposed framework. Without the mining views T _Concepts
or T _Sets, this task would be executed with a much more complicated query, as given
in query (B) in Fig. 9.

In Fig. 10, query (C) is another example query over itemsets, while query (D) is an
example query over association rules.

123



An inductive database system based on virtual mining views 257

(C) (D)

Fig. 10 Example queries over itemsets and association rules

Query (C) represents the task of finding itemsets with large area. The area of an
itemset corresponds to the size of the tile, which is formed by the attribute-value pairs
in the itemset in the tuples that support it. The mining of large tiles, i.e., itemsets with a
high area, is useful in constructing small summaries of a database (Geerts et al. 2004).

Query (D) asks for association rules having support of at least 3 and confidence of
at least 80%.

Observe that common mining tasks and the constraints “minimum support” and
“minimum confidence” can be expressed quite naturally with SQL queries over the
mining views. Additionally, note that the mining views provide a very clear separation
between the two mining operations, while at the same time allowing their composition,
as association rules are built on top of frequent itemsets.

2.2.3 The mining views T_Trees_A and T_Treescharac_A

The collection of all decision trees predicting a particular target attribute Ai is rep-
resented by the mining view T _Trees_Ai (treeid,cid), which is the translation of the
relationship “path” in the ER model. We formally define it as follows:

Definition 5 The mining view T _Trees_Ai (treeid,cid) is such that, for every decision
tree predicting a particular target attribute Ai , it contains as many tuples as the number
of leaf nodes it has. We assume that a unique identifier, treeid, can be given to each
decision tree. Each decision tree is represented by a set of concepts cid, where each
concept represents one path from the root to a leaf node.

Additionally, the view T _Treescharac_Ai (treeid,acc,sz), representing several char-
acteristics of a tree learned for one specific target attribute Ai , is defined as the trans-
lation of the entity Trees_A as presented next:

Definition 6 The mining view T _Treescharac_Ai (treeid,acc,sz) contains a tuple for
every decision tree in T _Trees_Ai , where treeid is the decision tree identifier, acc is
its corresponding accuracy, and sz is its size in number of nodes.

Figure 11 shows how the example decision tree in Fig. 4 is represented in the min-
ing views T _Trees_Play and T _Treescharac_Play by using the concepts in Fig. 7.

123



258 H. Blockeel et al.

Fig. 11 Mining views representing a decision tree which predicts the attribute Play. Each attribute cid of
view T _Trees_Play refers to a concept given in Fig. 7

(E) (F)

Fig. 12 Example queries over decision trees

The example decision tree predicts the attribute Play of table T and has identification
number 1.

Example 5 In Fig. 12, we present two example queries over decision trees. Query (E)
creates a table called “BestTrees” with all decision trees that predict the attribute Play
and have maximal accuracy among all possible decision trees of size of at most 5.
Observe that in order to store the results back into the database, the user simply needs
to use the statement “create table as”, available in a variety of database systems that
are based on SQL.

Query (F) asks for decision trees having an attribute test on “Outlook = Sunny” and
on “Wind = Weak”, with a size of at most 5 and an accuracy of at least 80%.

123



An inductive database system based on virtual mining views 259

(G)

Fig. 13 An example prediction query

(H)

Fig. 14 Example query combining patterns

Prediction In order to classify a new tuple using a learned decision tree, one simply
searches for the concept in this tree (path) that is satisfied by the new tuple. More
generally, if we have a test set S, all predictions of the tuples in S are obtained by equi-
joining S with the semantic representation of the decision tree given by its concepts.
We join S to the concepts of the tree by using a variant of the equi-join that requires
that either the values are equal, or there is a wildcard value.

Example 6 Consider the table BestTrees created after the execution of query
(E), in Fig. 12. Figure 13 shows a query that predicts the attribute Play for
all unclassified tuples in an example table Test_Set(Day,Outlook,Temperature,
Humidity,Wind) by using the tree in table BestTrees that has identification number 1.

2.3 Combining patterns and models

In the mining views framework, it is also possible to perform composed data mining
tasks. In other words, it is possible to formulate data mining tasks that consist of a
combination of different types of patterns.

Example 7 Consider query (H) in Fig. 14. The query asks for decision trees predicting
the attribute Play with a size of at most 5, a path of which is an itemset that generates

123



260 H. Blockeel et al.

a rule with support of at least 3 and confidence of at least 80%. Notice that since in the
proposed framework the query language is SQL, the user can create new combinations
of patterns by simply involving mining views corresponding to different mining tasks
in the same SQL query.

2.4 Putting it all together

For every data table T (A1, . . . , An) in the database, with T having only categorical
attributes, the virtual mining views framework consists of a set of relational tables,
called virtual mining views, which virtually contain the complete output of data mining
tasks executed over T . These mining views are the following:

– T _Concepts(cid,A1,…,An).
– T _Sets(cid,supp,sz).
– T _Rules(rid,cida,cidc,cid,conf ).
– T _Trees_Ai (treeid,cid), for all i=1 . . . n.
– T _Treescharac_Ai (treeid, acc, sz), for all i=1 . . . n.

As shown in the examples given in the previous sections, in order to retrieve pat-
terns over table T , the user simply needs to write SQL queries over the proposed
mining views. The expressiveness of these queries is the same as that of queries over
traditional relational tables.

3 Constraint extraction

In the previous section, we showed how a variety of data mining tasks and well-known
constraints are expressed with SQL queries over the mining views. Nevertheless, recall
that the mining views are virtual tables. Consequently, in order to answer a query
involving one or more of these views, the system first needs to materialize them, that
is, fill them with the corresponding mining objects (i.e., concepts, itemsets, association
rules or decision trees). Storing the whole collection of mining objects is not tractable.
After all, the number of all possible objects can be extremely high and impractical to
store. On the other hand, as shown in Example 8, the entire set of objects does not
always need to be stored, but only those satisfying the constraints in the given SQL
query.

Example 8 Consider the SQL query in Fig. 15. The query asks for decision trees tar-
geting attribute Play, having a path containing an attribute test on “Outlook = Sunny”,
and also a path containing an attribute test on “Wind = Weak”. Besides, the trees must
have a size of at most 5 and an accuracy of at least 80%. Naturally, to answer this query,
not all decision trees must be stored in view T _Trees_Play, T _Treescharac_Play, and
T _Concepts, but only those satisfying the aforementioned constraints.

Observe that for the system to determine the set of objects to be stored in the min-
ing views, it must be capable of detecting the constraints in the given SQL query.
Towards this goal, we describe in this section an algorithm that extracts constraints
from a mining query (i.e., a query that involves mining views). It is worth noticing

123



An inductive database system based on virtual mining views 261

Fig. 15 Example query over decision trees

Fig. 16 Another example query over decision trees

that this extraction process is more involved than just selecting the conditions that
relate to the mining views in the where-clause of the query (i.e., Outlook = ‘Sunny’,
Wind = ‘Weak’, sz ≤ 5, and acc ≥ 80 for the query in Fig. 15), as the following
example shows.

Example 9 Consider the query in Fig. 16. This query has exactly the same constants
as the query in Fig. 15 (w.r.t. the mining views in its where-clause), but has a different
semantics; it asks for all decision trees in which the conditions Outlook = ‘Sunny’ and
Wind = ‘Weak’ occur in the same path of the decision tree.

As the extracted constraints cannot be presented as a list of constraints, we will
introduce a more advanced structure, the so-called annotation. In summary, the pro-
cessing of a given SQL query over the mining views will proceed as follows:

1. The constraints are extracted from the query and represented in the form of an
annotation. Annotations are introduced in Sect. 3.1 and the algorithm to extract
them in Sect. 3.2.

2. Based on the annotation, one or more constraint-based data mining algorithms
are executed. The selection of the algorithms and the order in which they are
executed is not determined by the annotation and different strategies are possible.
The execution step is discussed in Sect. 4.

3. The output of the mining algorithms is used to fill the virtual tables. From here on
the tables are no longer virtual.

123



262 H. Blockeel et al.

4. The SQL query is executed by an underlying relational database system, using
normal SQL query optimization and execution.

5. The tables are then emptied and become virtual again. Notice that in this step there
is room for improvement by caching some of the results for subsequent queries.
Such optimizations are, however, beyond the scope of this paper.

3.1 Annotations

An annotation of an SQL query can be seen as an instantiation of the ER model of the
mining objects in Fig. 2. It represents the following three types of information about
the query:

1. Which mining objects are involved in the query and how do they relate to each
other? (e.g., a concept representing a path in a tree)

2. From which mining objects do the attributes in the query result come? (e.g., a
tree identifier, an attribute of a concept, the identifier of the consequent of an
association rule)

3. Which atomic constraints hold on the attributes of the mining objects?

More formally, an annotation is defined as follows:

Definition 7 (Annotation) An annotation for a query q is a three-tuple (I, M, C),
where I is an abstract instantiation of the ER model, i.e., a set of objects for which
the attribute values have not been specified, and relations between them, respecting
the cardinality constraints in the ER model. M is a mapping from the attributes of q
to a set of attributes in I , which are called the originating attributes. C is a partial
function mapping attributes in I to constraints. The constraints can be any Boolean
combination of attribute-value comparisons.

Furthermore, the annotation should describe a sufficient set of mining objects to
compute the answer of the query. That is, for any database, if we fill the virtual tables
with the mining objects (concepts, sets, rules, or trees) that can be mined from this
database and that satisfy all constraints in C and relations in I , then the query should
return the correct answer.

Example 10 Figure 17 contains the annotations for the queries in Figs. 15 and 16,
respectively. The objects in the instantiation I are depicted by rectangles containing
the type of the object. Attributes are in rounded boxes. The relations are depicted by
dotted lines. The attributes at the bottom are the attributes in the query. The arrows
pointing out from them indicate the mapping M . The constraints are included into
the attribute they refer to. To avoid visual clutter, only those attributes that are in the
image of the mapping M or in the range of C and objects that have such attributes are
visually represented.

The left annotation, e.g., describes the following set of mining objects: (i) all trees
with an accuracy of at least 80% and a size of maximal 5 such that there is a path in
the tree with “Wind = Weak” and a path with “Outlook = Sunny”, (ii) all concepts
with “Wind = Weak” that participate in such a tree, and (iii) all concepts with “Out-
look = Sunny” that participate in such a tree. “Filling the virtual tables with these

123



An inductive database system based on virtual mining views 263

Fig. 17 Annotation for the query in Fig. 15 (left) and Fig. 16 (right), respectively

mining objects” implies that all such trees are mined. For each such tree we (i) add to
the mining view Trees as many tuples as there are concepts that describe a path in this
tree, (ii) add a tuple in the mining view Treescharac_Play, and (iii) for all concepts
that describe a path in this tree, a tuple is added in the mining view Concepts. If we
fill the tables in this way, the query will clearly be answered correctly.

To summarize, an annotation for a given query describes the mining objects nec-
essary to form the tuples in the result of this query. Notice that the definition does
not insist on minimality, because the problem of creating a minimal annotation is
incomputable (see Calders et al. 2006a). This situation is very similar to the inability
to find the most optimal query execution plan for relational queries; even deciding
whether a relational query will always return an empty answer is undecidable (see,
e.g., Abiteboul et al. 1995). The algorithm in the next section will hence describe how
to find a correct, but not necessarily tight annotation.

3.2 Bottom-up construction of an annotation

We will consider in this section SQL queries that can be translated into relational
algebra expressions (Abiteboul et al. 1995). The proposed algorithm, therefore, works
on this type of expressions, rather than on the SQL query itself. Such a relational
algebra expression has the advantage of being procedural, as opposed to SQL, which
is declarative.

3.2.1 Relational algebra

Before proceeding to the details of the proposed algorithm, we briefly review the main
concepts of relational algebra.

A relational algebra expression describes a sequence of operations on relations,
which results in the answer of the query. Consider, for example, the SQL query shown
in Fig. 15. An equivalent relational algebra expression for this SQL query is given in

123



264 H. Blockeel et al.

Fig. 18 An equivalent relational algebra tree for the query in Fig. 15

Fig. 18. For ease of presentation, the aliases T1, T2, C1, C2, and D, which were given
to the mining views in the example SQL query, are also used here. The expression
is given by its syntax tree to ease the explanation of the further parts. Although all
mining views have prefix T , in the remainder of this section, we will omit it for ease
of presentation. The leaf nodes of the tree are the mining views or normal relations.
The internal nodes represent intermediate results in the computation of the query by
applying one of the operations ×, σ, ∪, ∩, π, �	, or − on the intermediate results
represented by its children. For example, the selection operation

σC1.Outlook=‘Sunny’ Concepts C1,

represented by node (f), constructs a relation which is composed by those tuples from
the relation Concepts that satisfy the predicate C1.Outlook = ‘Sunny’. The join oper-
ation

R f �	C1.cid=T 1.cid Rb

of node (i) (where R f and Rb are the relations represented by nodes (f) and (b), respec-
tively) combines tuples from R f and Rb that have the same cid value into a single
tuple. For every tuple of the first relation, R f , and every tuple of the second relation,
Rb, a new tuple, which is the concatenation of the two tuples, is in the resulting relation
if it satisfies the predicate C1.cid = T 1.cid. The projection operation

πT 1.treeid,D.acc

123



An inductive database system based on virtual mining views 265

of node (n) produces a new relation that has only the attributes T1.treeid and D.acc. For
a complete description of the relational algebra, we refer the reader to Garcia-Molina
et al. (1999).

3.2.2 Algorithm

We will compute the annotation for the query in a bottom-up fashion. We will start with
basic annotations in the leaf nodes. Next, we will form annotations for the sub-queries
corresponding to the intermediate results in the internal nodes. This will be done by
combining the annotations of their children, based on the operation they represent.
Some of the operations ×, σ, ∪, ∩, π, �	, and − are redundant. These operations
will be rewritten using the other operations. We will now discuss all operations and
illustrate our algorithm with the relational algebra expression in Fig. 18. For a fully
formal description of the algorithm, we refer the reader to Prado (2009).

3.2.3 The redundant operations and the union

The join operation Q1 �	θ Q2 is rewritten as σθ (Q1 × Q2), and the intersection
Q1 ∩ Q2 as πA1,...,An σQ1.A1=Q2.A1,...,Q1.An=Q2.An (Q1 × Q2), where A1, . . . , An are
the attributes of both queries Q1 and Q2.

The union will be handled as follows: every relational algebra expression can be
rewritten as Q1 ∪ . . . ∪ Qk , where none of the Qi contains a union operation. The
algorithm will compute annotations for all Qi separately, and join the tuples needed
to answer Qi together for all i = 1 . . . k.

Example 11 Query Q below is an example query with the union and join operators.
It asks for all concepts C , such that either rules C → (Play = ‘Yes’) have confidence
of at least 70% or rules C → (Play = ‘No’) have confidence of at least 60%. Also, in
both cases, the support of the rules should be at least 5.

Q : πR.cida((σsupp≥5SetsS) �	S.cid=R.cid

((σconf ≥60 Rule R) �	R.cidc=C.cid (σPlay=‘No’Concepts C)

∪(σconf ≥70 Rule R) �	R.cidc=C.cid (σPlay=‘Y es’Concepts C)))

To compute the annotation for Q, the proposed algorithm will first rewrite Q as the
following queries:

Q1 : πR.cida(σS.cid=R.cid((σsupp≥5Sets S) ×
(σR.cidc=C.cid((σconf ≥60 Rule R) × (σPlay=‘No’Concepts C)))))

Q2 : πR.cida(σS.cid=R.cid((σsupp≥5Sets S) ×
(σR.cidc=C.cid((σconf ≥70 Rule R) × (σPlay=‘Y es’Concepts C)))))

Afterwards, it will compute the annotations for Q1 and Q2. Finally, the annotation for
Q will be the union of the annotations for Q1 and Q2.

123



266 H. Blockeel et al.

One important point we would like to stress here is that the rewritings that we
apply to the query to reduce the number of operations needed to be translated has no
effect afterwards, i.e., on the actual computation of the query in the relational database
system; the extracted annotation is used only to fill the virtual tables. After that, the
original SQL query is presented to the normal SQL query processor, which will rewrite
the query for optimal execution. Such rewriting may be different from the one applied
when constructing the annotation.

3.2.4 Leaf nodes

The sub-query associated with a leaf node can be seen as a query of type “select
* from X”, where X is the mining view represented by the node. For example, the
sub-query associated with node (a) in the example tree (Fig. 18) asks for all tuples
from the mining view Concepts. Therefore, the annotation for a leaf node is simply
the representation of the type of object necessary to form the tuples to be stored in
the mining view being queried. Figure 19 shows the annotations for all possible types
of leaf nodes that represent mining views. Every annotation also includes a mapping
from the attributes of the sub-query associated with the node itself to the originating
attributes.

It is worth noticing that if a leaf node represents the data table T , no annotation is
constructed for that node, as T does not need to be materialized.

3.2.5 Selection with predicate Attrθa

This node type will include a constraint into the originating attributes of Attr in the
annotation of the child node. Consider, e.g., node (f) in the example tree. Its associ-
ated sub-query selects only those tuples coming from node (a) that satisfy the selection
predicate “C1.Outlook = Sunny”. This means that to answer this sub-query we only
need concepts that contain “Outlook = Sunny”. The annotation for this node is there-
fore constructed by simply including the constraint ‘=“Sunny”’ into the originating
attribute of C1.Outlook in the annotation of node (a), which is reproduced at the top
of Fig. 20. The annotation for node (f) is shown at the bottom of the same figure.

3.2.6 The Cartesian product

The construction of the annotation for a node of type × consists in simply taking the
union of the annotations of its children. This is because to answer the query Q1 × Q2
correctly, we need everything necessary to compute Q1 as well as Q2.

This operation occurs, e.g., when rewriting the join in node (i) in the example tree.
Its annotation is constructed by first building the annotation for the Cartesian product
R f × Rb followed by the annotation for the selection operation “C1.cid = T1.cid”.
The annotation for the Cartesian product, illustrated at Fig. 21, is simply the union of
the annotations for nodes (f) and (b), since they represent the mining objects that are
necessary for the execution of such operation.

123



An inductive database system based on virtual mining views 267

Fig. 19 Annotations for the leaf nodes representing the proposed mining views

3.2.7 The selection σAttr1θ Attr2

This is the most involved operation, as it may result in the merge of objects (repre-
sented by the rectangles) in the annotation, e.g., when two cid’s are made equal. Such
a merge may cause a cascade of merges, such as when two rules are merged, resulting
in the merge of the antecedents and consequents of the rules as well. Merging objects
will result in merging constraints as well.

123



268 H. Blockeel et al.

Fig. 20 Annotation and corresponding sub-query of node (a) (top), and the annotation and sub-query of
node (f) (bottom)

Fig. 21 Annotation for R f × Rb

Consider the selection “C1.cid = T1.cid” in our running example, following the
Cartesian product in the rewriting of the join in node (i). From the Cartesian product
annotation (Fig. 21), we observe that “C1.cid” originates from the identifier attribute
cid of the concepts represented in the annotation of node (f), while “T1.cid” origi-
nates from the identifier attribute cid of the concepts in the annotation of node (b).
Then, according to the equality defined by the selection predicate, the concepts to be
considered for this operation are those represented in both annotations (f) and (b), that
is, the same collection of concepts having “Outlook = Sunny” that are also paths of
decision trees. As a result, the annotation for this operation is obtained by merging
the Concept objects in these annotations, as depicted in Fig. 22. Observe that due to
the equi-join operation, the query attributes “C1.cid” and “T1.cid” have now the same
originating attribute in this annotation.

Note that if θ is not ‘=’, then the annotation is equal to the annotation for the Carte-
sian product operation. This is due to the fact that if θ is not ‘=’, all mining objects

123



An inductive database system based on virtual mining views 269

Fig. 22 Annotation for node (i) (bottom) and the corresponding sub-query (top)

represented in the annotation of the Cartesian product will be necessary to execute
such operation. In other words, the number of necessary mining objects cannot be
reduced in this case. The same happens when an equi-join is made between attributes
with different names.

Let us now consider another example for the join operation, corresponding to node
(l) in the example tree in Fig. 18. In this case, the process to construct its anno-
tation is very similar to that executed for node (i). Due to the selection predicate
“T1.treeid = T2.treeid”, however, the two tree objects will be merged. The resulting
annotation for node (l) is shown in Fig. 23. Since the relation between tree and concept
is one-to-many, the concepts need not to be merged but become both related to the
same tree object. When two rule objects need to be joined, however, their join would
result into a join of their respective antecedent, consequent, and rule concepts as well,
since the relation between rule and, e.g., antecedent is one-to-one. So, if the two rules
turn out to become the same because of a join, their antecedents, consequents, and
rule concepts will implicitly become the same as well.

3.2.8 Projection with attribute list Attr1, . . . , Attrk

The annotation for the projection operator is trivially constructed from that of the
child node; the instantiation does not change as we obviously still need exactly the
same mining objects. Only the attribute mapping will change as some attributes are
removed. As an example, root node (n) simply projects the tuples coming from node
(m) on the attributes T 1.treeid and D.acc. Its annotation is the same as that for node
(m), keeping, however, only the projected query attributes and their originations. The

123



270 H. Blockeel et al.

Fig. 23 Annotation for node (l)

Fig. 24 Annotation for node (n), which is the final annotation for the query in Fig. 18

annotation for this node, which is the final annotation for our example query, is shown
in Fig. 24.

3.2.9 Operation set-difference

The treatment of the set-difference operation is not very involved, yet is somewhat
counterintuitive. The reason for this is the non-monotonic nature of the difference
operation; sometimes we need to put some objects in the mining views not because
they will be part of the output, but rather to prevent other objects from appearing in
the output.

The result of the operation R1−R2 is a relation obtained by including all tuples
from R1 that do not appear in R2.

123



An inductive database system based on virtual mining views 271

Fig. 25 A relational algebra tree with a node of type set-difference (node (p))

Example 12 Consider the relational algebra query in Fig. 25. In this query, R1 is the
relation produced by node (n), while R2 is the relation produced by node (o). The
query asks for association rules X → Y with support greater than 5 and confidence
between 70% and 80% (node (n)) that are not the result of chaining a rule X → Z (with
the same characteristics of X → Y ) and a correct rule (100% confidence) Z → Y
(node (o)).

Suppose that in the database we have the following rules produced by node (n):
AB → C, AB → D, AC → B, B → C, B → D, and the following 100% con-
fident rule: C → D. Then, the rules AB → D and B → D will be in the result of
node (o), since they can be obtained by chaining AB → C and C → D, and B → C
and C → D, respectively.

Suppose now that we keep only the annotation for node (n) as the final annotation
for the example query, which means that only the rules coming from node (n) are
materialized in the mining view Rules. In this way, Rules will not contain any 100%
rule and, therefore, the relation produced by node (o) will be empty and the query will
not be properly answered. For instance, in the case of Example 12, the rules AB → D
and B → D would be produced incorrectly as part of the query’s answer. The annota-
tion for node (p) must be such that all rules needed for the correct evaluation of node
(o) are present in the mining views.

The annotation for a node of type set-difference is thus defined as being the con-
catenation of the annotations for both of its child nodes, keeping, however, only the
query attributes in the annotation of the left node. In other words, the construction of
the annotation for this type of node is the same as for a node of type Cartesian product
(described at the beginning of Sect. 3.2.6) followed by the projection on the query
attributes of the left child node. The annotation for the right child node is stripped

123



272 H. Blockeel et al.

of its query attributes and added to the annotation for the left child node. The two
annotations are disjoint in the resulting one.

4 Constraint exploitation

Having presented the steps for constructing the annotation for a given mining query, in
this section we discuss how the materialization of the mining views itself is performed
by the system, based on an annotation.

The mining objects to be stored in the mining views are first computed by data
mining algorithms, which receive as parameters the constraints present in the given
annotation. Next, the results are stored as tuples in the corresponding mining views.

Each type of mining object considered in this article is associated with a certain
algorithm, as follows:

– For itemsets and association rules, the system is linked to the Apriori-like algorithm
by Christian Borgelt3 and the rule miner implementation by Bart Goethals.4

– For decision trees, the system is linked to the exhaustive decision tree learner called
Clus- EX, described in detail in Fromont et al. (2007), which searches for all trees
satisfying the constraints “minimum accuracy” and “maximum size”. Clus- EX

learns decision trees with binary splits only.

As an example, consider the annotation in Fig. 24, which indicates that the system
should store a subset of decision trees that target the attribute Play. As remarked
earlier, a decision tree is spread over the mining views Concepts, Trees_A, and
Treescharac_A. Therefore, after mining for such decision trees using Clus- EX, the
system stores the obtained results in the aforementioned mining views.

It is worth noticing, however, that there are often several possible strategies to mate-
rialize the required mining views depending on the input annotation. As an example,
consider the annotation in Fig. 26. Starting from the left of the figure, the annotation
indicates that the system should store: (a) association rules with a confidence of at
least 80% that are generated from concepts with support of at least 3 (dotted line
with label “rule” between the entities Rules and Concepts, and the constraint on the
attribute supp); (b) decision trees for attribute Play, having size of at most 5, and at
least one path among the concepts that generate the aforementioned rules (constraint
on the attribute sz, and dotted line between the entities Trees_Play and Concepts).

Based on this annotation, possible strategies for materializing the mining views are:

1. First, mine association rules having supp ≥ 3 and conf ≥ 80%. Next, mine deci-
sion trees predicting attribute Play, having sz ≤ 5, and at least one path among
the itemsets previously computed to generate the rules. The association rules are
stored in views Rules, Concepts and Sets, while the decision trees are stored in
views Trees_Play, Treescharac_Play and Concepts.

2. First, mine decision trees predicting attribute Play, having sz ≤ 5. Then, for every
path in the generated decision trees, we compute its support and size. Finally, we

3 http://www.borgelt.net/software.html.
4 http://www.adrem.ua.ac.be/~goethals/software/.

123

http://www.borgelt.net/software.html
http://www.adrem.ua.ac.be/~goethals/software/


An inductive database system based on virtual mining views 273

Fig. 26 Example annotation

Fig. 27 Example annotation for a case of generation of duplicates

mine association rules having supp ≥ 3 and conf ≥ 80%, using, as itemsets,
the paths of the decision trees already generated. In this case, all generated deci-
sion trees are first stored in views Trees_Play, Treescharac_Play, Concepts, and
Sets. After that, the view Rules and Concepts are materialized with the generated
association rules.

The choice of strategy depends on the characteristics of the available data mining
algorithms in terms of the constraints they can exploit and the type of input they need.

Currently, the system always mines itemsets first, followed by association rules and
then decision trees. Given this order, our system adopts the strategy 1 to materialize
the mining views based on the annotation above.

Some materialization strategies as well as mining algorithms may be more efficient
than others and the collection of tuples that are eventually stored may also differ. How-
ever, no matter what strategy the system takes, the query will be answered correctly,
since all the necessary tuples will certainly be stored.

Another aspect of the materialization is the occurrence of duplicates when, in the
final annotation, mining objects of the same type are represented more than once. This
is the case of the annotation in Fig. 27. If the system simply mines for itemsets twice

123



274 H. Blockeel et al.

(once for itemsets with supp ≥ 4, and once for itemsets with supp ≥ 5), duplicates will
be generated for itemsets having support of at least 5. One way to solve this problem
is to take the disjunction of the constraints and put it into disjoint DNF, as proposed by
Goethals and Bussche (2000): in disjoint DNF, the conjunction of any two disjuncts
is unsatisfiable. The disjoint DNF in this case is (supp ≥ 5) ∨ (supp ≥ 4 ∧ supp < 5).
By mining itemsets as many times as the number of disjuncts in the DNF formula, no
duplicates are generated. This is the strategy adopted by our system.

5 An illustrative scenario

In this section, we describe a data mining scenario that explores the main advantages
of our inductive database system. We use the Adult dataset, from the UCI Machine
Learning Repository (Newman et al. 1998), which has census information, and assume
it is already stored in our system. It contains 32,561 tuples, 6 numerical attributes and
8 categorical attributes. An extra attribute called ‘class’ discriminates people from
having a low (‘≤50K’) or high income (‘>50K’) a year, while the other attributes
describe features such as age, sex, and marital status. The scenario consists in finding
an accurate model to predict the attribute ‘class’ of tuples that refer only to women.

5.1 Step 1: Discretizing numerical attributes

We start by discretizing the numerical attributes ‘age’, ‘capital_gain’, ‘capital_loss’,
and ‘hours_per_week’. For this task, we use the SQL CASE expression, which is avail-
able in a variety of database systems (e.g., PostgreSQL, MySQL, and Oracle). As an
example of how to use this expression, consider the query in Fig. 28. It creates a table
called adult_categ, where the attribute ‘age’ in table adult_female is discretized
into the categories ‘Young’, ‘Middle_aged’, ‘Senior’ and ‘Old’.

We then create table adult_categ for our scenario, where not only the attri-
bute ‘age’, but all aforementioned numerical attributes are also discretized (with the
SQL CASE expression in Fig. 28). The categories used for each attribute are shown
in Fig. 29 and are inspired by those described in Hahsler et al. (2007). We also only
select a subset of the attributes of the original table: we removed the attributes ‘fnlwgt’,
since it only contains information about the data collection process, and the attribute
‘education_num’, as it is just a numeric representation of the attribute ‘education’.

Fig. 28 Example discretization query

123



An inductive database system based on virtual mining views 275

Fig. 29 Discretization categories

Fig. 30 Pre-processing query

5.2 Step 2: Selecting transactions

Since we want to classify only women, we now create a new table called female,
having only those tuples from table adult_categ with attribute sex = ‘Female’.
Figure 30 shows the corresponding SQL query. In the end, table female has
10,771 tuples, being 1,179 women with high income and 9,592 women with low
income.

5.3 Step 3: Mining decision trees with maximum accuracy

We now look for decision trees over the new table female, targeting the attribute
‘class’ and with maximum accuracy among those trees of size ≤5. The query is shown
in Fig. 31.5

Eventually, 27 trees are stored in table best_trees, all of them with accuracy
of 91%.

5.4 Step 4: Choosing the smallest tree

Having learned the trees with maximum accuracy in the previous step, we now want to
evaluate the predictive capacity of these trees. Since all trees have the same accuracy,
we choose the smallest one, which is depicted in Fig. 32. This tree has treeid equal to
238 and the corresponding query for this task is shown in Fig. 33.

5 For the sake of readability, ellipsis were added to some of the SQL queries presented in this section,
which represent sequences of attribute names, joins, etc.

123



276 H. Blockeel et al.

Fig. 31 Query over decision trees

Fig. 32 Decision tree (¬ High = {None, Low})

Fig. 33 Query that selects the smallest tree

5.5 Step 5: Testing the chosen decision tree

We now check the performance of the chosen decision tree. For this, we use the test
set from the UCI repository. We start by creating table female_test by applying
the same discretization rules and selecting only the female examples (5,421 in total).
Next, we check, for each class, the number of misclassified examples w.r.t the selected
decision tree. This task is achieved with the query in Fig. 34. Here, the equi-join, as
explained in Sect. 2, is executed between tables female_test and best_trees, from
which the tree with treeid = 238 is selected. The misclassified tuples are those for
which the predicted class is different from the real class.

The result of this query reveals that 481 (out of 590) of women with high income are
misclassified, while only 9 (out of 4, 831) of those with low income are misclassified
(490 women are misclassified in total).

Note that the obtained accuracy (91%) is not far from the theoretical baseline value
(89%), which is obtained by assigning all tuples to the majority class, ‘≤50K’. In the
following, we consider the use of emerging patterns (Dong and Li 1999) to obtain a
classifier with a higher accuracy.

123



An inductive database system based on virtual mining views 277

Fig. 34 Query to compute, for each class, the number of misclassified tuples w.r.t. the tree in Fig. 32

Fig. 35 Query over frequent itemsets within class ‘>50K’ (high income)

5.6 Step 6: Mining emerging patterns

In this new step, we evaluate whether emerging patterns would better discriminate the
two classes. As initially introduced in Dong and Li (1999), emerging patterns (EPs)
are patterns whose frequency increases significantly from one class to another and, as
such, can be used to build classifiers.

Since a significant number of women with high income are misclassified with the
decision tree, we now look for EPs within this class. We start by mining frequent
itemsets having support of at least 117 (10%) and keep them in table female_hi, as
shown in Fig. 35. We obtain 1,439 itemsets.

Then, we compute the support of each of these itemsets in the other class, that is,
among women with low income. The corresponding query is depicted in Fig. 36: for
each itemset i in table female_hi, it computes the number of tuples coming from
women with low income (attribute ‘class’ = ‘≤50K’) that satisfies i .

Finally, we store in table emerging_patterns only the EPs, that is, those itemsets
whose relative support within class ‘>50K’ is at least 15 times higher than within
class ‘≤50K’. This task is accomplished with the query in Fig. 37. In total, we find
196 EPs.

5.7 Step 7: Classification based on EPs

In this last step, we evaluate the predictive capacity of the EPs in table emerg-

ing_patterns. The idea is to assign each woman to the low income class (‘≤50K’),
except those that satisfy at least one EP. The classification accuracy is thus

123



278 H. Blockeel et al.

Fig. 36 Computing the support of itemsets selected with the query in Fig. 35 within class ‘≤50K’

Fig. 37 Selecting the emerging patterns with respect to class ‘>50K’ (high income)

computed as follows: women with high income in table female_test that satisfy
at least one EP in table emerging_patterns are considered well-classified. Con-
versely, women with low income that satisfy at least one EP are considered misclas-
sified. The query in Fig. 38 computes the number of well-classified (query before
the ‘union’) and misclassified (query after the ‘union’) women according to this
idea.

The result of this query reveals that 300 women (out of 590) with high income are
well-classified and that 121 with low income are misclassified. We therefore conclude
that with the EPs 121 + (590 − 300) = 411 women are misclassified in total, while
the selected decision tree leads to 490 misclassifications.

This ends the data mining scenario. We demonstrated that the main defining prin-
ciples of an inductive database are fully supported by the mining views framework.
It is clear, for instance, that the closure principle is straightforwardly supported, as
shown by the queries that create new tables with the results of mining queries of pre-
vious steps. The new tables can then be further queried with the same language used
to perform the original mining tasks, i.e., SQL. The support for ad hoc constraints
was demonstrated in all queries, in which no pre-planning was necessary. In other
words, the user can simply think of a new query in SQL and immediately write it
using the mining views or the new tables that were created as a result of the mining
operations.

123



An inductive database system based on virtual mining views 279

Fig. 38 Computing the number of well-classified and misclassified women w.r.t. the selected EPs

5.8 Performance counters

We now investigate the efficiency and effectiveness of our inductive database system.
We conducted a set of experiments over 2 SQL queries executed for the scenario
presented above. The chosen queries are those illustrated in Fig. 39.

Query (I) asks for decision trees with maximum accuracy among those trees of size
of at most 5, while query (J) asks for frequent itemsets. It is worth noticing that the
source data for both queries had in total 10,771 tuples and 12 attributes (including the
attribute ‘class’).

5.8.1 Intermediate results

We begin by evaluating the intermediate results that were computed by the mining
algorithms along with the results that were produced as output to the user. In Table 1,
we show the number of intermediately generated concepts, itemsets (when applica-
ble), decision trees (when applicable), and the size of the output table (in tuples) for
each of the example queries.

Decision trees Observe that query (I) has a nested query (sub-query) in its where-
clause, which computes the maximum accuracy of the decision trees predicting the
attribute ‘class’ with size of at most 5. Since this type of queries can not be trans-
lated into relational algebra (Ramakrishnan and Gehrke 2002), to extract constraints
from this query, the system firstly decomposed it into two query blocks (SQL queries
with no nesting), in the same way as typical query optimizers do (Ramakrishnan and
Gehrke 2002). Afterwards, each query block was translated into a relational algebra
tree. The algorithm described in Sect. 3 was then applied to both expression trees in

123



280 H. Blockeel et al.

(I)

(J)

Fig. 39 The queries chosen for the experiments

Table 1 Number of concepts, itemsets or decision trees computed by queries (I) and (J) in Fig. 39, along
with the number of tuples in their output

Query #Concepts #Itemsets #Trees Output (tuples)

(I) Decision trees 5,100 n/a 241 559
(J) Frequent itemsets 1,439 1,439 n/a 1,439

isolation, and, in the end, the final annotation was the union of the annotations that
were constructed for both expression trees.

From the final annotation, the constraint (sz ≤ 5) on decision trees was extracted.
Afterwards, the mining views Female_Trees_Class, Female_Treescharac_Class, and
Female_Concepts were materialized with the results obtained by the algorithm
Clus- EX, which exploited the constraint above. The results of the data mining phase
consisted of 241 trees (having 5,100 concepts in total) with a size of at most 5. Notice
that, due to the decomposition of the query, the constraint “max(acc)” itself was not
extracted by the constraint extraction algorithm and thus not exploited by any data
mining algorithm. Nevertheless, the query was correctly computed, since the DBMS
considered it anyway to filter the results before showing them to the user. Among the
241 trees generated, only the 27 trees with maximal accuracy (91%) were stored into
table best_trees. They had 559 concepts in total.

123



An inductive database system based on virtual mining views 281

Table 2 Execution times for queries (I) and (J) in Fig. 39

Query Total time (s) CEA (s) Mining + materialization (s)

(I) Decision trees 23.86 0.01 21.63
(J) Frequent itemsets 1.51 0.01 0.70

Frequent itemsets Regarding the query over association rules, (J), the constraint
(supp ≥ 117 ∧ class = ‘>50K’) on itemsets was extracted by the constraint extrac-
tion algorithm and exploited by the Apriori-like implementation. Female_Sets and
Female_Concepts were then materialized with the obtained results, as well as
table female_hi.

5.8.2 Execution times

Finally, we also evaluate the total execution time for both queries. Table 2 presents,
for each query, its total execution time (in seconds), the time spent by the constraint
extraction algorithm (in seconds), and the time consumed by the data mining algo-
rithms plus the time for the materialization of the required mining views (in seconds).
The times shown are the average of three executions of the queries.

Observe that the time spent by the constraint extraction algorithm was negligible
for both queries. The total execution time consists mostly of the time consumed by the
data mining algorithms along with the materialization of the required virtual mining
views. The difference between the total execution time and the mining time was due
to the time spent by the system to produce the results as output to the user.

As can be seen, the total execution times were low for both queries, which shows
the usefulness and elegance of the proposed inductive database system. Additionally,
the experiments demonstrated that the constraint extraction algorithm does not add
any extra cost, in terms of execution time, to the query evaluation process. Indeed, the
constraint extraction algorithm can be performed in time linearly proportional to the
size of the query, whereas query evaluation can take exponential time w.r.t. the size of
the query (and polynomial time w.r.t. the size of the database).

6 Related work

There already exist several proposals for developing an inductive database following
the framework introduced in Imielinski and Mannila (1996). Below, we list some of
the best known examples.

6.1 SQL-based proposals

The system structured inductive database development (SINDBAD), developed by
Wicker et al. (2008), processes queries written in structured inductive query language
(SIQL). SIQL is an extension of SQL that offers a wide range of query primitives for
feature selection, discretization, pattern mining, clustering, instance-based learning

123



282 H. Blockeel et al.

and rule induction. Another extension of SQL has been proposed by Bonchi et al.
(2009) which is called simple pattern query language (SPQL). SPQL provides great
support to pre-processing and supports a very large set of different constraints. A sys-
tem called ConQueSt has also been developed, which is equipped with SPQL and a
user-friendly interface.

In the particular case of SIQL, the attention is not focused on the use of constraints.
As we show in Blockeel et al. (2010a), the minimum support constraint is not used
within the queries themselves, but needs to be configured beforehand with the use
of the so-called configure-clause. Constraints are therefore more closely related to a
function parameter than to a constraint itself. Additionally, the number of such param-
eters is limited to the number foreseen at the time of implementation. For example,
in the case of frequent itemset mining, the minimum support is the only constraint
considered in their system.

Regarding SPQL, the number of constraints that the user can use within their mining
queries is also fixed. Consider the task of finding itemsets with large area, discussed
in Example 4. Based on its description in Bonchi et al. (2009), this task cannot be
expressed in SPQL (nor in SIQL), while being naturally expressed with the mining
views. Even though this natural expressiveness is achieved thanks to the addition of
the attributes sz and supp to the mining views T _Sets, without these attributes, the
constraint could still be expressed in plain SQL (at the cost of writing more compli-
cated queries, as shown in Example 3). With these other languages, this would only
be possible with the extension of the language itself, which is considered a drawback
here, or with post-processing queries, if possible at all.

In Microsoft’s Data Mining extension (DMX) of SQL server (Tang and MacLennan
2005), a classification model can be created and used afterwards to give predictions
via the so-called prediction joins. Although the philosophy behind the prediction join
is somewhat related to what we propose, our work goes much further: in Blockeel
et al. (2008b), for example, we present a scenario in which we learn a classifier hav-
ing the maximum accuracy and, afterwards, we look for correct association rules,
which describes the misclassified examples w.r.t this classifier. DMX would not be
appropriate to accomplish this task, since it does not provide any other operations for
manipulating models, other than browsing and prediction. Furthermore, there is no
notion of composing mining operations in their framework.

For a more detailed comparison between other data mining query languages and
the mining views approach, we refer the reader to Blockeel et al. (2010a,b).

6.2 Programming language-based approaches

An acronym for “Aggregate & Table Language and System” (Wang and Zaniolo 2003),
ATLaS is a Turing-complete programming language based on SQL that enables data
mining operations on top of relational databases. An important aspect of this approach
is that, in order to mine data, one needs to implement in this language the appropri-
ate mining algorithm. For instance, the authors show the code for the Apriori algo-
rithm, which becomes considerably complex when implemented with the proposed
language. In addition, specific code must be written to manipulate the mining results,

123



An inductive database system based on virtual mining views 283

since these should be encoded by the user into the database. Similarly, found patterns
need to be decoded and encoded back into the database so as to be used in subsequent
queries.

Another approach with the same line of reasoning is that presented in Giannotti
et al. (2004). This language, however, is not focused on relational databases, but on
deductive databases.

In Calders et al. (2006b), an algebraic framework for data mining is presented,
which allows the mining results as well as ordinary data to be manipulated. The
framework is based on the 3W model of Johnson et al. (2000). In short, “3W” stands
for the “Three Worlds” for data mining: the D(ata)-world, the I(ntensional)-world, and
the E(xtensional)-world. Ordinary data are manipulated in the D-world, regions repre-
senting mining results are manipulated in the I-world, and extensional representations
of regions are manipulated in the E-world.

Since the 3W model relies on black box mining operators, a first contribution of
the work in Calders et al. (2006b) is to extend the 3W model by “opening up” these
black boxes, using generic operators in a data mining algebra. Two key operators in
this algebra are regionize κ , which creates regions (or models) from data tuples, and a
restricted form of looping called mining loop λ, which is meant to manipulate regions.
The resulting data mining algebra, which is called MA, is studied and properties
concerning the expressive power and complexity are established. As ATLaS, MA
can also be seen as a programming language based on those key operators. These pro-
gramming languages are much less declarative, making them less attractive for query
optimization.

7 Discussion

7.1 Expressiveness of the mining queries

The expressiveness of queries over the mining views is the same as the expressiveness
of querying any relational table with SQL. Despite not being able to express every-
thing (e.g., recursive queries), SQL is a full-fledged query language, which allows
ad-hoc constraints and guarantees the closure principle. As specified in Imielinski and
Mannila (1996), these are the main characteristics an inductive database should have.
Imielinski and Mannila (1996) also lists the reasons why this is important. Indeed, the
scenario in Sect. 5 shows the benefit of such characteristics with SQL queries over the
mining views.

The mining views framework can express all fundamental constructions of the other
data mining query languages. Some types of queries are not as naturally expressed
(with the mining views proposed in this paper) as in other languages, but they can
easily be handled with the addition of new mining views or even by just pre-process-
ing the data being mined. For example, if the user wants to mine a market basket
dataset, where the transactions do not necessarily have the same size, one would need
to firstly pre-process the dataset, by creating a new table in which each transaction is
represented as a tuple with as many binary attributes (e.g., ‘true’ or ‘false’) as are the
possible items that can be bought by a customer.

123



284 H. Blockeel et al.

Queries on the structure of the decision trees are not easily expressed either. Indeed,
the framework proposed in this article focuses on the representation of the semantics
of the trees (the function they represent) rather than on their structure, as in Calders
et al. (2006a), Fromont et al. (2007).6 One advantage of the proposed framework in
comparison with those in Calders et al. (2006a), Fromont et al. (2007) is that certain
operations, such as using the decision tree for prediction, become straightforward (it
is just a join operation). Conversely, queries about the structure, such as asking which
attribute is at the root of a decision tree, become cumbersome. An alternative would be
to add to the framework separate mining views describing the structure of the decision
trees, according to the preferences of the user. Including characteristics of the patterns
as attributes may simplify the formulation of constraints as queries (e.g., Examples 3
and 4, Sect. 2). The schema presented in this article is in fact one possible instantiation
of the proposed framework; the mining views with the characteristics of the patterns
can always be extended with other characteristics, even if redundant.

7.2 Extraction of constraints

The proposed constraint extraction algorithm is currently able to extract the following
types of constraints:

– Structural: minimal and maximal size of itemsets, association rules as well as their
components (antecedent and consequent), or decision trees.

– Syntactic: a certain attribute-value pair must appear in an itemset, the antecedent
of a rule, consequent of a rule, or a decision tree.

– Interestingness measures: minimum or maximum support, minimum or maximum
confidence, and minimum or maximum accuracy.

– Conjunctions of the constraints detailed above.

Note, however, that any constraint expressible in SQL can be used with our system,
even if it is not explicitly extracted by the constraint extraction algorithm. Those that
are not yet recognized may affect the efficiency of the system, but not its correctness,
since the DBMS will consider them anyway to filter the results before showing them to
the user. An example is the “maximum accuracy” used in Example 5, Sect. 2. The main
reason for not recognizing such constraint is that the constructions for expressing it are
non-trivial in SQL, requiring sub-queries and aggregations. In any case, Sect. 8 briefly
discusses a possible strategy to extract constraints such as the “maximum accuracy”.

There could also be the situation in which constraints extracted by the system are
not yet exploited by the current available data mining algorithms, e.g., the algorithm
Clus- EX, which is not capable of exploiting syntactic constraints. In this case, the
system may store more decision trees than those necessary to answer a given query.
Again, this is not a fundamental problem, since the non-exploited constraints are used
by the DBMS to filter the query’s results.

6 Although, through the use of wild-cards, some information about the model structure is still available;
for example, the attribute at the root would never have a wild-card value.

123



An inductive database system based on virtual mining views 285

7.3 Extending the mining views framework with other types of patterns

Some data mining tasks that can be performed in SIQL and DMX, such as clustering,
cannot currently be executed with the proposed mining views. On the other hand, note
that one could always extend the framework by defining new mining views represent-
ing different patterns. More specifically, to extend the proposed system with a new
kind of pattern, we first need to specify the schema of the relational tables (or mining
views) that will represent the complete output of such a pattern mining task.

In addition to the tables, the pattern mining algorithm to be triggered by the DBMS
must also be specified, considering the exhaustiveness nature of the queries the users
are allowed to write. Such algorithm should also be, in the best case, able to explore
as many constraints as possible. However, as already pointed out in this section, the
non-exploitation of constraints does not affect the effectiveness of the system. Once
the tables and data mining algorithm are defined, the constraint extraction algorithm
needs to be adapted to consider any new structural or syntactic constraints, as well as
new interestingness measures.

8 Conclusions

In this article, we described a practical inductive database system based on virtual
mining views. The development of the system has been motivated by the need to pro-
vide an intuitive framework that covers a wide variety of models in a uniform way,
and enables to easily define meaningful operations, such as prediction of new exam-
ples. We show the benefits of its implementation through an illustrative data mining
scenario. In summary, the main advantages of our system are the following:

– Satisfaction of the closure principle: since, in the proposed system, the data mining
query language is standard SQL, the closure principle is clearly satisfied, as we
showed with the scenario in Sect. 5.

– Flexibility to specify different kinds of patterns: our system provides a very clear
separation between the patterns it currently represents, which in turn can be que-
ried in a very declarative way (SQL queries). In addition to itemsets, association
rules and decision trees, the flexibility of ad hoc querying allows the user to think
of new types of patterns which may be derived from those currently available. For
example, in Sect. 5 we showed how emerging patterns Dong and Li (1999) can be
extracted from a given table T with an SQL query over the available mining views
Concepts and Sets.

– Flexibility to specify ad hoc constraints: the proposed system is meant to offer
exactly this flexibility, i.e., by virtue of a full-fledged query language that allows
ad hoc querying, the user can think of new constraints that were not considered at
the time of implementation. A simple example is the constraint area, which can
naturally be computed with the framework.

– Intuitive way of representing mining results: in our system, patterns are all repre-
sented as sets of concepts, which makes the mining views framework as generic
as possible, not to mention that the patterns are easily interpretable.

123



286 H. Blockeel et al.

– Support for post-processing of mining results: again, thanks to the flexibility of ad-
hoc querying, post-processing of mining results is clearly feasible in the proposed
inductive database system.

We identify four directions for further work. Currently, the mining views are in
fact empty and only materialized upon request. Therefore, inspired by the work of
Harinarayan et al. (1996), the first direction for further research is to investigate which
mining views (or which parts of them) could actually be materialized in advance, as
it is too expensive to materialize all of them. This would speed up query evaluation.
Second, the constraint extraction could be improved so as to incorporate a larger vari-
ety of constraints. For example, constraints such as “the maximum accuracy” are, at
the current time, not recognized and hence not filtered out. One direction we want to
explore in this perspective is dynamic optimization, where the result of one part of the
query or of a sub-query can be used to constrain another part. Third, to mine datasets
in the context of, e.g., market basket using the current system, one would need to first
pre-process the dataset that is to be mined, by changing its representation. Since this
pre-processing step may be laborious, an interesting direction for future work would
then be to investigate how this type of datasets could be treated in a easier way by the
system. Finally, the system developed so far covers only itemset mining, association
rules and decision trees. Another direction for further work is to extend it with other
models, considering the exhaustiveness nature of the queries the users are allowed to
write.

Acknowledgments This work has been partially supported by the projects IQ (IST-FET FP6-516169)
2005/8, GOA 2003/8 “Inductive Knowledge bases”, FWO “Foundations for inductive databases”, and
BINGO2 (ANR-07-MDCO 014-02). When this research was performed, Hendrik Blockeel was a post-
doctoral fellow of the Research Foundation—Flanders (FWO-Vlaanderen), Élisa Fromont was working at
the Katholieke Universteit Leuven, and Adriana Prado was working at the University of Antwerp.

References

Abiteboul S, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley, Reading
Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the VLDB

international conference on very large data bases, pp 487–499
Blockeel H, Calders T, Fromont E, Goethals B, Prado A (2008a) Mining views: database views for data

mining. In: Proceedings of the IEEE ICDE international conference on data engineering, pp 1608–1611
Blockeel H, Calders T, Fromont E, Goethals B, Prado A (2008b) An inductive database prototype based on

virtual mining views. In: Proceedings of the ACM SIGKDD international conference on knowledge
discovery in databases

Blockeel H, Calders T, Fromont E, Goethals B, Prado A, Robardet C (2010a) Practical comparative study
of data mining query languages. In: Inductive databases and constraint-based data mining, vol 1.
Springer, pp 59–77

Blockeel H, Calders T, Fromont E, Goethals B, Prado A, Robardet C (2010b) Inductive querying with virtual
mining views. In: Inductive databases and constraint-based data mining, vol 1. Springer, pp 265–287

Bonchi F, Giannotti F, Lucchese C, Orlando S, Perego R, Trasarti R (2009) A constraint-based querying
system for exploratory pattern discovery. Inf Syst 34(1):3–27

Calders T, Goethals B, Prado A (2006a) Integrating pattern mining in relational databases. In: Proceed-
ings of the ECML-PKDD European conference on machine learning and principles and practice of
knowledge discovery in databases, pp 454–461

Calders T, Lakshmanan LVS, Ng RT, Paredaens J (2006b) Expressive power of an algebra for data mining.
ACM Trans Database Syst 31(4):1169–1214

123



An inductive database system based on virtual mining views 287

Chen PP (1976) The entity-relationship model: toward a unified view of data. ACM Trans Database Syst
1:9–36

Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In:
Proceedings of the ACM SIGKDD international conference on knowledge discovery in databases,
pp 43–52

Fromont E, Blockeel H, Struyf J (2007) Integrating decision tree learning into inductive databases. In:
ECML-PKDD workshop on knowledge discovery in inductive databases (KDID) (revised selected
papers), pp 81–96

Garcia-Molina H, Widom J, Ullman JD (1999) Database system implementation. Prentice-Hall, Inc, Upper
Saddle River

Geerts F, Goethals B, Mielikäinen T (2004) Tiling databases. In: Suzuki E, Arikawa S (eds) Discovery
science, vol 3245. Springer, Berlin, pp 278–289

Giannotti F, Manco G, Turini F (2004) Specifying mining algorithms with iterative user-defined aggregates.
IEEE Trans Knowl Data Eng 16:1232–1246

Goethals B, Bussche JVD (2000) On supporting interactive association rule mining. In: Proceedings of the
DAWAK international conference on data warehousing and knowledge discovery, pp 307–316

Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D, Venkatrao M (1997) Data cube: a rela-
tional aggregation operator generalizing group-by, cross-tab, and sub-total. Data Min Knowl Discov
1:29–53

Hahsler M, Grün B, Hornik K (2007) arules: mining association rules and frequent itemsets. SIGKDD
Explor 2:0–4

Han J, Fu Y, Wang W, Koperski K, Zaiane O (1996) DMQL: a data mining query language for relational
databases. In: ACM SIGMOD workshop on data mining and knowledge discovery (DMKD)

Harinarayan V, Rajaraman A, Ullman JD (1996) Implementing data cubes efficiently. In: Proceedings of
the ACM SIGMOD international conference on management of data, pp 205–216

Imielinski T, Mannila H (1996) A database perspective on knowledge discovery. Commun ACM 39:58–64
Imielinski T, Virmani A (1999) Msql: a query language for database mining. Data Min Knowl Discov

3(4):373–408
Johnson T, Lakshmanan LVS, Ng RT (2000) The 3w model and algebra for unified data mining. In:

Proceedings pf the VLDB international conference on very large data bases. Morgan Kaufmann,
pp 21–32

Meo R, Psaila G, Ceri S (1998) An extension to sql for mining association rules. Data Min Knowl Discov
2(2):195–224

Mitchell TM (1997) Machine learning. McGraw-Hill, New York
Newman D et al (1998) UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/

MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer
Science

Nijssen S, Raedt LD (2007) Iql: a proposal for an inductive query language. In: ECML-PKDD workshop
on knowledge discovery in inductive databases (KDID) (revised selected papers), pp 189–207

Prado A (2009) An inductive database system based on virtual mining views. PhD thesis, University of
Antwerp, Belgium

Ramakrishnan R, Gehrke J (2002) Database management systems, 3rd edn. McGraw-Hill Science/Engi-
neering/Math, New York

Tang ZH, MacLennan J (2005) Data mining with SQL Server 2005. Wiley, New York
Wang H, Zaniolo C (2001) Nonmonotonic reasoning in ldl++. In: Minker J (ed) Logic-based artificial

intelligence. Kluwer Academic Publishers, pp 523–544
Wang H, Zaniolo C (2003) Atlas: a native extension of sql for data mining. In: Proceedings of the SIAM

international conference on data mining, pp 130–144
Wicker J, Richter L, Kessler K, Kramer S (2008) Sinbad and siql: an inductive database and query lan-

guage in the relational model. In: Proceedings of the ECML-PKDD European conference on machine
learning and principles and practice of knowledge discovery in databases, pp 690–694

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

	An inductive database system based on virtual mining views
	Abstract
	1 Introduction
	2 The mining views framework
	2.1 The entity-relationship model
	2.1.1 Concepts
	2.1.2 Itemsets
	2.1.3 Association rules
	2.1.4 Decision trees

	2.2 The relational model
	2.2.1 The mining view T_Concepts
	2.2.2 The mining views T_Sets and T_Rules
	2.2.3 The mining views T_Trees_A and T_Treescharac_A

	2.3 Combining patterns and models
	2.4 Putting it all together

	3 Constraint extraction
	3.1 Annotations
	3.2 Bottom-up construction of an annotation
	3.2.1 Relational algebra
	3.2.2 Algorithm
	3.2.3 The redundant operations and the union
	3.2.4 Leaf nodes
	3.2.5 Selection with predicate Attrθa
	3.2.6 The Cartesian product
	3.2.7 The selection σAttr1 θAttr2
	3.2.8 Projection with attribute list Attr1, ,hellip, Attrk
	3.2.9 Operation set-difference


	4 Constraint exploitation
	5 An illustrative scenario
	5.1 Step 1: Discretizing numerical attributes
	5.2 Step 2: Selecting transactions
	5.3 Step 3: Mining decision trees with maximum accuracy
	5.4 Step 4: Choosing the smallest tree
	5.5 Step 5: Testing the chosen decision tree
	5.6 Step 6: Mining emerging patterns
	5.7 Step 7: Classification based on EPs
	5.8 Performance counters
	5.8.1 Intermediate results
	5.8.2 Execution times


	6 Related work
	6.1 SQL-based proposals
	6.2 Programming language-based approaches

	7 Discussion
	7.1 Expressiveness of the mining queries
	7.2 Extraction of constraints
	7.3 Extending the mining views framework with other types of patterns

	8 Conclusions
	Acknowledgments
	References


